Oral Sustained Release Drug Delivery System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 6,515,007 B2 Murad (45) Date of Patent: Feb
USOO6515007B2 (12) United States Patent (10) Patent No.: US 6,515,007 B2 Murad (45) Date of Patent: Feb. 4, 2003 (54) METHODS FOR MANAGING SCALP OTHER PUBLICATIONS CONDITIONS WPIDS AN 1997-389337, JP 09 169638 A, Jun. 30, 1997, (76) Inventor: Howard Murad, 4265 Marina City Dr., bstract.* Penthouse 11, Marina del Rey, CA (US) MEDLINE 79172521, Orfanos et al, Hautarzt, Mar. 1979, 90292 30(3), 124–33, abstract.* * cited by examiner (*) Notice: patentSubject is to extended any disclaimer, or adjusted the term under of this 35 Primary Examiner Rebecca Cook U.S.C. 154(b) by 0 days. (74) Attorney, Agent, or Firm-Pennie & Edmonds LLP (57) ABSTRACT (21) Appl. No.: 09/920,729 ThisS applicationCO relatesCLCSO to a ph CCUCtical compositionCOOOSOO f (22) Filed: Aug. 3, 2001 the prevention, treatment, and management of Scalp O O conditions, Such as dandruff, Seborrheic dermatitis, (65) Prior Publication Data pSoriasis, folliculitis, and hair thinning including a thera US 2002/0009423 A1 Jan. 24, 2002 peutically effective amount of an acidic component of a hydroxyacid or tannic acid, or a pharmaceutically acceptable Related U.S. Application Data Salt thereof. A preferred anti-dandruff composition and - - - method of managing dandruff includes a therapeutically (62) Pisie of Epitol N: SE filed R Aug. 5. effective amount of the acid component, a vitamin A application, now Nolog23,484Pat. No. O.Z f 1,240,filedonii. which 27, is 1998,a division now Pat o OPO and an anti-growthi- agent. A preferred anti-hairi-hai No. 6,207,694. thinning composition and method of managing thinning hair 7 includes a therapeutically effective amount of the acidic (51) Int. -
An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: a Review
Muthadi Radhika Reddy /J. Pharm. Sci. & Res. Vol. 12(7), 2020, 925-940 An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: A Review Muthadi Radhika Reddy1* 1School of pharmacy, Gurunanak Institute of Technical Campus, Hyderabad, Telangana, India and Department of Pharmacy, Gandhi Institute of Technology and Management University, Vizag, Andhra Pradesh, India INTRODUCTION 2. Useful in situations where rapid onset of action Fast dissolving drug delivery systems were first developed required such as in motion sickness, allergic attack, in the late 1970s as an alternative to conventional dosage coughing or asthma forms. These systems consist of solid dosage forms that 3. Has wide range of applications in pharmaceuticals, Rx disintegrate and dissolve quickly in the oral cavity without Prescriptions and OTC medications for treating pain, the need of water [1]. Fast dissolving drug delivery cough/cold, gastro-esophageal reflux disease,erectile systems include orally disintegrating tablets (ODTs) and dysfunction, sleep disorders, dietary supplements, etc oral thin films (OTFs). The Centre for Drug Evaluation [4] and Research (CDER) defines ODTs as,“a solid dosage 4. No water is required for the administration and hence form containing medicinal substances which disintegrates suitable during travelling rapidly, usually within a matter of seconds, when placed 5. Some drugs are absorbed from the mouth, pharynx upon the tongue” [2]. USFDA defines OTFs as, “a thin, and esophagus as the saliva passes down into the flexible, non-friable polymeric film strip containing one or stomach, enhancing bioavailability of drugs more dispersed active pharmaceutical ingredients which is 6. May offer improved bioavailability for poorly water intended to be placed on the tongue for rapid soluble drugs by offering large surface area as it disintegration or dissolution in the saliva prior to disintegrates and dissolves rapidly swallowing for delivery into the gastrointestinal tract” [3]. -
An Overview On: Sublingual Route for Systemic Drug Delivery
