ESA Lunar Science and Exploration

Total Page:16

File Type:pdf, Size:1020Kb

ESA Lunar Science and Exploration ESA Lunar Science and Exploration S. Hovland - HME, B. Foing - SCI European Space Agency [email protected] Bernard.Foing @esa.int Sorrento October 23, 2007 Session 3. Agencies Activities and Plans, 9th ILEWG, ILC 2007 1 Introduction • Ever since 2001, the long-term goal of the European Space Exploration Programme Aurora has been a significant European participation in the human exploration of Mars • To pave the way for this visionary objective, activities within the Aurora programme have been focussed on Mars exploration through ExoMars and preparation of a Mars Sample Return (MSR) • The Moon has been mainly considered as a test bed for dedicated technologies needed for Mars missions Sorrento October 23, 2007 Session 3. Agencies Activities and Plans, 9th ILEWG, ILC 2007 2 Exploration Scenario • While on the international scene a global strategy for exploration is being defined, several distinct lines of development for space exploration can be identified: – The retirement of the US Shuttle and the development of a new manned transportation system by NASA capable of serving LEO, the Moon and beyond – International interest in lunar exploration through • Several robotic missions to the Moon • Strategy and architecture definition for human exploration – A renewed interest for an international Mars Sample Return Mission in the 2020 time frame mainly for scientific purposes – In Europe we witness several national initiatives in the field of robotic missions to the Moon, development of Instrumentation and / or enabling technologies Sorrento October 23, 2007 Session 3. Agencies Activities and Plans, 9th ILEWG, ILC 2007 3 An International Architecture with European elements • International cooperative effort (14 space agencies) to produce a joint planning tool / architecture (INTERSECT) • European studies to master the overall exploration architecture and define a significant European contribution building on our established competencies and innovation priorities • A sustained international exploration programme including Moon and Mars is estimated to some 400 Billions € over 40 years High-level Requirements International Plans and ARCHITECTURE ANALYSIS Capabilities Planetary surface European Competences and Space transportation Innovation Priorities In-space Sorrento October 23, 2007 Session 3. Agencies Activities and Plans, 9th ILEWG, ILC 2007 4 ESA Human Spaceflight & Exploration Maintain an important human activity: • ISS – Continue with a robust programme of astronaut flights – Make the best use of the new infrastructures, which will become available with the launch of Columbus and ATV, capitalizing on many years of investments and exploit them also to prepare for human exploration of Moon and Mars; • Moon – Establish a plan for a substantial participation to the NASA return to the Moon initiative, identify the areas of potential European contribution, specifically to the Moon ground infrastructure. • Transportation – Study a manned transportation system as redundant capability with respect to the US system: CSTS / European Manned access to space Sorrento October 23, 2007 Session 3. Agencies Activities and Plans, 9th ILEWG, ILC 2007 5 ESA Human Spaceflight & Exploration Pave the way via robotic exploration: •ExoMars – Secure the implementation of ExoMars and capitalize on the related technology development •MSR – Continue with the study of robotic exploration missions in the frame and spirit of the Core programme, with Mars Sample Return as main goal for the coming decade • NEXT – Implement an intermediate mission (NEXT), after ExoMars and before MSR. Sorrento October 23, 2007 Session 3. Agencies Activities and Plans, 9th ILEWG, ILC 2007 6 NEXT Mission • Several mission concepts will be studied at Phase A level for the NEXT mission selection process: • A Mars mission – demonstrating rendezvous and capture in Mars orbit, – and delivering a network of three surface stations. – the highest science priority for the surface elements is network science, as extensively studied in Europe in the past – the aerobraking phase will provide opportunities for aeronomy and the mapping of crustal magnetic anomalies • A Lunar Lander mission – demonstrating high-precision landing with hazard avoidance – and focusing on in situ science – Mobility should be provided with a rover as a baseline Sorrento October 23, 2007 Session 3. Agencies Activities and Plans, 9th ILEWG, ILC 2007 7 C/Min 2008 Approach • Robotic Exploration: – ExoMars – Phase B study for NEXT mission – Focused MSR technology programme • Human / Moon: – Astronaut flights and ISS exploitation – Moon exploration technology, focusing on habitation and surface activities and related space qualification programme • Transportation capabilities – Phase A / B CSTS – Phase A European Manned Access to Space Sorrento October 23, 2007 Session 3. Agencies Activities