The Broad-Billed Prion in Victoria by ROY P

Total Page:16

File Type:pdf, Size:1020Kb

The Broad-Billed Prion in Victoria by ROY P June ] COOPER, Broad-billed Prion in Victoria 89 1968 shore-line the lower they appeared to allow their body to sink into the water. When flying, they flew with rapid wing beats close to the surface of the water. Head and feet were held out stiffly fore and aft, and the neck curved slightly downward from the body. This meant that when flying the head was probably closer to the water than any other portion of the body. Several unsuccessful attempts were made to observe the young birds. Failure was due to the extreme shyness of the parents and the abundance of natural cover. On one occasion, from a consider­ able distance, three small objects were seen with the pair of adults. They immediately entered a large patch of reeds and could not be flushed or coaxed out. Observations ceased at the end of February, 1967. REFERENCE TARR H . E. 1959, "Observations on the Great Crested Grebe," The Australian Bird Watcher, I : 33-35. The Broad-billed Prion in Victoria By ROY P. COOPER, Melbourne. In February, 1967, a short note appeared in the Bird Observer, (No. 423) stating that the remains of two Broad-billed Prions (Pachyptila vittata) were picked up on, apparently, the southern beach on Phillip Island, Victoria, during July, 1966. They were sent to the Director of the Dominion Museum, Wellington, New Zealand, for identification. Confirmation that they were actually the Broad-billed Prion was later received, but as the skins had been entered in the register of the museum they were not returned. This was the first record of a specimen of this species in Victoria. A new observation of the occurrence of this species on a Vic­ torian beach is now recorded. On August 6, 1967, on the beach at Oberon Bay, Wilson's Promontory, Mr. and Mrs. H. A. Bradley found the remains of a prion that appeared to be of this species. At the time that the discovery was made the Bradleys were taking part in the "Survey of the Birds of Wilson's Promontory" and on their return to the headquarters of the Group that evening, the bird was quickly identified as the Broad-billed Prion (Pachyptila vittata). On that week-end a thorough search, by members of the Group, of Five-mile and Johnny Suzy beaches on the east coast, and of Oberon, Norman, Leonard, Picnic, Whisky and Darby beaches on the west coast of the Promontory had been carried out. During July and August it is usual to pick up the remains of many beach-washed birds, as at this time of the year the southern birds are here on their winter migration. However, the mildness of this winter and the lack of big seas have resulted in practically 90 COOPER, Broad-billed Prion in Victoria [ Bird Watcher no southern birds being washed up on the beaches. In addition the sea-currents had washed up large quantities of sand on to the beaches, and much material was covered up. It was, therefore, most remarkable that the only bird, excluding a few of the local Short-tailed Shearwaters (Puffinus tenuirostris) and the Little Penguin (Eudyptula minor), that was found was this rare Victorian species. The details of the measurements of the head of this bird are as follows. Beak width 20.5 mm; culmen length 34.5 mm; ratio of length to width, 1.8; nasal tube to base of dertrum 16.5 mm; lamellae on the upper mandible was almost 2 mm in depth and it extended from the gape to the dertrum, a distance of 39 mm. The lamellae was clearly visible at the base of the beak when it was closed . The width of the bill and the size of the lamellae shows that the Broad-billed Prion feeds extensively on minute marine life, using the lamellae to catch the tiny creatures as the water is passed through the extremely wide bill . However, when the birds are feeding nestlings they capture much larger and more substantial food (Oliver, 1955), but in the non-breeding months of the year they resort to minute plankton life for sustenance. The Broad-billed Prion is a rare visitor to Australia. In Western Australia, Serventy