<<

3G CDMA - WCDMA and

Rodger E. Ziemer IEEE Communications Society Distinguished Lecturer Program Outline v Multiple access/channel measurement guidelines v Current and technology v What is Third Generation? v WCDMA features v cdma2000 features v WCDMA and cdma2000 contrasted v Summary

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 2 Rules for Efficient Multiple Access v Three immutable laws v Know the channel v Minimize interference to others v Mitigate interference received from others v Requirements of multiple access v Channel measurement v Channel control and modification v Multiple user channel isolation

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 3 Channel Measurement Guidelines v Wider the = better the measurement v Limitations on this rule v Regulatory (indoor path isolation = 10 ns delay resolution) v Complexity (combining more paths = more hardware) v Physical limitations (splitting energy over more paths = increasingly inaccurate parameter measurements) v Measure at frequency > rate of change of channel v No other users: good receiver attempts to put together all received multipath components coherently v Other users present: Optimum = multiuser detection; suboptimum = power control; minimize near-far problem May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 4 Current 1G and 2G Technology System Jun-00 PDC Analog 78,339,980 8% cdmaOne 67,964,980 GSM 337,794,500 GSM IS-136 PDC 47,739,500 58% 8% IS-136 48,079,830

Africa USA/ 2% Americas 17% Analog 9% 14% 1% Pacific cdmaOne 32% 12% Europe: Western Europe: Source: EMC World Cellular Database 36% Eastern 3% May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 5 Why CDMA? v Higher capacity v Improved performance in multipath by diversity v Lower mobile transmit power = longer battery life v Power control v Variable transmission rate with v Allows soft handoff v Sectorization gain v High peak data rates can be accommodated v Combats other-user interference = lower reuse factors

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 6 IS-95 Forward Link Xmtr Diagram [5] 8600 bps 9600 bps 19200 sps data scrambling 19200 sps voice error detection R=1/2; k = 9 user m code (CRC) block analog voice encoder convolutional interleaver & tail bits encoder + mux 172 bits + 12 bit CRC 384 sym cl ,m per 20 msec 8 bit tail per 20 msec user m long code wm reverse user m link power Walsh code control bit 1.2288 Mcps

data scrambling 19200 sps error detection voice R=1/2; k = 9 block user n code (CRC) analog voice encoder convolutional interleaver & tail bits encoder + mux + user n long code cl ,n reverse user n pulse link power Walsh code shaping control bit 1.2288 Mcps cI , pilot cosw ot 1.2288 Mcps LPA 19200 sps S S data cQ, pilot sinw ot paging scrambling paging channel data R=1/2; k = 9 channel block pulse 9600/4800/ convolutional framing interleaver + + shaping 2400 bps encoder paging c wp channel l, page paging channel long code Walsh code 1.2288 Mcps 4800 sps sync synchronization R=1/2; k = 9 block channel channel data convolutional interleaver 1200 bps framing encoder +

w32 synch channel Walsh code 1.2288 Mcps

pilot channel data all 0's +

w0 pilot channel Walsh code 1.2288 Mcps May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 7 What is Third Generation? [1] v Flexible support of multiple services v Voice v Messaging – , , etc. v Medium-rate multimedia – access, educational v High-rate multimedia – , video v High-rate interactive multimedia – video telecon-ferencing, telemedicine, etc. v Mobility: quasi-stationary to high-speed platforms v Global : ubiquitous, seamless coverage v Evolution from second generation systems May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 8 Evolution of Standards [1]

world GSM GPRS EDGE

Japan PDC W-CDMA HSPDA

U.S. iDEN

U.S. IS-136

U.S./Asia IS-95A IS-95B cdma2000 1xEV-DV

2G 2. 1xEV-DO

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 9 Peak Data Rates [1] 2072.0

2000

1500

1000 kbps

614.2

473.0 500

171.0 115.2

0 GPRS IS-95B WCDMA cdma2000 EDGE

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 10 3G Spectrum Availability [2] 3G 3G ITU MSS* MSS * Region 2 MSS* MSS 1885 1930 1980 2010 2025 2110 2120 2170 2200

PHS 3G 3G MSS MSS 1885 1895 1918.1 1980 2010 2025 2110 2170 2200

DCS DCS DECT 3G 3G Europe 1800 1800 MSS MSS 1710 1785 1805 1880 1900 1996 2010 2025 2110 2186 2200

