A Large-Scale Study on Source Code Reviewer Recommendation

Total Page:16

File Type:pdf, Size:1020Kb

A Large-Scale Study on Source Code Reviewer Recommendation A Large-Scale Study on Source Code Reviewer Recommendation Jakub Lipcˇak´ and Bruno Rossi Faculty of Informatics Masaryk University, Brno, Czech Republic Email: [email protected], [email protected] reviews have a code reviewer assignment problem, taking Abstract—Context: Software code reviews are an important approximately 12 days longer to approve a code change with a part of the development process, leading to better software qual- code reviewer assignment problem, increasing projects costs. ity and reduced overall costs. However, finding appropriate code reviewers is a complex and time-consuming task. Goals: In this The reduction of such costs was the main reason for paper, we propose a large-scale study to compare performance the emergence of source code reviewer recommendation ap- of two main source code reviewer recommendation algorithms proaches [12]–[18] and for the appearance of automation in (RevFinder and a Na¨ıve Bayes-based approach) in identifying the software engineering, beneficial also for industry [19], [20]. best code reviewers for opened pull requests. Method: We mined data from Github and Gerrit repositories, building a large dataset The automated recommendation of code reviewers can reduce of 51 projects, with more than 293K pull requests analyzed, the efforts necessary to find the best code reviewers, cutting 180K owners and 157K reviewers. Results: Based on the large time spent by code reviewers on understanding large code analysis, we can state that i) no model can be generalized as best changes [13]. This can improve the effectiveness of the pull- for all projects, ii) the usage of a different repository (Gerrit, based model, with source code reviewers assigned to the pull GitHub) can have impact on the the recommendation results, iii) exploiting sub-projects information available in Gerrit can requests immediately after their creation. improve the recommendation results. In previous studies about source code reviewers recommen- Index Terms—Source Code Reviewer Recommendation, Dis- dation algorithms, the compared projects were limited in size tributed Software Development, Mining Software Repositories and number, with typically 8K-45K pull requests considered ( [12], [15], [21]–[23]). In this paper, we look into a large-scale I. INTRODUCTION evaluation (293K pull requests, 51 projects) based on Gerrit The source code review process was formalized in 1976 by and Github repositories, that can give more insights about the M. E. Fagan, as a highly structured process based on line- performance of reviewers recommendation approaches. Our by-line group reviews in the form of inspections [1]. The goal is to study the impact of different repository type used code review practices have rapidly changed in recent years for the source code recommendation. For this reason we chose [2], and the modern code review process has become informal two main baseline algorithms: RevFinder—heuristic model (in contrast to Fagan’s definition [1]), tool-based [3], more based on file paths [12] and a Na¨ıve Bayes-based approach light-weight, continuous and asynchronous [4]. (NB)—probabilistic model based on additional features such Software code reviews play nowadays a major role in as owners. More advanced algorithms exist, however they improving the quality of software in terms of defects iden- require additional features to be built (e.g., collaboration tified [5], [6]. However, code reviews are a time-consuming networks between developers), making the mining process process, with significant amount of human effort involved [7]. more complex. We have two main contributions in this paper: Managers might have concerns that code reviews will slow the • provision of a large dataset of 51 projects mined from arXiv:1806.07619v1 [cs.SE] 20 Jun 2018 projects down [6]. Code reviews could also lead to negative moods in teams if team members fear public criticism caused Gerrit (14) and Github (37) with 293,337 total pull re- by others reviewing their source code [8]. quests analyzed, considering 180,111 owners and 157,885 At a process level, source code review processes in com- reviewers. The dataset is available on Figshare [24]. panies nowadays are similar to the processes adopted in open • comparison of the results in the two repositories (Gerrit, source projects [6], [9], [10], with a lot of variation in the GitHub) using both RevFinder and Na¨ıve Bayes-based process steps [6], [11]. Furthermore, source code reviews approaches in the context of the 51-projects dataset. can be expensive: knowledgeable understanding of large code The article is structured as follows. In section II, we propose changes by reviewers is a time-consuming process, and finding the background