and Whittell (1962) state that "This prion is cast up on our beaches only on very rare occasions." It was not until 1964 that the first and the only specimen was found in South Australia (Condon, 1965), when "A live bird was found at Cow­ andilla, an Adelaide suburb about two miles from the sea." In New South Wales, A. R. McGill (1960) states "Rare. Found at times washed up on the beaches during winter near Sydney and localities to the south". There are no previous records from Victoria. There are six different species of prions of the genus Pachyptila recorded from Australian waters, and beach-washed specimens of each have been picked up on our beaches. However, one species, the Fulmer Prion, also known as the Thick-billed or Bounty Island Prion, (P. crassirostris), has been recorded on one occasion only. The remaining five-species- Dove-Prion, Fairy Prion, Thin­ billed, Medium-billed and the Broad-billed Prions - are somewhat alike in colouration and size. Contrary to the usual method of species differentia by colour, these birds are identified by the size of the bills. A description of the Broad-billed Prion shows that the upper parts are a delicate blue-grey, mottled black on the crown; blackish on the wing coverts and the outer primaries; central tail feathers with a black terminal bar; blackish on the rump; behind and below the eye blackish; eye-stripe, lores and all the under surface white. The extraordinary wide bill has the nasal tubes, culmen and der­ trum black, with the remainder of the upper mandible and the lower mandible purplish-blue; feet bluish with yellowish webs. June ] SMITH, Wilson's Phalarope 91 1968 It has a wide distribution throughout the southern oceans between 60° S. and 40° S., with an occasional northward move­ ment to Madagascar, Reunion, Southern Australia and the North Island of New Zealand, etc. It breeds freely on the coast of the Foveaux Strait and on islands off the South Island of New Zealand, also on Tristan da Cunha and Gough Island in the south Atlantic, and on St. Paul Island in the Indian Ocean. (Alexander 1955). Since the foregoing notes were written A. R. McGill has advised me that the known records of the occurrence of P. vittata in New South Wales, as compiled by K. A. Hindwood, are as follows. They are reproduced here in an endeavour to make this report as com­ plete as possible. July, 1904. 1 specimen. Long Bay. Published Museum records say that the beach was strewn with them, but that undoubtedly would refer to many bodies of prions of pro- bably various species. July, 1904. 1 specimen. Maroubra. Published records as above. July, 1948. 1 Bate Bay. Messrs. Hindwood, Everett and McGill. Aug., 1954. 1 Bate Bay. F. Johnston. July, 1954. 1 Dee Why. T. Iredale. July, 1954. 2 Thirroul. Messrs. Gibson and Sefton. July, 1954. 1 Ulladulla. C. Humphries. REFERENCES ALEXANDER, W. B., 1955. Birds of the Ocean, p. 45 Putnam Press, London. CoNDON, H . T. , 1965. "A Handlist of the Birds of South Australia, Supple­ ment No. 1". The South Australian Ornithologist, p. 71. McGILL, A. R., 1960. A Hand List of the Birds of New South Wales, p. 8 V. C. N. Blight, Government Printer, Sydney, New South Wales. OLIVER, W. R. B., 1955. New Zealand Birds, p. 124. A. H. & A. W. Reed, Wellington, New Zealand. SERVENTY, D. L. & WHITTELL, H. M., 1962. Birds of Western Australia, p. 84. Paterson Brokensha Pty. Ltd., Perth, Western Australia. An Australian Sight Record of Wilson's Phalarope By F. T. H. SMITH, Kew, Victoria Wilson's Phalarope (Steganopus tricolor), sometimes placed in the genus Phalaropus, the largest of the three world species of phalaropes, is here reported from Australia. The breeding range is from the central states of Canada and the United States of America, westward to the Pacific Ocean. It migrates as far south as the Falkland Islands and then commonly occurs in Argentina and Chile. The bird is known to frequent large inland lakes at both extremities of its migration. However, its activities in its winter quarters are not yet fully known. Occasionally the species strays .