3G 3G MSS MSS 1885 2025 2110 2200

Broadcast PCS Unl. PCS Reserve PCS Auxiliary USA A D B E F C A D B E F C 1850 1910 1930 1990 2110 2150 2200 All Frequencies in MHz May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 11 Main Differences between WCDMA and GSM Air Interfaces [3] WCDMA GSM Carrier spacing 5 MHz 200 kHz Reuse factor 1 1-18 Power control freq 1500 Hz 2 Hz or lower Quality control resource Network planning management algorithms (frequency planning) Frequency diversity Wideband with RAKE Frequency hopping Packet data Load based packet Time slot base scheduling scheduling with GPRS Downlink diversity Supported Not supported

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 12 Main Differences between WCDMA and IS-95 Air Interfaces [3] WCDMA IS-95 Carrier spacing 5 MHz 1.25 MHz Chip rate 3.84 Mcps 1.2288 Mcps Power control freq 1500 up- & downlink 800 Hz uplink; slow, DL synchronization Not needed Yes, typically via GPS Inter-frequency Yes, measurements with Possible; measurement slotted mode method not specified Radio resource management Yes, provides QoS Not needed (speech only) Packet data Load-based packet Packet data xmitted as scheduling short circuit switched cells Downlink transmit diversity Supported Not supported May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 13 WCDMA Transmission Parameters v Wideband direct-sequence spreading v 3.84 Mcps rate v Spreading gains (ratios) from 4 to 512 v Complex QPSK spreading v Both frequency- and time-division duplex modes v Both forward and reverse fast power control v Coherent forward and reverse links using both code-division and time-division pilots v Asynchronous cells

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 14 New Features of cdma2000 vs. IS-95 v Forward link [4] v Quadrature PSK data (doubles avail. Walsh codes) v Transmit diversity v Fast power control v Quasi-orthogonal codes (more codes) v Auxiliary pilots (beam forming) v New common power control and assignment channels v Increased standby time (changes in paging channel) v Turbo codes v Variable rate v Flexible frame length (5, 20, 40, and 80 ms) v Multiframe interleaving May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 15 New Features of cdma2000 vs. IS-95 v Reverse Link [4] v Coherent pilot channel assisted v Binary PSK data modulation v Complex PN spreading v Enhanced access channel = decreased setup times for traffic channeless connections (allows power control and slot reservations) v Improvements to interfrequency hard handoff to support subframe searches

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 16 W-CDMA Versus cdma2000 [2] W-CDMA IS-2000 Chip Rate 4.096 Mcps 3.6864 Mcps Frame Duration 10 ms 20 ms Base Stn Sync Asynchronous Synchronous 3 step paral code srch for Sync through time- Base Stn Acq/Det base stn det & slot/frame shifted PN correlation Forward Link Pilot TDM dedicated pilot CDM common pilot Beam Form TDM dedicated pilot Auxiliary pilot

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 17 Technologies Considered in Arriving at Third Generation v Wideband Direct-Sequence Code Division Multiple Access (CDMA) v Wideband Time Division Multiple Access (TDMA) v Wideband C/TDMA v Orthogonal Frequency Division (OFDM) v Opportunity Driven Multiple Access (ODMA)

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 18 WCDMA Uplink Frame Structure [1]

k I: data channel Ndata = 10 * 2 bits (k = 0,K ,6) DPDCH

Tslot = 2560 chips

Q: sync & control Pilot: N pilot bits TFCI FBI TPC DPCCH 0.667 ms

slot 0 slot 1 slot i slot 14

radio frame = 10 ms

TFCI = transmit format combination indicator DPDCH = dedicated physical data channel FBI = feedback information DPCCH = dedicated physical control channel TPC = transmit power control

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 19 WCDMA Uplink Modulator Structure [1]

DPDCH1

+ pulse shape cd ,1 S b d filter (SRC) I - DPDCH S 3 cos(w t ) c c d ,3 b d + S + DPDCH2 c d ,2 b d Q DPCCH S + pulse shape c S filter (SRC) c b c +

sin( wct )

clong,1 clong,2

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 20 Orthogonal Variable Spreading Factor Codes

selected from this tree cdi, Notes: 00000000 1) For fixed chip rate, desired information 0000 rate determines length of spreading 00001111 00 sequence and therefore processing gain. 00110011 2) When a specific code is used, no other 0011 code on the path from that code to the root 00111100 and or on the subtree beneath that 0 code may be used. 01010101 3) All the codes at any depth into the tree 0101 01011010 are the set of Walsh Sequences. 01 4) Code phase is synchronous with 01100110 information symbols. 0110 5) FDD UL processing gain between 256 and 4 01101001 FDD DL processing gain between 512 and 4 TDD UL/DL processing gain between 16 and 1 6) Multicode used only for SF = 4