International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 __________________________________________Review Article An Overview on: Sublingual Route for Systemic Drug Delivery K. Patel Nibha1 and SS. Pancholi2* 1Department of Pharmaceutics, BITS Institute of Pharmacy, Gujarat Technological university, Varnama, Vadodara, Gujarat, India 2BITS Institute of Pharmacy, Gujarat Technological University, Varnama, Vadodara, Gujarat, India. __________________________________________________________________________________ ABSTRACT Oral mucosal drug delivery is an alternative and promising method of systemic drug delivery which offers several advantages. Sublingual literally meaning is ''under the tongue'', administrating substance via mouth in such a way that the substance is rapidly absorbed via blood vessels under tongue. Sublingual route offers advantages such as bypasses hepatic first pass metabolic process which gives better bioavailability, rapid onset of action, patient compliance , self-medicated. Dysphagia (difficulty in swallowing) is common among in all ages of people and more in pediatric, geriatric, psychiatric patients. In terms of permeability, sublingual area of oral cavity is more permeable than buccal area which is in turn is more permeable than palatal area. Different techniques are used to formulate the sublingual dosage forms. Sublingual drug administration is applied in field of cardiovascular drugs, steroids, enzymes and some barbiturates. This review highlights advantages, disadvantages, different sublingual formulation such as tablets and films, evaluation. Key Words: Sublingual delivery, techniques, improved bioavailability, evaluation. INTRODUCTION and direct access to systemic circulation, the oral Drugs have been applied to the mucosa for topical mucosal route is suitable for drugs, which are application for many years. However, recently susceptible to acid hydrolysis in the stomach or there has been interest in exploiting the oral cavity which are extensively metabolized in the liver. -
Liposome-Based Drug Delivery Systems in Cancer Immunotherapy
pharmaceutics Review Liposome-Based Drug Delivery Systems in Cancer Immunotherapy Zili Gu 1 , Candido G. Da Silva 1 , Koen van der Maaden 2,3, Ferry Ossendorp 2 and Luis J. Cruz 1,* 1 Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 2 Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 3 TECOdevelopment GmbH, 53359 Rheinbach, Germany Received: 1 October 2020; Accepted: 2 November 2020; Published: 4 November 2020 Abstract: Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed. Keywords: liposome; drug delivery; cancer immunotherapy; immunomodulation 1. The Potential of Immunotherapy for the Treatment of Cancer Cancer immunotherapy has been widely explored because of its durable and robust effects [1]. -
Intra-Luminal Focused Ultrasound for Augmentation of Gastrointestinal Drug Delivery
Editorial Page 1 of 2 Intra-luminal focused ultrasound for augmentation of gastrointestinal drug delivery Ezekiel Maloney1, Joo Ha Hwang2 1Department of Radiology, 2Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA Correspondence to: Joo Ha Hwang, MD, PhD. Division of Gastroenterology, Department of Medicine, University of Washington, Box 359773, 325 Ninth Avenue, Seattle, WA 98104, USA. Email: [email protected]. Provenance: This is a Guest Editorial commissioned by Section Editor Hui Kong, MD, PhD (Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China). Comment on: Schoellhammer CM, Schroeder A, Maa R, et al. Ultrasound-mediated gastrointestinal drug delivery. Sci Transl Med 2015;7:310ra168. Submitted Feb 01, 2017. Accepted for publication Feb 06, 2017. doi: 10.21037/atm.2017.03.42 View this article at: http://dx.doi.org/10.21037/atm.2017.03.42 The recent article by Schoellhammer et al., “Ultrasound- intensity ultrasound frequencies followed by quantification mediated gastrointestinal drug delivery” primarily of delivery of permeants (e.g., glucose, dextran, insulin). addresses practical limitations in drug delivery for medical Treated tissues showed enhanced transport. Similar management of inflammatory bowel disease (IBD), and findings were demonstrated in small and large bowel tissue presents pre-clinical data demonstrating that intra- for radiolabeled mesalamine and hydrocortisone. With 1 luminal, sub-ablative focused ultrasound (FUS), delivered minute of ultrasound treatment time, 3–5-fold improved via a trans-rectal transducer, can overcome some of these drug delivery was observed versus control. Additional limitations (1). The clinical application and benefit of such a ex vivo experiments utilizing variable FUS protocols to device is clear. -