Recommended publications
  • First Record of a Broad-Billed Prion Pachyptila Vittata at Coronation Island, South Orkney Islands
    Blight & Woehler: First record of a Broad-billed Prion at Coronation Island 191 FIRST RECORD OF A BROAD-BILLED PRION PACHYPTILA VITTATA AT CORONATION ISLAND, SOUTH ORKNEY ISLANDS LOUISE K. BLIGHT1,2 & ERIC J. WOEHLER3 1Procellaria Research and Consulting, 944 Dunsmuir Road, Victoria, British Columbia, V9A 5C3, Canada 2Current address: Centre for Applied Conservation Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada ([email protected]) 3School of Zoology, University of Tasmania, Hobart, Tasmania, 7005, Australia Received 15 April 2008, accepted 2 August 2008 The known breeding distribution of Broad-billed Prions Pachyptila or as a bird blown out of its normal at-sea range by strong winds vittata is restricted to Tristan da Cunha and Gough Islands in the during poor weather. Alternatively, there may be low numbers of South Atlantic Ocean and to offshore islands around New Zealand Broad-billed Prions breeding at poorly-surveyed sub-Antarctic and the Snares and Chatham Islands, with the range at sea believed colonies, such as the South Orkney Islands. Antarctic Prions are one to extend to coastal South Africa in the South Atlantic Ocean and of the most numerous seabird species in the Antarctic (Marchant & near-shore waters around New Zealand (Marchant & Higgins 1990). Higgins 1990); they nest in the South Orkney Islands (Marchant & The taxonomy of prions remains controversial, with most authors Higgins 1990). It is possible that low numbers of breeding Broad- recognising up to six species, but varying numbers of subspecies. billed Prions have been overlooked amongst their congeners. The at-sea ranges of many Southern Ocean seabird species are Although no sympatric breeding sites are known for the two species still incompletely described, with relatively few surveys obtaining (Shirihai 2002) and the presence of this bird may have been an at-sea data for prions.
    [Show full text]
  • Birdlife Australia Rarities Committee Unusual Record Report Form
    BirdLife Australia Rarities Committee Unusual Record Report Form This form is intended to aid observers in the preparation of a submission for a major rarity in Australia. (It is not a mandatory requirement) Please complete all sections ensuring that you attach all relevant information including any digital images (email to [email protected] or [email protected]). Submissions to BARC should be submitted electronically wherever possible. Full Name: Rob Morris Office Use Address: Phone No: Robert P. Morris, Email: Full Name: Andrew Sutherland (first noticed the second bird) Address: Phone No: Email: Species Name: Broad-billed Prion Scientific Name: Pachyptila vittata Date(s) and time(s) of observation: 11 August 2019 First individual photographed at 12.22 – last bird photographed at 13.11. How long did you watch the bird(s)? c30+ minutes – multiple sightings of 2 birds (possibly 3) and then an additional sighting of 1 bird 20 minutes later whilst travelling, flying past and photographed. First and last date of occurrence: 11 August 2019 Distance to bird: Down to approximately 20-30 m Site Location: SE Tasmania. Approximately 42°50'36.30"S 148°24'46.23"E 22NM ENE of Pirates Bay, Eaglehawk Neck. We went north in an attempt to seek lighter winds and less swell and avoid heading straight into the strong SE winds and southerly swell. Habitat (describe habitat in which the bird was seen): Continental slope waters at a depth of approximately 260 fathoms. Sighting conditions (weather, visibility, light conditions etc.): Weather: Both days were mostly cloudy with occasional periods of bright sunshine.
    [Show full text]
  • DIET and ASPECTS of FAIRY PRIONS BREEDING at SOUTH GEORGIA by P.A
    DIET AND ASPECTS OF FAIRY PRIONS BREEDING AT SOUTH GEORGIA By P.A. PRINCE AND P.G. COPESTAKE ABSTRACT A subantarctic population of the Fairy Prion (Pachyprzla turtur) was studied at South Georgia in 1982-83. Full measurements of breeding birds are given, together with details of breeding habitat, the timing of the main breeding cycle events, and chick growth (weight and wing, culmen and tarsus length). Regurgitated food samples showed the diet to be mainly Crustacea (96% by weight), fish and squid comprising the rest. Of crustaceans, Antarctic krill made up 38% of items and 80% by weight. Copepods (four species, mostly Rhincalanus gigas) made up 39% of items but only 4% by weight; amphipods [three species, principally Themisto gaudichaudii made up 22% of items and 16% by weight. Diet and frequency of chick feeding are compared with those of Antarctic Prions and Blue Petrels at the same site; Fairy Prions are essentially intermediate. INTRODUCTION The Fairy Prion (Pachyptila turtur) is one of six members of a genus confined to the temperate and subantarctic regions of the Southern Hemisphere. With the Fulmar Prion (P. crassirostris), it forms the subgenus Pseudoprion. Its main area of breeding distribution is between the Antarctic Polar Front and the Subtropical Convergence. It is widespread in the New Zealand region, from the north of the North Island south to the Antipodes Islands and Macquarie Island, where only about 40 pairs survive (Brothers 1984). Although widespread in the Indian Ocean at the Prince Edward, Crozet and Kerguelen Islands, in the South Atlantic Ocean it is known to breed only on Beauchene Island (Falkland Islands) (Strange 1968, Smith & Prince 1985) and South Georgia (Prince & Croxall 1983).
