Fair K Mutual Exclusion Algorithm for Peer to Peer Systems ∗

Total Page:16

File Type:pdf, Size:1020Kb

Fair K Mutual Exclusion Algorithm for Peer to Peer Systems ∗ Fair K Mutual Exclusion Algorithm for Peer To Peer Systems ∗ Vijay Anand Reddy, Prateek Mittal, and Indranil Gupta University of Illinois, Urbana Champaign, USA {vkortho2, mittal2, indy}@uiuc.edu Abstract is when multiple clients are simultaneously downloading a large multimedia file, e.g., [3, 12]. Finally applications k-mutual exclusion is an important problem for resource- where a service has limited computational resources will intensive peer-to-peer applications ranging from aggrega- also benefit from a k mutual exclusion primitive, preventing tion to file downloads. In order to be practically useful, scenarios where all the nodes of the p2p system simultane- k-mutual exclusion algorithms not only need to be safe and ously overwhelm the server. live, but they also need to be fair across hosts. We pro- The k mutual exclusion problem involves a group of pro- pose a new solution to the k-mutual exclusion problem that cesses, each of which intermittently requires access to an provides a notion of time-based fairness. Specifically, our identical resource called the critical section (CS). A k mu- algorithm attempts to minimize the spread of access time tual exclusion algorithm must satisfy both safety and live- for the critical resource. While a client’s access time is ness. Safety means that at most k processes, 1 ≤ k ≤ n, the time between it requesting and accessing the resource, may be in the CS at any given time. Liveness means that the spread is defined as a system-wide metric that measures every request for critical section access is satisfied in finite some notion of the variance of access times across a homo- time. geneous host population, e.g., difference between max and For the applications described above, fairness of the mean. We analytically prove the correctness of our algo- k mutual exclusion primitive is important, to ensure pre- rithm, and evaluate its fairness experimentally using simu- dictable staleness. In other words, the primitive should en- lations. Our evaluation under two settings - a LAN setting sure timeliness of data (statistics) collection across nodes. and a WAN based on the King latency data set - shows even Previously proposed algorithms for k mutual exclusion fo- with 100 hosts accessing one resource, the spread of access cus on optimizing the mean time to obtain access to the time is within 15 seconds. critical section, rarely accounting for metrics like fairness. Thus, new solutions are needed that take fairness into con- sideration. Our notion of the fairness metric is as follows: 1. Introduction amongst a group of homogeneous nodes having a constant critical section execution time, the access time spread for In peer to peer (p2p) systems, a distributed k mutual ex- the critical section should be small. clusion primitive provides a mechanism to share resources We do not consider fairness to be a binary property; the like bandwidth in a decentralized fashion. Consider a cen- smaller the access time spread for the critical section, the tral statistics collection server in a p2p system (for exam- more fair the mutual exclusion algorithm. There are other ple Planet-Lab [13]) that provides some distributed services. ways to measure fairness, e.g., [8] defines fairness as FIFO The limited bandwidth at the server is the bottleneck here, with respect to request timestamps. Our notion of fairness and in such a scenario, a k mutual exclusion primitive can is more practical, yet it provides FIFO ordering as a side be used to cap the number of simultaneous connections to affect. the server at k, while providing access to the server in a In this paper, we propose a practical fair algorithm for k decentralized manner. We note that while there is a lot mutual exclusion in p2p systems that minimizes the differ- of emerging work on distributed data collection and data ence between maximum and mean time to access the criti- aggregation [22, 23], the current infrastructure for statis- cal section. We prove that our algorithm satisfies both the tics collection is largely centralized [17]. Another example safety and liveness requirements. We show that our algo- where k mutual exclusion in p2p systems would be useful rithm provides an order of magnitude better fairness char- ∗This work was supported in part by NSF CAREER grant CNS- acteristics as compared to the best-known k mutual exclu- 0448246 and in part by NSF ITR CMS-0427089. sion algorithm [2], while the asymptotic bounds on both the mean time to access the critical section, as well as the num- Message delivery to the destination is time-bounded. There ber of messages per critical section entry, remain the same. are k tokens numbered 1 through k in the system and a node We also propose a fault tolerant methodology for our algo- can be in the critical section only if it is holding a token. A rithm and show that it is resilient against churn. node holds a token for only a finite time. A node does not initiate a new critical section until it has exited all previ- 2. Related Work ous ones. We initially assume no joins or failures; we later handle failures by relying on a distributed hash table (DHT) Classical mutual exclusion algorithms can be classified called Chord. into two groups: permission (quorum)-based and token- The k-mutual exclusion problem involves a group of based. Permission-based algorithms [6,9,16] require one or nodes, each of which intermittently requires access to an more successive rounds of message exchanges among the identical resource or piece of code called the critical section ≤ ≤ nodes to obtain the permission to execute the CS. In token- (CS). At most k nodes, 1 k n, may be in the CS at any based algorithms [4,11,15] a unique token is shared among given time. we next define safety, liveness and fairness: the nodes. A node is allowed to enter its critical section only Safety meansthatatmostk