and Plans, 9th ILEWG, ILC 2007 8 ESA SCI Contribution to International Lunar Exploration SMART-1 • Test new technologies • Launch date: 27 Sept 2003, Ariane 5 – Solar Electric Propulsion • Lunar capture: 15 Nov. 2004 – instrument miniaturisation • Impact: 3 Sept. 2006 – Faster, cheaper, smarter • First European lunar orbiter • Mission: 6 months nominal lunar orbit – Colour Micro-imager operations + 1 year extension – First X-ray global map of lunar elements – First mapping of minerals in infrared • Launch mass: 370 kg Sorrento October 23, 2007 Session 3. Agencies Activities and Plans, 9th ILEWG, ILC 2007 9 ESA SCI Contribution to International Lunar Exploration •SMART-1 – technology lessons & data exploitation – experience: planning and impact campaign – SMART-1 signal for ground segment validation (Selene, Chang’E1 and Chandrayaan-1) • Chang’E1 ground support (ESA-China Cooperation agreement) – ESA spacecraft/ground operations support – Ground station for telemetry, tracking, commanding support – Technical advice – Visitor exchanges and training • Chandrayaan-1 ESA/ISRO agreement: – ESA instruments (SIR2, C1XS, SARA) and general support – Expertise and tools for planning and data archiving Sorrento October 23, 2007 Session 3. Agencies Activities and Plans, 9th ILEWG, ILC 2007 10.
Recommended publications
  • Attachment J-4 Applicable and Reference Documents Lists
    NNJ12GA46C SECTION J Attachment J-4 MISSION AND PROGRAM INTEGRATION CONTRACT Attachment J-4 Applicable and Reference Documents Lists J-A4-1 NNJ12GA46C SECTION J Attachment J-4 MISSION AND PROGRAM INTEGRATION CONTRACT This attachment contains applicable documents for the contract effort. The contractor shall comply with these requirements in performing Statement of Work (SOW) requirements. This attachment is structured as follows: Table J4-1: Applicable Documents List Table J4-2: Reference Documents List Table J4-3: Book Editor/Book Coordinated/Managed Documents List Table J4-4: Orion Documents List The documents identified within Table J4-1 or within a document listed in this table (second tier) are applicable to this contract. Requirements written in these documents have full force and effect as if their text were written in this contract to the extent that the requirements relate to context of the work to be performed within the scope of this contract. When a document is classified as “reference,” the document is provided for information about the ISS Program execution and the Mission and Program Integration Contract’s role in the ISS Program. The general approach for interpreting whether a document impacts the contractor’s performance is that if a document is “applicable,” then the contractor has solid requirements that derive from that document. Applicable documents contain additional requirements and are considered binding to the extent specified. Applicable documents cited in the text of the document in a manner that indicates applicability such as follows: • In accordance with • As stated in • As specified in • As defined in • Per • In conformance with When a document is classified as “reference,” the document is provided for general context of the ISS Program execution and for influence on the performance of the Mission and Program Integration Contract in its role of support to the ISS Program.
    [Show full text]
  • Jules Verne ATV Launch Approaching 11 February 2008
    Jules Verne ATV launch approaching 11 February 2008 will carry up to 9 tonnes of cargo to the station as it orbits 400 km above the Earth. Equipped with its own propulsion and navigation systems, the ATV is a multi-functional spacecraft, combining the fully automatic capabilities of an unmanned vehicle with the safety requirements of a crewed vehicle . Its mission in space will resemble that, on the ground, of a truck (the ATV) delivering goods and services to a research establishment (the space station). A new-generation high-precision navigation system will guide the ATV on a rendezvous trajectory towards the station. In early April, Jules Verne will automatically dock with the station’s Russian Preview of the maiden launch and docking of ESA's Jules Verne ATV. Jules Verne will be lifted into space on Service Module, following a number of specific board an Ariane 5 launch vehicle. Credits: ESA - D. operations and manoeuvres (on 'Demonstration Ducros Days') to show that the vehicle is performing as planned in nominal and contingency situations. It will remain there as a pressurised and integral After the successful launch of ESA’s Columbus part of the station for up to six months until a laboratory aboard Space Shuttle Atlantis on controlled re-entry into the Earth’s atmosphere Thursday (7 February), it is now time to focus on takes place, during which it will burn up and, in the the next imminent milestone for ESA: the launch of process, dispose of 6.3 tonnes of waste material no Jules Verne, the first Automated Transfer Vehicle longer needed on the station.