    [Show full text]
  • Krill Caught by Predators and Nets: Differences Between Species and Techniques
    MARINE ECOLOGY PROGRESS SERIES Vol. 140: 13-20. 1996 Published September 12 Mar Ecol Prog Ser Krill caught by predators and nets: differences between species and techniques K. Reid*, P. N. Trathan, J. P. Croxall, H. J. Hill British Antarctic Survey, Natural Environment Research Council, High Cross. Madingley Road, Cambridge CB3 OET, United Kingdom ABSTRACT. Samples of Antarchc krill collected from 6 seabird species and Antarctic fur seal dunng February 1986 at South Georgia were compared to krill from scientific nets fished in the area at the same time. The length-frequency d~stributionof krill was broadly similar between predators and nets although the krill taken by diving species formed a homogeneous group wh~chshowed significant dif- ferences from knll taken by other predators and by nets There were significant differences In the maturity/sex stage composition between nets and predators; in particular all predator species showed a consistent sex bias towards female krill. Similarities in the knll taken by macaroni [offshore feeding) and gentoo (inshore feeding) penguins and differences between krill taken by penguins and alba- trosses suggest that foraging techniques were more important than foraging location in influencing the type of krill in predator diets. Most krill taken by predators were adult; most female krill were sexually active (particularly when allowance is made for lnisclassification bias arising from predator digestion). Because female krill are larger, and probably less manouverable, than males, the biased sex ratio In predator diets at thls t~meof year may reflect some comblnat~onof selectivity by predators and superior escape responses of male krill.
    [Show full text]
  • The Skull of a Fossil Prion (Aves: Procellariiformes) from the Neogene (Late Miocene) of Northern Chile Andean Geology, Vol
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Sallaberry, Michel; Rubilar-Rogers, David; Suárez, Mario E.; Gutstein, Carolina S. The skull of a fossil Prion (Aves: Procellariiformes) from the Neogene (Late Miocene) of northern Chile Andean Geology, vol. 34, núm. 1, enero, 2007, pp. 147-154 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173918593008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative PALEONTOLOGICAL NOTE The skull of a fossil Prion (Aves: Procellariiformes) from the Neogene (Late Miocene) of northern Chile Michel Sallaberry Laboratorio de Zoología de Vertebrados, Universidad de Chile, Facultad de Ciencias, David Rubilar-Rogers Las Palmeras 3425, Ñuñoa, Santiago [email protected] [email protected] Mario E. Suárez Museo Paleontológico de Caldera, Av. Wheelwrigh 001, Caldera, Chile Carolina S. Gutstein [email protected] [email protected] ABSTRACT The fossil skull of a procellariid, Pachyptila sp., from Late Miocene marine sediments of the Bahía Inglesa Formation (Midde Miocene-Pliocene) of Northern Chile is described. The fossil is compared with extant species of the family Procellariidae. This discovery represents the first Neogene fossil record of the genus Pachyptila from South America. Key words: Fossil Prion, Pachyptila, Procellariiformes, Neogene, Chile. RESUMEN El cráneo de un Petrel-paloma fósil (Aves: Procellariiformes) del Neógeno (Mioceno Tardío) del norte de Chile. Se describe un cráneo fósil de un procelláriido, Pachyptila sp., proveniente de sedimentos marinos del Mioceno Tardío de la Formación Bahía Inglesa (Mioceno Medio-Plioceno) del norte de Chile.