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 21 WCDMA Downlink Frame Structure [1]

DPDCH DPCCH DPDCH DPCCH

Data1 Ndata1 TPC TFCI Data2 Ndata2 Pilot

Tslot = 2560 chips 0.667 ms

slot 0 slot 1 slot i slot 14

radio frame = 10 ms

k N data2 + N data2 = 10* 2 bits (k = 0,K ,7)

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 22 WCDMA Downlink Modulator Structure [1] dedicated traffic channels cd ,1 primary & s/p secondary common pilot Clong channels G1 primary & secondary common control channels s/p cd ,n pulse shape filter (SRC) sum other channels C Gn long jw t Primary e Sync Code C P GP Secondary Sync Code CS clong,2

GS… May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 23 WCDMA Forward Error Control v Convolutional Coding v rate 1/2 & rate 1/3 v 256 state v puncture to higher rates v interleave over 10, 20, 40 or 80 ms v Turbo Coding v parallel coding v rate 1/3 v 8 state codes v block lengths 320 to 5114 bits v interleaver designed within May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 24 WCDMA Convolutional Code

Rate ½ Code Output 1 753 (octal)

input

Output 0 561 (octal) 25.212 V3.5.0 (2000-12)

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 25 WCDMA Convolutional Code Output 0 557 (octal) Rate 1/3 Code

input

Output 1 663 (octal)

25.212 V3.5.0 (2000-12) Output 2 711 (octal) May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 26 WCDMA Turbo Coding X (t)

+ + Y (t)

+

+

interleaver + + Y ¢(t)

+

+ X ¢(t) May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 27 Codng Performance Compared

PCTC,BER,N=5120,8st,4it,CDI int PCTC,FER,N=5120,8st,4it,CDI int 1.00E-01 conv+RS,BER,K=9,N=5120 conv+RS,FER,K=9,N=5120 PCTC,BER,N=640,8st,4it,CDI int PCTC,FER,N=640,8st,4it,CDI int 1.00E-02 conv+RS,BER,K=9,N=640 conv+RS,FER,K=9,N=640

1.00E-03

average BER, FER 1.00E-04 1 dB

1.00E-05

1.00E-06 2.50 3.00 3.50 4.00 4.50 5.00 average Ebi/N0

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 28 Diversity Strategies for Downlink

Transmit Diversity

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 29 cdma2000 Transmission Parameters v Wideband direct-sequence CDMA v uplink chip rates 1.2288 Mcps & 3.686 Mcps v downlink chip rate 1.2288 Mcps vsingle or 3X multicarrier downlink v spreading factors from TBD to TBD v Complex QPSK spreading v Frequency Division Duplex v Both forward and reverse fast power control (800 Hz) v Coherent forward and reverse links using code-division pilots v Synchronous cells May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 30 cdma2000 Uplink Frame Structure

Radio Configuration 3

modulation symbol channel encoder symbol symbol block bits Convolutional C CRC tail bits or Turbo Coder repetition puncture interleaver

Bits/ CRC tail Data Rate Code Frame bits bits kbps Rate Repeats Delete Symbols 16 6 8 1.5 1/4 16 1 of 5 1536 40 6 8 2.7 1/4 8 1 of 9 1536 80 8 8 4.8 1/4 4 none 1536 172 12 8 9.6 1/4 2 none 1536 350 16 8 19.2 1/4 1 none 1536 744 16 8 38.4 1/4 1 none 3072 1512 16 8 76.8 1/4 1 none 6144 3048 16 8 153.6 1/4 1 none 12288 6120 16 8 307.2 1/2 1 none 12288

C.S.0002-A-1 Fig 2.1.3.1.1.1-8 May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 31 cdma2000 Uplink Modulator

Secondary Traffic 2 C + S pulse wS 2 _ shape b d Pilot A

sum cos(w ct ) Control B + w S C bc Primary + C Traffic

wD1 b d sum + + pulse Secondary S Traffic 1 C shape

w b sin( w t ) S1 d c c long,I clong,Q May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 32 cdma2000 Long Code Generator