    [Show full text]
  • Level Ministerial and Scientific Event a New Era of Blue Enlightenment
    Report on the High- Level Ministerial and Scientific Event A New Era of Blue Enlightenment 12-14 July 2017 Lisbon, Portugal October 2017 EUROPEAN COMMISSION Directorate-General for Research and Innovation Directorate F — Bioeconomy Unit F.4 — Marine Resources Contact: Sieglinde Gruber E-mail: [email protected] [email protected] European Commission B-1049 Brussels EUROPEAN COMMISSION Report on the High-Level Ministerial and Scientific Event A New Era of Blue Enlightenment 12-14 July 2017 Directorate-General for Research and Innovation 2017 Bioeconomy EN 3 EUROPE DIRECT is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you) LEGAL NOTICE This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. More information on the European Union is available on the internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2016. PDF ISBN 978-92-79-73529-5 doi: 10.2777/64644 KI-04-17-849-EN-N © European Union, 2017. Reproduction is authorised provided the source is acknowledged. Cover images: © Lonely, # 46246900, 2011. © ag visuell #16440826, 2011. © Sean Gladwell #6018533, 2011. © LwRedStorm, #3348265. 2011. © kras99, #43746830, 2012. Source: Fotolia.com Internal document image(s): © European Union, 2017, Source: EC - Audiovisual Service, Photo: Bruno Portela 3 "The Sea, the great unifier, is man's only hope.
    [Show full text]
  • Territorial Satellite Technologies the NEREUS Network’S Italian Partners’ Experiences
    Territorial satellite technologies The NEREUS Network’s Italian partners’ experiences December 2011 1 Contents 1. FOREWORD .............................................................................................................. 5 1.1. Reasons behind and object of this document ........................................................... 5 1.2. Activities conducted for the monitoring procedure .................................................. 6 PART I – THE SATELLITE APPLICATIONS CHART ........................................................... 9 2. SUPPLY AND DEMAND RELATING TO SATELLITE SERVICES IN THE CONTEXT OF THE NEREUS NETWORK’S ITALIAN PARTNERS .................................................................................. 10 2.1. Criteria adopted for the survey on the supply of and demand for satellite services 10 2.2. The chart of the Italian NEREUS partners’ satellite applications ............................. 12 PART III – ANALYSES AND PROPOSALS ...................................................................... 70 3. ELEMENTS EMERGING FROM THE SUPPLY AND DEMAND CHART ........................................ 71 3.1. Quantitative outline of the supply and demand chart ............................................ 71 3.2. Schemes identified as a demand needing to be met ............................................... 72 3.3. Projects in the “pre‐operational” stage and close to “end‐user needs” .................. 76 4. CONCLUSIONS ...................................................................................................
    [Show full text]
  • The Extreme Physical Properties of the Corot-7B Super-Earth
    1 08/02/2011 The extreme physical properties of the CoRoT-7b super-Earth A. Légera,b, O. Grassetc, B. Fegleyd, F. Codrone, A., F. Albaredef, P. Bargeg, R. Barnesh, P. Cancec, S. Carpyc, F. Catalanoi, C. Cavarroca,b, O. Demangeona,b, S. Ferraz-Melloj, P. Gabora,b, J.-M. Grießmeierk, J. Leibachera,b,q, G. Libourell, A-S. Maurinl,q , S.N. Raymondl,q , D. Rouann, B. Samuela, L. Schaeferc, J. Schneidero, P. A. Schullera, F. Selsisl,q , C. Sotinp. Affiliations a. (Corresponding author) Institut d’Astrophysique Spatiale, Université Paris-Sud, bât 121, Univ. Paris-Sud, F-91405 Orsay, France; e-mail: [email protected]; ph: 33 1 69 85 85 80 b. Institut d’Astrophysique Spatiale, CNRS (UMR 8617), bât 121, Univ. Paris-Sud, F- 91405 Orsay, France, c. Université de Nantes, CNRS, Lab de planétologie et Géodynamique, UMR- CNRS 6112, F-44300 Nantes d. Planetary Chemistry Laboratory McDonnell Center for the Space Sciences, Dep. of Earth and Planetary Sciences, Washington University in St. Louis, USA; e. Laboratoire de Météorologie Dynamique CNRS/UPMC, T 45-55, E3, 75252 Paris Cedex 05 – France; f. Ecole Normale Supérieure (LST), 69364 Lyon cedex 7, France; Laboratoire d’Astrophysique de Marseille, Pôle de l'Étoile, 38 r. Frédéric Joliot-Curie, 13388 Marseille cedex 13, France g. Department of Astronomy, University of Washington, Seattle, WA, 98195-1580, USA; h. 12 av. Fontaine de la Reine, 92430 Marnes la Coquette, France; i. IAG-Universidade de Sao Paulo, Brasil; j. Centre de Biophysique Moléculaire CNRS, r. Charles Sadron, 45071 Orléans cedex 2, France; k.