    [Show full text]
  • 1 Spatial Distribution of Predator/Prey Interactions in the Scotia
    Spatial distribution of predator/prey interactions in the Scotia Sea: implications for measuring predator/ fisheries overlap. Keith Reid 1*, Michelle Sims 1, Richard W. White 2,3, Keith W. Gillon 2,3 1 British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, United Kingdom. 2 Falklands Conservation, Jetty Visitor Centre, Stanley, Falklands Islands. 3 Joint Nature Conservancy Committee, Monkstone House, City Road. Peterborough, PE1 1JY * Correspondence - email [email protected] Fax +44 1223 221259 1 Abstract The measurement of spatial overlap between predators and fisheries exploiting a common prey source is dependent upon the measurement scale used and the use of inappropriate scales may provide misleading results. Previous assessments of the level of overlap between predators and fisheries for Antarctic krill Euphausia superba in the South Shetland Islands have used different measurement scales and arrives at contradictory conclusions. At-sea data from observations of krill predators during the CCAMLR 2000 krill survey were used to identify the areas of potential overlap with fisheries in the Scotia Sea and to determine the scale at which such overlap should be measured. The relationship between auto-correlation and sampling distance was used to identify the characteristic scales of the distribution of predators, krill and krill fisheries and an effort- corrected index of relative abundance as a function of distance from land was used to identify the characteristics of areas of high potential for overlap. Despite distinct differences in foraging ecology a group of krill-dependent species including chinstrap penguin Pygoscelis antarctica, (Antarctic) fur seal Arctocephalus sp.
    [Show full text]
  • Salvin's Prion Pachyptila Salvini Captured Alive on Beach at Black Rocks, Victoria, 27Th July 1974
    1 Salvin’s Prion Pachyptila salvini captured alive on beach at Black Rocks, Victoria, 27th July 1974 by Mike Carter Fig. 1. Ailing Salvin’s Prion captured alive on beach at Black Rocks, Victoria, 27 July 1974 During a gale on 27th July 1974, a Salvin’s Prion was observed flying over the breakers just beyond the rocks on the beach at Black Rocks, Victoria. Obviously debilitated, it came ashore and sought refuge in rock pools. It was rescued but died within five hours. This observation was made by a group of local and international seabird enthusiasts that included Dr Bill Bourne (from the UK), Gavin Johnstone & Noels Kerry from the Australian Antarctic Division, Peter Menkhorst, Richard Loyn, Paul Chick and me. Overseas and interstate visitors had joined locals to attend an International Ornithological Congress in Melbourne. The attached photos are recent digital copies of transparencies taken immediately after capture. Dimensions in mm measured as described in Marchant & Higgins (1990) on 29-07-74. (L = left, R = right), Wing 191; Tail 94; Tarsus (L) 36.4, (R) 35.9; Middle toe (L) 45.2, (R) 45.7; Claw (L) 8.8, (R) 8.0. Culmen (C) 31.8; Width (W) 16.4; Ratio (C)/ (W) 1.94: Bill depth max 13.2; Bill depth min 7.2. Apparent bulk = 1/4CW(BDmax+BDmin) = 2661 cub mm. I find this generated number to be a good discriminator for identifying Victorian prion corpses. 2 Figs. 2 to 5. Ailing Salvin’s Prion captured alive on beach at Black Rocks, Victoria, 27 July 1974 Identification Identification at the time was based mainly on information in Serventy, Serventy & Warham (1971).