on several algorithms for code reviewer rec- the most knowledgeable code reviewers for the source code ommendation. In section III we have the experimental study parts to be reviewed can also be very labor-intensive for design, with research questions, context, data analysis and developers. Thongtanunam et al. [12] examined comments replicability information. In section IV, we answer the research from more than 1,400 representative review samples of four questions with discussions and threats to validity. Section V open source projects. Authors discovered that 4%-30% of proposes the related works and section VI the conclusions. Pre-print of the accepted article: Lipcak, J., Rossi, B. (2018) A Large-Scale Study on Source Code Reviewer Recommendation, in 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA) 2018, IEEE. c 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. II. BACKGROUND D. Hybrid Approaches Over the years, many approaches for the automation of Algorithms in this group use different approaches (machine source code reviewers recommendation emerged [12], [14]– learning, social network analysis) for the recommendation of [18]. We categorize the most relevant existing recommendation code reviewers. An example is CoreDevRec [15]. algorithms into four groups based on the main features they Automatic Core Member Recommendation for Contribution process and the main techniques they use to recommend Evaluation (CoreDevRec) builds a prediction model from code reviewers: i) Heuristic-based approaches, ii) Machine historical pull requests using file paths similarities, developers Learning-based, iii) Social Networks-based, iv) Hybrid ap- GitHub relationship features, and activeness features, using proaches. Support Vector Machine (SVM) for prediction [15]. Table I shows a summary of all the features utilized by the A. Heuristic-based Approaches reviewed algorithms, while Table II summarizes the availabil- ity of source code, datasets, and metrics used for empirical Traditional recommendation approaches process historical validation of the proposed algorithms. project review data and use heuristic-based algorithms to find the most relevant code reviewers. Main algorithms are TABLE I ReviewBot [17], RevFinder [12] (that we will explain later, as SUMMARY OF FEATURES USED IN MOST COMMON SOURCE CODE part of our empirical analysis), and CORRECT [14]. REVIEWERS RECOMMENDATION ALGORITHMS. V=USED, X=NOT USED ReviewBot is a technique proposed by Balachandran [17]. Paper CoreDevRec [15] Comm. Net. [16] CORRECT [14] ReviewBot [17] Pred. Rev. [18] It is a code reviewer recommendation approach based on the RevFinder [12] assumption that lines of code changed in the pull request Total should be reviewed by the same code reviewers who had Feature previously discussed or modified the same lines of code (familiarity assumption). CORRECT (Code Reviewer Recommendation based on File paths 7 3 7 3 7 7 2 Cross-project and Technology experience) is another code Social interactions 7 7 7 3 7 3 2 reviewers recommendation technique [14]. The baseline idea Line change history 3 7 7 7 7 7 1 Reviewer expertise 7 7 3 7 7 7 1 is that if a previous pull request used some similar external Activeness of reviewers 7 7 7 3 7 7 1 library or technology to the current pull request, then the Patch meta-data 7 7 7 7 3 7 1 reviewers of the past pull request are also good candidates Patch content 7 7 7 7 3 7 1 Bug report information 7 7 7 7 3 7 1 for the current one (expertise assumption). Total 1 1 1 3 3 1 B. Machine Learning Algorithms in this group use different Machine Learning TABLE II techniques for the recommendation of code reviewers. They SOURCE CODE & DATASETS AVAILABILITY, METRICS USED IN THE EMPIRICAL STUDIES.V=USED, X=NOT USED are mainly different from the previous group, as they first need to build a model based on a training set. One typical approach Metrics Source code Dataset F - Measure is by Jeoung et al. [18]. Precision Recall MRR Predicting Reviewers and Acceptance of Patches is an Paper available available Top-k approach by Jeoung et al. [18] that uses the Bayesian Network technique to predict reviewers and patch acceptance based on a series of features such as patch meta-data, patch content and ReviewBot [17] 7 3 3 7 7 7 7 bug report information. RevFinder [12] 7 7 3 3 7 7 7 CORRECT [14] 7 7 3 3 3 3 7 C. Social Networks CoreDevRec [15] 7 7 3 3 7 7 7 Pred. Rev. [18] 7 7 3 7 7 7 7 Social networks have also been used to determine similar- Comm. Net. [16] 7 7 7 7 3 3 3 ities in communication between developers, suggesting more similar candidates for source code reviews. The Comment Network (CN) approach was proposed by Yu III. EMPIRICAL STUDY DESIGN et al. [16] as a code reviewer recommendation approach by The goal of this paper is to analyze source code recommen- analyzing social relations between contributors and developers.