    [Show full text]
  • A Launch for the International Space Station
    A launch for the International Space Station For its first mission of the year, Arianespace will launch the first Automated Transfer Vehicle (ATV), dubbed “Jules Verne”, for the European Space Agency (ESA). Right from this first launch, the ATV will play a vital role in bringing supplies to the International Space Station (ISS). Weighing more than 20 tons, this will be by far the heaviest payload ever launched by Ariane 5. An Ariane 5 ES will inject the Jules Verne ATV into a circular orbit at an altitude of 260 kilometers, inclined 51.6 degre e s . With this launch, Ariane 5 further expands its array of missions, ranging fro m scientific spacecraft in special orbits to commercial launches into geostationary orbit. The ATV is designed to bring supplies to the ISS (water, air, food, propellants for the Russian section, spare parts, experimental hard w a re, etc.), and to reboost the ISS into its nominal orbit. The ISS now weighs more than 240 metric tons, including the recently attached European labora t o r y, Columbus. After being docked to the ISS for up to six months, the ATV will be loaded with waste items by the astronauts, and sent back down. After separating from the launch vehicle, the ATV will be autonomous, using its own systems for energy (batteries and four large solar panels) and guidance (GPS, star t racker), in liaison with the control center in Toulouse. During final approach, an optical navigation system will guide the ATV to its rendezvous with the Space Station, w h e re it will automatically dock several days after launch.
    [Show full text]
  • International Space Station Basics Components of The
    National Aeronautics and Space Administration International Space Station Basics The International Space Station (ISS) is the largest orbiting can see 16 sunrises and 16 sunsets each day! During the laboratory ever built. It is an international, technological, daylight periods, temperatures reach 200 ºC, while and political achievement. The five international partners temperatures during the night periods drop to -200 ºC. include the space agencies of the United States, Canada, The view of Earth from the ISS reveals part of the planet, Russia, Europe, and Japan. not the whole planet. In fact, astronauts can see much of the North American continent when they pass over the The first parts of the ISS were sent and assembled in orbit United States. To see pictures of Earth from the ISS, visit in 1998. Since the year 2000, the ISS has had crews living http://eol.jsc.nasa.gov/sseop/clickmap/. continuously on board. Building the ISS is like living in a house while constructing it at the same time. Building and sustaining the ISS requires 80 launches on several kinds of rockets over a 12-year period. The assembly of the ISS Components of the ISS will continue through 2010, when the Space Shuttle is retired from service. The components of the ISS include shapes like canisters, spheres, triangles, beams, and wide, flat panels. The When fully complete, the ISS will weigh about 420,000 modules are shaped like canisters and spheres. These are kilograms (925,000 pounds). This is equivalent to more areas where the astronauts live and work. On Earth, car- than 330 automobiles.
    [Show full text]
  • The European Columbus Space Laboratory Set to Reach ISS 3 December 2007
    The European Columbus space laboratory set to reach ISS 3 December 2007 cornerstone of Europe’s contribution to this international endeavour. Once Columbus is launched, assembled to the Space Station and verified, ESA will become an active partner in the operations and utilization of mankind’s only permanent outpost in space. As the first European laboratory devoted to long- term research in space, Columbus will further expand the science capabilities of the ISS. In its interior, the Columbus laboratory will provide accommodation for experiments in the field of multidisciplinary research into biology, physiology, material science, fluid physics, technology, life science and education. In addition, its external payload facility hosts experiments and applications The Columbus laboratory is ESA's biggest contribution in the field of space science, Earth observation and to the International Space Station (ISS). Delivered to technology. ESA by EADS SPACE Transportation on 2 May 2006, this laboratory will provide internal payload Columbus will be transported into Earth orbit in the accommodation for various scientific experiments. The Shuttle’s cargo bay, pre equipped with five internal Columbus laboratory is due to be flown on Space Shuttle rack. Two of its external experiment facilities will be Atlantis to the ISS in December 2007. Credits: ESA - D. stowed separately in the Shuttle’s cargo bay and Ducros attached to the outside of the laboratory module structure in orbit. German ESA astronaut Hans Schlegel will play a key role in two of the three With NASA’s announcement today of the launch spacewalks or EVA (Extra-Vehicular Activity) of Space Shuttle Atlantis on 6 December, ESA scheduled for the mission.