    [Show full text]
  • Densities of Antarctic Seabirds at Sea and the Presence of the Krill Eupha Usia Superba
    DENSITIES OF ANTARCTIC SEABIRDS AT SEA AND THE PRESENCE OF THE KRILL EUPHA USIA SUPERBA BRYAN S. OBST Departmentof Biology,University of California,Los Angeles, California 90024 USA ABSTRACT.--Theantarctic krill Euphausiasuperba forms abundant,well-organized schools in the watersoff the AntarcticPeninsula. Mean avian densityis 2.6 timesgreater in waters where krill schoolsare present than in waters without krill schools.Seabird density is a good predictorof the presenceof krill. Seabirddensity did not correlatewith krill density or krill schooldepth. Disoriented krill routinely were observedswimming near the surface above submergedschools, providing potential prey for surface-feedingbirds. Responsesof seabird speciesto the distribution of krill schoolsvaried. The small to me- dium-sizeprocellariiform species were the best indicatorsof krill schools;large procellari- iforms and coastalspecies were poor indicators.Pygoscelis penguins occurredat high den- sitiesonly in the presenceof krill schools.These responses are consistentwith the constraints imposedby the metabolicrequirements and reproductivestrategies of eachof thesegroups. Krill schoolswere detectednear the seasurface throughout the day. Correlationsbetween seabirddensity and the presenceof krill during daylight hourssuggest that diurnal foraging is important to the seabirdsof this region. Received19 December1983, accepted4 December 1984. RELATIVELY little is known about the factors birds depend on directly or indirectly for food influencing the distribution of seabirdsin the (Haury et al. 1978). These observationssuggest marine habitat. The past decade has produced that relatively small-scalephenomena, such as a number of studiesattempting to correlatepat- local concentrationsof prey, may be of major terns of avian abundance and distribution with importance in determining the patterns of sea- physical featuresof the oceansuch as currents bird distribution within the broad limits set by and convergences,water masses,and temper- featuresof the physical ocean.
    [Show full text]
  • Conservation Status of New Zealand Birds, 2008
    Notornis, 2008, Vol. 55: 117-135 117 0029-4470 © The Ornithological Society of New Zealand, Inc. Conservation status of New Zealand birds, 2008 Colin M. Miskelly* Wellington Conservancy, Department of Conservation, P.O. Box 5086, Wellington 6145, New Zealand [email protected] JOHN E. DOWDING DM Consultants, P.O. Box 36274, Merivale, Christchurch 8146, New Zealand GRAEME P. ELLIOTT Research & Development Group, Department of Conservation, Private Bag 5, Nelson 7042, New Zealand RODNEY A. HITCHMOUGH RALPH G. POWLESLAND HUGH A. ROBERTSON Research & Development Group, Department of Conservation, P.O. Box 10420, Wellington 6143, New Zealand PAUL M. SAGAR National Institute of Water & Atmospheric Research, P.O. Box 8602, Christchurch 8440, New Zealand R. PAUL SCOFIELD Canterbury Museum, Rolleston Ave, Christchurch 8001, New Zealand GRAEME A. TAYLOR Research & Development Group, Department of Conservation, P.O. Box 10420, Wellington 6143, New Zealand Abstract An appraisal of the conservation status of the post-1800 New Zealand avifauna is presented. The list comprises 428 taxa in the following categories: ‘Extinct’ 20, ‘Threatened’ 77 (comprising 24 ‘Nationally Critical’, 15 ‘Nationally Endangered’, 38 ‘Nationally Vulnerable’), ‘At Risk’ 93 (comprising 18 ‘Declining’, 10 ‘Recovering’, 17 ‘Relict’, 48 ‘Naturally Uncommon’), ‘Not Threatened’ (native and resident) 36, ‘Coloniser’ 8, ‘Migrant’ 27, ‘Vagrant’ 130, and ‘Introduced and Naturalised’ 36. One species was assessed as ‘Data Deficient’. The list uses the New Zealand Threat Classification System, which provides greater resolution of naturally uncommon taxa typical of insular environments than the IUCN threat ranking system. New Zealand taxa are here ranked at subspecies level, and in some cases population level, when populations are judged to be potentially taxonomically distinct on the basis of genetic data or morphological observations.