Recommended publications
  • Open Source Used in Influx1.8 Influx 1.9
    Open Source Used In Influx1.8 Influx 1.9 Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. Text Part Number: 78EE117C99-1178791953 Open Source Used In Influx1.8 Influx 1.9 1 This document contains licenses and notices for open source software used in this product. With respect to the free/open source software listed in this document, if you have any questions or wish to receive a copy of any source code to which you may be entitled under the applicable free/open source license(s) (such as the GNU Lesser/General Public License), please contact us at [email protected]. In your requests please include the following reference number 78EE117C99-1178791953 Contents 1.1 golang-protobuf-extensions v1.0.1 1.1.1 Available under license 1.2 prometheus-client v0.2.0 1.2.1 Available under license 1.3 gopkg.in-asn1-ber v1.0.0-20170511165959-379148ca0225 1.3.1 Available under license 1.4 influxdata-raft-boltdb v0.0.0-20210323121340-465fcd3eb4d8 1.4.1 Available under license 1.5 fwd v1.1.1 1.5.1 Available under license 1.6 jaeger-client-go v2.23.0+incompatible 1.6.1 Available under license 1.7 golang-genproto v0.0.0-20210122163508-8081c04a3579 1.7.1 Available under license 1.8 influxdata-roaring v0.4.13-0.20180809181101-fc520f41fab6 1.8.1 Available under license 1.9 influxdata-flux v0.113.0 1.9.1 Available under license 1.10 apache-arrow-go-arrow v0.0.0-20200923215132-ac86123a3f01 1.10.1 Available under
    [Show full text]
  • Buildbot Documentation Release 1.6.0
    Buildbot Documentation Release 1.6.0 Brian Warner Nov 17, 2018 Contents 1 Buildbot Tutorial 3 1.1 First Run.................................................3 1.2 First Buildbot run with Docker......................................6 1.3 A Quick Tour...............................................9 1.4 Further Reading............................................. 17 2 Buildbot Manual 23 2.1 Introduction............................................... 23 2.2 Installation................................................ 29 2.3 Concepts................................................. 41 2.4 Secret Management........................................... 50 2.5 Configuration............................................... 53 2.6 Customization.............................................. 251 2.7 Command-line Tool........................................... 278 2.8 Resources................................................. 289 2.9 Optimization............................................... 289 2.10 Plugin Infrastructure in Buildbot..................................... 289 2.11 Deployment............................................... 290 2.12 Upgrading................................................ 292 3 Buildbot Development 305 3.1 Development Quick-start......................................... 305 3.2 General Documents........................................... 307 3.3 APIs................................................... 391 3.4 Python3 compatibility.......................................... 484 3.5 Classes.................................................