Chapter 1 Controlling Drug Delivery
chapter 1 Controlling drug delivery Overview In this chapter we will: & differentiate drug delivery systems according to their physical state & differentiate drug delivery systems according to their route of administration & differentiate drug delivery systems according to their type of drug release & discuss drug transport across epithelial barriers. Introduction KeyPoints & Continued developments in Pharmacotherapy can be defined as the treatment chemistry, molecular biology and prevention of illness and disease by means of and genomics support the drugs of chemical or biological origin. It ranks discovery and developments among the most important methods of medical of new drugs and new drug treatment, together with surgery, physical targets. & treatment, radiation and psychotherapy. There The drug delivery system are many success stories concerning the use of employed can control the pharmacological action of a drugs and vaccines in the treatment, prevention drug, influencing its and in some cases even eradication of diseases pharmacokinetic and (e.g. smallpox, which is currently the only subsequent therapeutic human infectious disease completely profile. eradicated). Although it is almost impossible to estimate the exact extent of the impact of pharmacotherapy on human health, there can be no doubt that pharmacotherapy, together with improved sanitation, better diet and better housing, has improved people’s health, life expectancy and quality of life. Tip Unprecedented developments in genomics Combinatorial chemistry is a way to and molecular biology today offer a plethora of build a variety of structurally related new drug targets. The use of modern chemical drug compounds rapidly and synthetic methods (such as combinatorial systematically. These are assembled chemistry) enables the syntheses of a large from a range of molecular entities number of new drug candidates in shorter times which are put together in different ‘ ’ than ever before. -
Delivery of Orally Administered Digestible Antibodies Using Nanoparticles
International Journal of Molecular Sciences Review Delivery of Orally Administered Digestible Antibodies Using Nanoparticles Toshihiko Tashima Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama, Kanagawa 222-0035, Japan; [email protected] Abstract: Oral administration of medications is highly preferred in healthcare owing to its simplicity and convenience; however, problems of drug membrane permeability can arise with any administra- tion method in drug discovery and development. In particular, commonly used monoclonal antibody (mAb) drugs are directly injected through intravenous or subcutaneous routes across physical barri- ers such as the cell membrane, including the epithelium and endothelium. However, intravenous administration has disadvantages such as pain, discomfort, and stress. Oral administration is an ideal route for mAbs. Nonetheless, proteolysis and denaturation, in addition to membrane impermeability, pose serious challenges in delivering peroral mAbs to the systemic circulation, biologically, through enzymatic and acidic blocks and, physically, through the small intestinal epithelium barrier. A num- ber of clinical trials have been performed using oral mAbs for the local treatment of gastrointestinal diseases, some of which have adopted capsules or tablets as formulations. Surprisingly, no oral mAbs have been approved clinically. An enteric nanodelivery system can protect cargos from proteolysis and denaturation. Moreover, mAb cargos released in the small intestine may be delivered to the systemic circulation across the intestinal epithelium through receptor-mediated transcytosis. Oral Abs in milk are transported by neonatal Fc receptors to the systemic circulation in neonates. Thus, well-designed approaches can establish oral mAb delivery. In this review, I will introduce the imple- mentation and possibility of delivering orally administered mAbs with or without nanoparticles not Citation: Tashima, T. -
Soft Gelatin Capsules)