1 X X 42

+ + +

Mm,2 Mm,3 Mm,1

walsh 2 (0 1) + Mm,j identifies user 1-chip dec delay by 2 1+ X + X2 + X3 + X 5 + X6 + X7 + + X 16 + X17 + X18 + X19 + X 21 + X22 + X25 + X26 + X 27 + X31 + X33 + X35 + X 42 I-channel PN Q-channel PN May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 33 Short PN “Pilot” Sequence: 1.2288 Mcps inphase PN sequence

+ + + + +

insert 5 7 8 9 13 15 zero 1+ X + X + X + X + X + X

quadrature PN sequence + + + + + + +

insert zero 1+ X 3 + X 4 + X 5 + X 6 + X10 + X11 + X12 + X 15

C.S0002-A-1 paragraph 2.1.3.1.12.1

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 34 cdma2000 UL Convolutional Codes

C.S.0002-A-1 Fig 2.1.3.1.4.1.1-1

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 35 cdma2000

+ +

+ +

input +

output

+ and repeat symbol puncture interleaver + +

+ +

+ C.S.0002-A-1 Fig 2.1.3.1.4.2.1-1

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 36 cdma2000 3X Code Generators

1X long code Long Code 1 Generator m s + MUX 1.2288 Output (3.6864 Mcps)

C.S0002-A-1 Fig 2.1.3.1.12-1 1 m s + 1.2288

Short “Pilot” Code Truncate and use delay different segments for I and Q + + +

insert zero 1+ X3 + X5 + X9 + X 20

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 37 cdma2000 Uplink Data Rates

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 38 cdma2000 1X Downlink Common Channels Pilot Channel 0 à 1 channel X all 0’s 1 à -1 gain I

X Q

conv 2X 0 à 1 channel Sync interleave encode X I Channel repeat 4800 ksps 1 à -1 gain

X Q

Paging conv 0 à 1 channel repeat interleave X Channel encode + 1 à -1 gain I

X Q long decimate code C.S0002-A-1 Fig 3.1.3.1.1.1-1 May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 39 cdma2000 1X DL Modulation Processing 0 à 1 channel W Y + 1 à -1 gain I modulation symbol power

DEMUX rate control fwd pwr power control YQ bits ctrl gain symbol puncture

puncture I/Q scrambling timing bit extract 800 Hz long long decimate pwr ctrl code code bit pos mask

C.S.0002-A-1 Fig 3.1.3.1.1.1-18 May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 40 cdma2000 Downlink Convolutional Codes

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 41 cdma2000 3X Downlink Common Channels

Pilot Channel 0 à 1 channel X all 0’s 1 à -1 gain I

X Q

conv 2X 0 à 1 channel Sync interleave encode X I Channel repeat 4800 ksps 1 à -1 gain

X Q

C.S.0002-A-1 Fig 3.1.3.1.1.2-1

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 42 cdma2000 1X Downlink Modulation

other + channels S pulse - shape X I S YI cos(w ct ) Walsh code S QOF code Y Q QOF for rotate phase S + pulse other S channels + shape X Q sin( w t ) I channel Q channel c pilot PN pilot PN

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 43 cdma2000 Downlink Frame Structure

Radio Configuration 3

modulation symbol channel bits encoder Convolutional symbol symbol block CRC tail bits or Turbo Coder repetition puncture interleaver W

Bits/ CRC tail Data Rate Code Frame bits bits kbps Rate Repeats Delete Symbols 16 6 8 1.5 1/4 8 1 of 5 768 40 6 8 2.7 1/4 4 1 of 9 768 80 8 8 4.8 1/4 2 none 768 172 12 8 9.6 1/4 1 none 768 360 16 8 19.2 1/4 1 none 1536 744 16 8 38.4 1/4 1 none 3072 1512 16 8 76.8 1/4 1 none 6144 3048 16 8 153.6 1/4 1 none 12288

Other similar tables in specification.