    [Show full text]
  • Gerrit J.J. Van Den Burg, Phd London, UK | Email: [email protected] | Web: Gertjanvandenburg.Com
    Gerrit J.J. van den Burg, PhD London, UK | Email: [email protected] | Web: gertjanvandenburg.com Summary I am a research scientist with a PhD in machine learning and 8+ years of experience in academic research. I am currently looking to transition to industry to work on complex, large-scale problems that can have a positive real-world impact. I have extensive experience with machine learning modeling, algorithm design, and software engineering in Python, C, and R. My goal is to use my expertise and technical skills to address ongoing research challenges in machine learning and AI. Research Experience Postdoctoral Researcher — The Alan Turing Institute, UK 2018–2021 • Introduced a memorization score for probabilistic deep generative models and showed that neural networks can remember part of their input data, which has important implications for data privacy • Created a method for structure detection in textual data files that improved on the Python builtin method by 21%. Developed this into a Python package that has received over 600,000 downloads • Developed a robust Bayesian matrix factorization algorithm for time series modeling and forecasting that improved imputation error up to 60% while maintaining competitive runtime • Established the first benchmark dataset for change point detection on general real-world time series and determined the best performing methods, with consequences for research and practice • Collaborated with other researchers to design a unified interface for AI-powered data cleaning tools Doctoral Researcher
    [Show full text]
  • QUARTERLY CHECK-IN Technology (Services) TECH GOAL QUADRANT
    QUARTERLY CHECK-IN Technology (Services) TECH GOAL QUADRANT C Features that we build to improve our technology A Foundation level goals offering B Features we build for others D Modernization, renewal and tech debt goals The goals in each team pack are annotated using this scheme illustrate the broad trends in our priorities Agenda ● CTO Team ● Research and Data ● Design Research ● Performance ● Release Engineering ● Security ● Technical Operations Photos (left to right) Technology (Services) CTO July 2017 quarterly check-in All content is © Wikimedia Foundation & available under CC BY-SA 4.0, unless noted otherwise. CTO Team ● Victoria Coleman - Chief Technology Officer ● Joel Aufrecht - Program Manager (Technology) ● Lani Goto - Project Assistant ● Megan Neisler - Senior Project Coordinator ● Sarah Rodlund - Senior Project Coordinator ● Kevin Smith - Program Manager (Engineering) Photos (left to right) CHECK IN TEAM/DEPT PROGRAM WIKIMEDIA FOUNDATION July 2017 CTO 4.5 [LINK] ANNUAL PLAN GOAL: expand and strengthen our technical communities What is your objective / Who are you working with? What impact / deliverables are you expecting? workflow? Program 4: Technical LAST QUARTER community building (none) Outcome 5: Organize Wikimedia Developer Summit NEXT QUARTER Objective 1: Developer Technical Collaboration Decide on event location, dates, theme, deadlines, etc. Summit web page and publicize the information published four months before the event (B) STATUS: OBJECTIVE IN PROGRESS Technology (Services) Research and Data July, 2017 quarterly
    [Show full text]
  • VES Home Welcome to the VNF Event Stream (VES) Project Home
    VES Home Welcome to the VNF Event Stream (VES) Project Home This project was approved May 31, 2016 based upon the VNF Event Stream project proposal. In the meantime the project evolved and VES is not only used by VNF but also by PNF (physical network functions). However, the term "VES" is established and will be kept. Next to OPNFV and ONAP also O-RAN, O-RAN-SC and 3GPP are using VES. The term "xNF" refers to the combination of virtual network functions and physical network functions. Project description: Objective: This project will develop OPNFV platform support for VNF and PNF event streams, in a common model and format intended for use by Service Providers (SPs), e.g. in managing xNF health and lifecycle. The project’s goal is to enable a significant reduction in the effort to develop and integrate xNF telemetry-related data into automated xNF management systems, by promoting convergence toward a common event stream format and collection system. The VES doc source, code, and tests are available at: OPNFV github (generally updated with 30 minutes of merged commits) OPNFV gitweb To clone from the OPNFV repo, see the instructions at the Gerrit project page Powerpoint intro to the project: OPNVF VES.pptx. A demo of the project (vHello_VES Demo) was first presented at OpenStack Barcelona (2016), and updated for the OPNFV Summit 2017 (VES ONAP demo - see below for more info). The following diagram illustrates the concept and scope for the VES project, which includes: From ONAP a Common Event Data Model for the “VNF Event Stream”, with report "domains" covering e.g.