ERGOCALCIFEROL- ergocalciferol capsule Blenheim Pharmacal, Inc. ---------- VITAMIN D, ERGOCALCIFEROL Capsules, USP, 1.25 mg SOFTGEL CAPSULES (Soft Gelatin Capsules) (50,000 USP Units) Rx Only DESCRIPTION Ergocalciferol Capsules, USP is a synthetic calcium regulator for oral administration. Ergocalciferol is a white, colorless crystal, insoluble in water, soluble in organic solvents, and slightly soluble in vegetable oils. It is affected by air and by light. Ergosterol or provitamin D 2 is found in plants and yeast and has no antirachitic activity. There are more than 10 substances belonging to a group of steroid compounds, classified as having vitamin D or antirachitic activity. One USP Unit of vitamin D 2 is equivalent to one International Unit (IU), and 1 mcg of vitamin D 2 is equal to 40 IU. Each softgel capsule, for oral administration, contains Ergocalciferol, USP 1.25 mg (equivalent to 50,000 USP units of Vitamin D), in an edible vegetable oil. Ergocalciferol, also called vitamin D 2 ,is 9, 10-secoergosta-5, 7,10(19),22-tetraen-3-ol,(3β,5 Z,7 E,22 E)-; (C 28H 44O) with a molecular weight of 396.65, and has the following structural formula: Inactive Ingredients: D&C Yellow #10, FD&C Blue #1, Gelatin, Glycerin, Purified Water, Refined Soybean Oil. CLINICAL PHARMACOLOGY The in vivo synthesis of the major biologically active metabolites of vitamin D occurs in two steps. The first hydroxylation of ergocalciferol takes place in the liver (to 25-hydroxyvitamin D) and the second in the kidneys (to 1,25-dihydroxy- vitamin D). Vitamin D metabolites promote the active absorption of calcium and phosphorus by the small intestine, thus elevating serum calcium and phosphate levels sufficiently to permit bone mineralization. -
Dissolution Testing of Orally Disintegrating Tablets
dx.doi.org/10.14227/DT100203P6 Dissolution Testing of Orally Disintegrating Tablets James Klancke Sr. Director, Analytical Development, CIMA LABS INC, Brooklyn Park, MN email correspondence: [email protected] Abstract Orally disintegrating tablets (ODT) are solid dosage forms that disintegrate in the oral cavity leaving an easy-to-swallow residue.The disintegration times are generally less than one minute.For orally disinte- grating tablets,taste-masking of bitter or objectional-tasting drug substances is critical.The taste-masking aspect plays a significant role in dissolution method development,specifications,and testing.The USP 2 paddle apparatus is the most suitable and common choice for orally disintegrating tablets.Discriminating, robust dissolution methods are extremely useful for monitoring process optimization and changes during scale-up of taste-masked bulk drug and tablet manufacture. Introduction rally disintegrating tablets contain a wide The development of dissolution methods for variety of pharmaceutical actives covering orally disintegrating tablets is comparable to the Omany therapeutic categories,and can be approach taken for conventional tablets,and is particularly good applications for pediatric and practically identical when the orally disintegrating geriatric treatments.The time for disintegration of tablet does not utilize taste masking.The reference orally disintegrating tablets is generally considered listed drug may have dissolution conditions in a to be less than one minute [1-4],although patients USP -
Drug Administration
Chapter 3: Drug Administration 2 Contact Hours By: Katie Ingersoll, RPh, PharmD Author Disclosure: Katie Ingersoll and Elite do not have any actual or Questions regarding statements of credit and other customer service potential conflicts of interest in relation to this lesson. issues should be directed to 1-888-666-9053. This lesson is $12.00. Universal Activity Number (UAN): 0761-9999-17-079-H01-P Educational Review Systems is accredited by the Activity Type: Knowledge-based Accreditation Council of Pharmacy Education (ACPE) Initial Release Date: April 1, 2017 as a provider of continuing pharmaceutical education. Expiration Date: April 1, 2019 This program is approved for 2 hours (0.2 CEUs) of Target Audience: Pharmacists in a community-based setting. continuing pharmacy education credit. Proof of participation will be posted to your NABP CPE profile within 4 to 6 To Obtain Credit: A minimum test score of 70 percent is needed weeks to participants who have successfully completed the post-test. to