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 44 cdma2000 3X DL Modulation Processing

0 à 1 channel W Y + 1 à -1 gain 1 modulation symbol power

DEMUX rate control fwd pwr power control Y0 bits ctrl gain symbol puncture

puncture I/Q scrambling timing bit extract 800 Hz

long pwr ctrl long decimate code code bit pos mask

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 45 cdma2000 3X Downlink Common Channels

Pilot Channel 0 à 1 channel X all 0’s 1 à -1 gain I

X Q

conv 2X 0 à 1 channel Sync interleave encode X I Channel repeat 4800 ksps 1 à -1 gain

X Q

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 46 cdma2000 Downlink Frame Structure

Radio Configuration 9

modulation symbol channel bits encoder Convolutional symbol symbol block CRC tail bits or Turbo Coder repetition puncture interleaver W

Bits/ CRC tail Data Rate Code Frame bits bits kbps Rate Repeats Delete Symbols 21 6 8 1.8 1/2 8 none 576 55 8 8 3.6 1/2 4 none 576 125 10 8 7.2 1/2 2 none 576 267 12 8 14.4 1/2 1 none 576 552 16 8 28.8 1/2 1 none 1152 1128 16 8 57.6 1/2 1 none 2304 2280 16 8 115.2 1/2 1 none 4608 4584 16 8 230.4 1/2 1 none 9216 9192 16 8 460.8 1/2 1 none 18432 20712 16 8 1036.8 1/2 1 2 of 18 36864

Other similar tables in specification.

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 47 cdma2000 3X DL Modulation Processing

0 à 1 channel W YI1 + 1 à -1 gain YQ1 modulation YI2 Y symbol power Q2 DEMUX Y rate control fwd pwr I3 ctrl gain power control YQ3 bits symbol puncture

puncture I/Q scrambling timing bit extract 800 Hz

long long decimate pwr ctrl code code bit pos mask

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 48 cdma2000 3X Downlink Modulation

YI1 output same as below carrier 1 YQ1

Y I2 output carrier 2

YQ2

Y I3 output same as above carrier 3

YQ3

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 49 cdma2000 Downlink Data Rates

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 50 cdma2000 vs WCDMA v Chip rate v Coherent Pilot Channels v Transmit Diversity v Underlying Network v Single Carrier versus Multicarrier Spreading v Synchronization

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 51 References [1] R. L. Peterson, “Third Generation Personal Communications: Status,” Presentation at Clemson University, Feb. 1, 2001 [2] Manjit Singh and Manoneet Singh, “3G Wireless with Respect to IMT-2000 and Beyond,” Telecom 99 [3] Harri Holma and Antti Toskala, WCDMA for UMTS: Radio Access for Third Generation Mobile Communications, New York: Wiley, 2000 [4] “CDMA Evolution from IS-95, IS-2000, to 1XTREME,” Technology Transfer Training Class, , Inc., July 2000 [5] R. Ziemer and R. Peterson, Introduction to Digital Communications, Upper Saddle River, NJ: Prentice Hall, Chapter 10, 2001

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 52 WCDMA: More Information? v http://www.3gpp.org v 21.101 à guide to all other documents v 25.XXX series à radio (RAN) v 25.211 à frame structure etc. v 25.212 à channel coding etc. v 25.213 à spreading and modulation v 25.214 à physical layer procedures (tx diversity, etc.) v 25.321 à (MAC) v 25.322 à radio link control (RLC) v 26.XXX series à voice coding

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 53 GSM/GPRS/EDGE: More Information? v http://www.3gpp.org

3GPP ETSI description 45.001 05.01 general description 45.002 05.02 multiple access, logical channels, etc 45.003 05.03 channel coding 45.004 05.04 modulation 45.005 05.05 modelsradio transmission and channel 45.008 05.08 radio link control 45.009 05.09 44.060 04.60 RLC/MAC

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 54 cdma2000: More Information? v http://www.3gpp2.org v Technical Specification Group C à cdma2000 v C.S0002-A-1 à Physical Layer Standard v C.S0003-A-1 à Medium Access Control (MAC) v C.S0004-A-1 à Signaling Link Access Control v C.S00024 à 1XEV-DO (high speed packet) v C.S0005 à Upper Layer Signaling (L3)

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 55 3G Information Sources v Third Generation Partnership Projects v http://www.3gpp.org v http://www.3gpp2.org v CDMA Development Group (CDG) v http://www.cdg.org v International Mobile for the year 2000 v http://www.tiaonline.org/standards/sfg/imt2k/ v Japan ARIB IMT-2000 proposal v http://www.arib.or.jp/IMT-2000/ARIB/Document/

May 28-June1, 2001 R. Z. Ziemer, Colorado Springs, CO 56