    [Show full text]
  • Metrics for Gerrit Code Reviews
    SPLST'15 Metrics for Gerrit code reviews Samuel Lehtonen and Timo Poranen University of Tampere, School of Information Sciences, Tampere, Finland [email protected],[email protected] Abstract. Code reviews are a widely accepted best practice in mod- ern software development. To enable easier and more agile code reviews, tools like Gerrit have been developed. Gerrit provides a framework for conducting reviews online, with no need for meetings or mailing lists. However, even with the help of tools like Gerrit, following and monitoring the review process becomes increasingly hard, when tens or even hun- dreds of code changes are uploaded daily. To make monitoring the review process easier, we propose a set of metrics to be used with Gerrit code review. The focus is on providing an insight to velocity and quality of code reviews, by measuring different review activities based on data, au- tomatically extracted from Gerrit. When automated, the measurements enable easy monitoring of code reviews, which help in establishing new best practices and improved review process. Keywords: Code quality; Code reviews; Gerrit; Metrics; 1 Introduction Code reviews are a widely used quality assurance practice in software engineer- ing, where developers read and assess each other's code before it is integrated into the codebase or deployed into production. Main motivations for reviews are to detect software defects and to improve code quality while sharing knowledge among developers. Reviews were originally introduced by Fagan [4] already in 1970's. The original, formal type of code inspections are still used in many com- panies, but has been often replaced with more modern types of reviews, where the review is not tied to place or time.
    [Show full text]
  • Fashion Terminology Today Describe Your Heritage Collections with an Eye on the Future
    Fashion Terminology Today Describe your heritage collections with an eye on the future Ykje Wildenborg MoMu – Fashion Museum of the Province of Antwerp, Belgium Europeana Fashion, Modemuze Abstract: This article was written for ‘non-techy people’, or people with a basic knowledge of information technology, interested in preparing their fashion heritage metadata for publication online. Publishing fashion heritage on the web brings about the undisputed need for a shared vocabulary, especially when merged. This is not only a question of multilingualism. Between collections and even within collections different words have been used to describe, for example, the same types of objects, materials or techniques. In professional language: the data often is “unclean”. Linked Data is the name of a development in information technology that could prove useful for fashion collecting institutions. It means that the descriptions of collections, in a computer readable format, have a structure that is extremely easy for the device to read. As alien as it may sound, Linked Data practices are already used by the data departments of larger museums, companies and governmental institutions around the world. It eliminates the need for translation or actual changing of the content of databases. It only concerns ‘labeling’ of terms in databases with an identifier. With this in mind, MoMu, the fashion museum of Antwerp, Belgium, is carrying out a termi- nology project in Flanders and the Netherlands, in order to motivate institutions to accomplish the task of labeling their terms. This article concludes with some of the experiences of this adventure, but firstly elucidates the context of the situation.