obtain a credit. Please submit your answers either by mail, fax, or Participants must participate in the entire presentation and complete online at Pharmacy.EliteCME.com. the course evaluation to receive continuing pharmacy education credit. Learning objectives After completion of this course, healthcare professionals will be able Discuss the administration of medications in patients using enteral to: and parenteral nutrition. Describe the eight rights of medication administration. Discuss special considerations for administering medications in Explain the administration of enteral and parenteral medications. pediatric and geriatric patients. Introduction Medication errors that occur at the point of drug administration poised to reduce the frequency of medication administration errors. -
A Survey of Cannabis Consumption and Implications of an Experimental Policy Manipulation Among Young Adults
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2018 A SURVEY OF CANNABIS CONSUMPTION AND IMPLICATIONS OF AN EXPERIMENTAL POLICY MANIPULATION AMONG YOUNG ADULTS Alyssa K. Rudy Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd © The Author Downloaded from https://scholarscompass.vcu.edu/etd/5297 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. A SURVEY OF CANNABIS CONSUMPTION AND IMPLICATIONS OF AN EXPERIMENTAL POLICY MANIPULATION AMONG YOUNG ADULTS A thesis proposal submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by Alyssa Rudy B.S., University of Wisconsin - Whitewater, 2014 Director: Dr. Caroline Cobb Assistant Professor Department of Psychology Virginia Commonwealth University Richmond, Virginia January, 2018 ii Acknowledgement I would like to first acknowledge Dr. Caroline Cobb for your guidance and support on this project. Thank you for allowing me to explore my passions. I am thankful for your willingness to jump into an unfamiliar area of research with me, and thank you for constantly pushing me to be a better writer, researcher, and person. I would also like to acknowledge the other members of my thesis committee, Drs. Eric Benotsch and Andrew Barnes for their support and expertise on this project. I would also like to thank my family for always supporting my desire to pursue my educational and personal goals. -
Oral Films: a Comprehensive Review
Mahboob et al., International Current Pharmaceutical Journal, November 2016, 5(12): 111-117 International Current http://www.icpjonline.com/documents/Vol5Issue12/03.pdf Pharmaceutical Journal REVIEW ARTICLE OPEN ACCESS Oral Films: A Comprehensive Review *Muhammad Bilal Hassan Mahboob1,2, Tehseen Riaz1,2, Muhammad Jamshaid1, Irfan Bashir1,2 and Saqiba Zulfiqar1,2,3 1Faculty of Pharmacy, University of Central Punjab Lahore, Pakistan 2Foundation for Young Researchers, Pakistan 3Shoukat Khanum Memorial Cancer Hospital & Research Centre, Lahore, Pakistan ABSTRACT In the late 1970s, rapid disintegrating drug delivery system was developed as an alternative to capsules, tablets and syrups for geriatric and pediatric patients having problems in swallowing. To overcome the need, number of orally disintegrating tablets which disinte- grate within one minute in mouth without chewing or drinking water were commercialized. Then later, oral drug delivery technology had been improved from conventional dosage form to modified release dosage form and developed recently rapid disintegrating films rather than oral disintegrating tablets. Oral disintegrating film or strips containing water dissolving polymer retain the dosage form to be quickly hydrated by saliva, adhere to mucosa, and disintegrate within a few seconds, dissolve and releases medication for oro- mucosal absorption when placed in mouth. Oral film technology is the alternative route with first pass metabolism. This review give a comprehensive detail of materials used in ODF, manufacturing process, evaluation tests and marketed products. Key Words: Oral disintegrating film, oral strip, pediatric and geriatric patients. INTRODUCTIONINTRODUCTION An oral film or strips are manufactured as a large Oral administration is the most preferred route due to re- sheet and then cut into individual dosage unit for packag- lieve of ingestion, pain reduction, to accommodate various ing (Desai et al., 2012).