    [Show full text]
  • Issue #1 – 2012 October
    TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems.
    [Show full text]
  • Technologies for Exploration
    SP-1254 SP-1254 TTechnologiesechnologies forfor ExplorationExploration T echnologies forExploration AuroraAurora ProgrammeProgramme Proposal:Proposal: Annex Annex DD Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 SP-1254 November 2001 Technologies for Exploration Aurora Programme Proposal: Annex D This report was written by the staff of ESA’s Directorate of Technical and Operational Support. Published by: ESA Publications Division ESTEC, PO Box 299 2200 AG Noordwijk The Netherlands Editor/layout: Andrew Wilson Copyright: © 2001 European Space Agency ISBN: 92-9092-616-3 ISSN: 0379-6566 Printed in: The Netherlands Price: €30 / 70 DFl technologies for exploration Technologies for Exploration Contents 1 Introduction 3 2 Exploration Milestones 3 3 Explorations Missions 3 4Technology Development and Associated Cost 5 5 Conclusion 6 Annex 1: Automated Guidance, Navigation & Control A1.1 and Mission Analysis Annex 2: Micro-Avionics A2.1 Annex 3: Data Processing and Communication Technologies A3.1 Annex 4: Entry, Descent and Landing A4.1 Annex 5: Crew Aspects of Exploration A5.1 Annex 6: In Situ Resource Utilisation A6.1 Annex 7: Power A7.1 Annex 8: Propulsion A8.1 Annex 9: Robotics and Mechanisms A9.1 Annex 10: Structures, Materials and Thermal Control A10.1 1 Table 1. Exploration Milestones for the Definition of Technology Readiness Requirements. 2005-2010 In situ resource utilisation/life support (ground demonstration) Decision on development of alternative
    [Show full text]
  • Playing Panpipes in Southern Russia: History, Ethnography, and Performance Practices
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely aflfect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Infonnation Company 300 North Zed) Road, Ann Aibor MI 48106-1346 USA 313/761-4700 800/521-0600 NOTE TO USERS The original manuscript received by UMI contains pages witFi slanted print. Pages were microfilmed as received. This reproduction is the best copy available UMI PLAYING PANPIPES IN SOUTHERN RUSSIA: HISTORY, ETHNOGRAPHY, AND PERFORMANCE PRACTICES VOL.
    [Show full text]
  • Statement by EADS Astrium, Represented by Dr
    05 August 2009 The Review of U. S. Human Space Flight Plans Committee Statement by EADS Astrium, represented by Dr. Mark Kinnersley Director of Business Development Orbital System and Exploration Division EADS ASTRIUM Space Transportation Mr. Chairman and Members of the Committee, On behalf of EADS Astrium, I would like to express our appreciation for the opportunity to contribute to the work of the Committee as it reviews the future of U.S. Human Spaceflight. EADS Astrium is encouraged by the serious interest shown by this Committee, and by the Obama Administration, in expanding U.S. - European cooperative partnerships within the field of human spaceflight. As your charter alludes, the ability to develop and sustain a robust U.S. human spaceflight program requires leveraging all available alternatives capable of providing efficiencies toward affordability, risk and schedule. We at EADS Astrium are confident that we can provide a great benefit to NASA and the U.S. taxpayer thanks to our expertise in the following three areas: • Automatic Transfer Vehicle (ATV): EADS Astrium can offer additional ATV mission services to supply the International Space Station in cooperation with U.S. industry. In particular, ATVs can be used to plug the potential logistics gap to the ISS after Shuttle retirement. • Industrialization: EADS Astrium's expertise gained over many years as the Industrial Operator for Europe's ISS activities could further enable international operational programs to achieve reliable, yet cost-efficient, industrial services. • Future Exploration Programs: EADS Astrium could provide significant key building blocks in a joint international human and robotic space exploration. EADS Astrium is a multinational company that lives and breathes international programs.
    [Show full text]