    [Show full text]
  • Full-Graph-Limited-Mvn-Deps.Pdf
    org.jboss.cl.jboss-cl-2.0.9.GA org.jboss.cl.jboss-cl-parent-2.2.1.GA org.jboss.cl.jboss-classloader-N/A org.jboss.cl.jboss-classloading-vfs-N/A org.jboss.cl.jboss-classloading-N/A org.primefaces.extensions.master-pom-1.0.0 org.sonatype.mercury.mercury-mp3-1.0-alpha-1 org.primefaces.themes.overcast-${primefaces.theme.version} org.primefaces.themes.dark-hive-${primefaces.theme.version}org.primefaces.themes.humanity-${primefaces.theme.version}org.primefaces.themes.le-frog-${primefaces.theme.version} org.primefaces.themes.south-street-${primefaces.theme.version}org.primefaces.themes.sunny-${primefaces.theme.version}org.primefaces.themes.hot-sneaks-${primefaces.theme.version}org.primefaces.themes.cupertino-${primefaces.theme.version} org.primefaces.themes.trontastic-${primefaces.theme.version}org.primefaces.themes.excite-bike-${primefaces.theme.version} org.apache.maven.mercury.mercury-external-N/A org.primefaces.themes.redmond-${primefaces.theme.version}org.primefaces.themes.afterwork-${primefaces.theme.version}org.primefaces.themes.glass-x-${primefaces.theme.version}org.primefaces.themes.home-${primefaces.theme.version} org.primefaces.themes.black-tie-${primefaces.theme.version}org.primefaces.themes.eggplant-${primefaces.theme.version} org.apache.maven.mercury.mercury-repo-remote-m2-N/Aorg.apache.maven.mercury.mercury-md-sat-N/A org.primefaces.themes.ui-lightness-${primefaces.theme.version}org.primefaces.themes.midnight-${primefaces.theme.version}org.primefaces.themes.mint-choc-${primefaces.theme.version}org.primefaces.themes.afternoon-${primefaces.theme.version}org.primefaces.themes.dot-luv-${primefaces.theme.version}org.primefaces.themes.smoothness-${primefaces.theme.version}org.primefaces.themes.swanky-purse-${primefaces.theme.version}
    [Show full text]
  • Arxiv:1910.06663V1 [Cs.PF] 15 Oct 2019
    AI Benchmark: All About Deep Learning on Smartphones in 2019 Andrey Ignatov Radu Timofte Andrei Kulik ETH Zurich ETH Zurich Google Research [email protected] [email protected] [email protected] Seungsoo Yang Ke Wang Felix Baum Max Wu Samsung, Inc. Huawei, Inc. Qualcomm, Inc. MediaTek, Inc. [email protected] [email protected] [email protected] [email protected] Lirong Xu Luc Van Gool∗ Unisoc, Inc. ETH Zurich [email protected] [email protected] Abstract compact models as they were running at best on devices with a single-core 600 MHz Arm CPU and 8-128 MB of The performance of mobile AI accelerators has been evolv- RAM. The situation changed after 2010, when mobile de- ing rapidly in the past two years, nearly doubling with each vices started to get multi-core processors, as well as power- new generation of SoCs. The current 4th generation of mo- ful GPUs, DSPs and NPUs, well suitable for machine and bile NPUs is already approaching the results of CUDA- deep learning tasks. At the same time, there was a fast de- compatible Nvidia graphics cards presented not long ago, velopment of the deep learning field, with numerous novel which together with the increased capabilities of mobile approaches and models that were achieving a fundamentally deep learning frameworks makes it possible to run com- new level of performance for many practical tasks, such as plex and deep AI models on mobile devices. In this pa- image classification, photo and speech processing, neural per, we evaluate the performance and compare the results of language understanding, etc.
    [Show full text]
  • A Dataset of Vulnerable Code Changes of the Chromium OS Project
    A Dataset of Vulnerable Code Changes of the Chromium OS project Rajshakhar Paul, Asif Kamal Turzo, Amiangshu Bosu Department of Computer Science Wayne State University Detroit, Michigan, USA fr.paul, asifkamal, [email protected] Abstract—This paper presents a an empirically built and of vulnerabilities that were escaped during code reviews, validated dataset of code reviews from the Chromium OS project we use the Monorail-based bug tracking system hosted at that either identified or missed security vulnerabilities. The https://bugs.chromium.org/. We searched in the bug tracking dataset includes total 890 vulnerable code changes categorized based on the CWE specification and is publicly available at: system to identify a list of security defects for the Chromium 1 https://zenodo.org/record/4539891 OS project . We used the following five-step approach to build Index Terms—security, code review, dataset, vulnerability this dataset. (Step I) Custom search: We used a custom search (i.e., I. INTRODUCTION (Type=Bug-Security status:Fixed OS=Chrome), Peer code review is an effective and well-recommended to filter security defects for the Chromium OS projects practice to identify security vulnerabilities during the pre- with the status as ‘Fixed’. Our search result identified total release stages [2]. However, despite practicing mandatory code 591 security defects. We exported the list of defects as a reviews, many Open Source Software (OSS) projects are still comma-separated values( i.e., CSV) file, where each issue is encountering a large number of post-release security vulner- associated with a unique ID. abilities, as some security defects remain undetected during (Step II) Identifying vulnerability fixing commit: The Mono- code reviews.