    [Show full text]
  • Flight of Auks (Alcidae) and Other Northern Seabirds Compared with Southern Procellariiformes: Ornithodolite Observations
    J. exp. Biol. 128, 335-34 7(1987) 335 Printed in Great Britain © The Company of Biologists Limited 1987 FLIGHT OF AUKS (ALCIDAE) AND OTHER NORTHERN SEABIRDS COMPARED WITH SOUTHERN PROCELLARIIFORMES: ORNITHODOLITE OBSERVATIONS BYC. J. PENNYCUICK Department of Biology, University of Miami, PO Box 249118, Coral Gables, FL 33124, USA Accepted 17 November 1986 SUMMARY Airspeeds in flapping and flap-gliding flight were measured at Foula, Shetland for three species of auks (Alcidae), three gulls (Landae), two skuas (Stercorariidae), the fulmar (Procellariidae), the gannet (Sulidae) and the shag (Phalacrocoracidae). The airspeed distributions were consistent with calculated speeds for minimum power and maximum range, except that observed speeds in the shag were unexpectedly low in relation to the calculated speeds. This is attributed to scale effects that cause the shag to have insufficient muscle power to fly much faster than its minimum power speed. The wing adaptations seen in different species are considered as deviations from a 'procellariiform standard', which produce separate effects on flapping and gliding speeds. Procellariiformes and the gannet flap-glide in cruising flight, but birds that swim with their wings do not, because their gliding speeds are too high in relation to their flapping speeds. Other species in the sample also do not flap-glide, but the reason is that their gliding speeds are too low in relation to their flapping speeds. INTRODUCTION This paper records ornithodolite observations of flight speeds in 11 seabird species, comprising several different adaptive types. They are compared with earlier observations (Pennycuick, 19826) on a set of procellariiform species, which covered a wider range of body mass, but were more homogeneous in other ways.
    [Show full text]
  • Prion Island Boardwalk IEE 1
    Initial Environmental Evaluation for Proposed Installation of a Boardwalk on Prion Island, South Georgia Prepared for the Government of South Georgia and the South Sandwich Islands by Dr Liz Pasteur CONTENTS Non-technical summary..................................................................................................................4 1. Introduction ............................................................................................................................5 1.1 Purpose ...........................................................................................................................5 1.2 Legislation ......................................................................................................................5 1.2.1 South Georgia legislation .......................................................................................5 1.2.2 International treaties ...............................................................................................6 1.3 Background and consultation with stakeholders ............................................................6 1.4 Visitor management at Prion Island ...............................................................................6 1.4.1 Description of current route taken by visitors ........................................................7 1.5 Boardwalk research ........................................................................................................8 1.6 Project management structure.........................................................................................8
    [Show full text]
  • Conservation Advice Pachyptila Tutur Subantarctica
    THREATENED SPECIES SCIENTIFIC COMMITTEE Established under the Environment Protection and Biodiversity Conservation Act 1999 The Minister’s delegate approved this conservation advice on 01/10/2015 Conservation Advice Pachyptila tutur subantarctica fairy prion (southern) Conservation Status Pachyptila tutur subantarctica (fairy prion (southern)) is listed as Vulnerable under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act). The species is eligible for listing as Vulnerable as, prior to the commencement of the EPBC Act, it was listed as Vulnerable under Schedule 1 of the Endangered Species Protection Act 1992 (Cwlth). The main factor that is the cause of the species being eligible for listing in the Vulnerable category is its small population size (250-1000 mature individuals). The Action Plan for Australian Birds 2010 considered the Australian breeding population of the fairy prion (southern) as Endangered under Criterion D (Australian breeding population is <250 mature individuals) (Garnett et al., 2011). The Threatened Species Scientific Committee are using the findings of Garnett et al., (2011) to consider whether reassessment of the conservation status of each of threatened birds listed under the EPBC Act is required. Description The fairy prion is the smallest of the Australian prions, with a wingspan of about 56 cm. They have a short narrow bill with a strong hook narrowly separated from the nasal tubes. The fairy prion is grey-blue above, with a darker grey crown, and grey eye stripe. The eyes are dark and highlighted above and below the grey eye stripe by white plumage. The tail is triangular and has a thick dark bank at the tip (Pizzey & Knight 1999).
    [Show full text]