    [Show full text]
  • Git and Gerrit in Action and Lessons Learned Along the Path to Distributed Version Control
    Git and Gerrit in Action And lessons learned along the path to distributed version control Chris Aniszczyk (Red Hat) Principal Software Engineer [email protected] http://aniszczyk.org About Me I've been using and hacking open source for ~12 years - contribute{d} to Gentoo Linux, Fedora Linux, Eclipse Hack on Eclipse, Git and other things at Red Hat Member of the Eclipse Board of Directors Member in the Eclipse Architecture Council I like to run! (2 mins short of Boston qualifying ;/) Co-author of RCP Book (www.eclipsercp.org) An Introduction to Git and Gerrit | © 2011 by Chris Aniszczyk Agenda History of Version Control (VCS) The Rise of Distributed Version Control (DVCS) Code Review with Git and Gerrit Lessons Learned at Eclipse moving to a DVCS Conclusion Q&A An Introduction to Git and Gerrit | © 2011 by Chris Aniszczyk Version Control Version Control Systems manage change “The only constant is change” (Heraclitus) An Introduction to Git and Gerrit | © 2011 by Chris Aniszczyk Why Version Control? VCS became essential to software development because: They allow teams to collaborate They manage change and allow for inspection They track ownership They track evolution of changes They allow for branching They allow for continuous integration An Introduction to Git and Gerrit | © 2011 by Chris Aniszczyk Version Control: The Ancients 1972 – Source Code Control System (SCCS) Born out of Bell Labs, based on interleaved deltas No open source implementations as far as I know 1982 – Revision Control System (RCS) Released as an alternative to SCCS
    [Show full text]
  • CAFCR: a Multi-View Method for Embedded Systems Architecting; Balancing Genericity and Specificity
    CAFCR: A Multi-view Method for Embedded Systems Architecting; Balancing Genericity and Specificity trecon = tfilter(nraw-x ,nraw-y) + t ) + nraw-x * ( tfft(nraw-y)+ col-overhead ny * ( tfft(nraw-x) + trow-overhead ) + tcorrections (nx ,ny) + tcontrol-overhead Gerrit Muller ii This page will not be present in the final thesis version: 2.9 status: concept date: August 21, 2020 iii CAFCR: A Multi-view Method for Embedded Systems Architecting; Balancing Genericity and Specificity Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema, voorzitter van het College voor Promoties, in het openbaar te verdedigen op maandag 7 juni 2004 om 13:00 uur door Gerrit Jan MULLER doctorandus in de natuurkunde geboren te Amsterdam iv Dit proefschrift is goedgekeurd door de promotor: Prof.dr W.G. Vree Samenstelling promotiecommissie: Rector Magnificus voorzitter Prof.dr. W.G. Vree Technische Universiteit Delft, promotor Prof.dr. M. Rem Technische Universiteit Eindhoven Prof.dr.ir. P.A. Kroes Technische Universiteit Delft Prof.dr.ir. H.J. Sips Technische Universiteit Delft Prof.dr. R. Wagenaar Technische Universiteit Delft Prof.dr.ing. D.K. Hammer Technische Universiteit Eindhoven Prof.dr. P.H. Hartel Universiteit Twente Prof.dr. M. Rem heeft als begeleider in belangrijke mate aan de totstandkoming van het proefschrift bijgedragen. ISBN 90-5639-120-2 Keywords: Systems Architecture, System design, Systems Engineering These investigations were supported by Philips Research Laboratories, and the Embedded Systems Institute, both in Eindhoven. Cover Photograph: René Stout http://www.rwstout.com/ Copyright c 2004 by G.J.
    [Show full text]