nodes will execute the criti- if it possesses the token. cal section at a time. As the algorithm is token based, only The generalization to k mutual exclusion was proposed nodes with a token can enter the critical section. In order to by Raymond [14], but the algorithm is permission based. provide safety, it is thus sufficient to show that there are at Srimani and Reddy [19] proposed a token based algorithm most k tokens in the system at any time. for the k mutual exclusion problem by extending the ideas Liveness means that every request for critical section ac- of Suzuki and Kasami [21]. Their algorithm involves flood- cess will be satisfied within a finite time. This definition ing of requests, which makes it poorly suitable to p2p sys- requires that neither deadlock nor starvation should occur. tems. Ricart and Agrawala [16] used a single token with a Deadlock means that, while there are less than k nodes exe- counter to keep track of how many processes are currently cuting critical section, no requesting node can ever enter the in the critical section. It is shown in [2] that under high critical section. Starvation occurs when one node must wait load, this system behaves like a single token system. Also, indefinitely to enter the critical section even though other it requires all nodes to communicate in certain stages of the nodes are entering and leaving the critical section. algorithm, making it message inefficient for p2p environ- Fairness means that amongst a group of homogeneous ments. Also, both [19] and [16] are not fault tolerant and nodes having a constant critical section execution time, the do not consider fairness. access time spread to access the critical section should be Bulgannawar and Vaidya [2] presented a token based al- small. gorithm that uses k separate tokens in the system. Their al- gorithm uses k instantiations of a dynamic forest tree struc- 3.2. Algorithm Description ture proposed in [11]. The algorithm uses heuristics for choosing a tree among k, to send the request. This decision Our approach to provide a fair k mutual exclusion can makes the algorithm unfair, since there is no load balanc- be understood intuitively in a real world scenario. Imagine ing of requests. Moreover, the paper does not consider fault a cinema hall with k ticket counters. A person entering the tolerance. cinema hall picks one of the k counters randomly with out In recent years, p2p overlays like Chord [20] have been the prior knowledge of length of queues at each counter. We proposed. It provides flexible route selection and static re- can see that, this randomized strategy as in [2] gives a good silience. Lin et al [6] and Moosa et al [10] proposed quorum average time to get the ticket. However, in the worst case if based protocols for achieving mutual exclusion in dynamic every person enters the same queue i.e., if there is no load p2p systems. The Sigma protocol [6] uses logical replicas balancing among the ticket counters, the maximum time to and quorum consensus to deal with the system dynamism get the ticket will be very high. whereas [10] proposed protocols which combine both token A solution for this real world problem could be to place and quorum based approaches. a moderator (coordinator) at the cinema hall entry who has the information of all the ticket counters. The coordinator 3. A Fair K Mutual Exclusion Algorithm could then guide people who enter the cinema hall to ticket counters in a round robin fashion, i.e., coordinator does the 3.1. System Model and Problem Definition job of load balancing the ticket requests among the k ticket counters.
Recommended publications
  • Synchronization Spinlocks - Semaphores
    CS 4410 Operating Systems Synchronization Spinlocks - Semaphores Summer 2013 Cornell University 1 Today ● How can I synchronize the execution of multiple threads of the same process? ● Example ● Race condition ● Critical-Section Problem ● Spinlocks ● Semaphors ● Usage 2 Problem Context ● Multiple threads of the same process have: ● Private registers and stack memory ● Shared access to the remainder of the process “state” ● Preemptive CPU Scheduling: ● The execution of a thread is interrupted unexpectedly. ● Multiple cores executing multiple threads of the same process. 3 Share Counting ● Mr Skroutz wants to count his $1-bills. ● Initially, he uses one thread that increases a variable bills_counter for every $1-bill. ● Then he thought to accelerate the counting by using two threads and keeping the variable bills_counter shared. 4 Share Counting bills_counter = 0 ● Thread A ● Thread B while (machine_A_has_bills) while (machine_B_has_bills) bills_counter++ bills_counter++ print bills_counter ● What it might go wrong? 5 Share Counting ● Thread A ● Thread B r1 = bills_counter r2 = bills_counter r1 = r1 +1 r2 = r2 +1 bills_counter = r1 bills_counter = r2 ● If bills_counter = 42, what are its possible values after the execution of one A/B loop ? 6 Shared counters ● One possible result: everything works! ● Another possible result: lost update! ● Called a “race condition”. 7 Race conditions ● Def: a timing dependent error involving shared state ● It depends on how threads are scheduled. ● Hard to detect 8 Critical-Section Problem bills_counter = 0 ● Thread A ● Thread B while (my_machine_has_bills) while (my_machine_has_bills) – enter critical section – enter critical section bills_counter++ bills_counter++ – exit critical section – exit critical section print bills_counter 9 Critical-Section Problem ● The solution should ● enter section satisfy: ● critical section ● Mutual exclusion ● exit section ● Progress ● remainder section ● Bounded waiting 10 General Solution ● LOCK ● A process must acquire a lock to enter a critical section.
    [Show full text]
  • The Deadlock Problem
    The deadlock problem More deadlocks mutex_t m1, m2; Same problem with condition variables void p1 (void *ignored) { • lock (m1); - Suppose resource 1 managed by c1, resource 2 by c2 lock (m2); - A has 1, waits on 2, B has 2, waits on 1 /* critical section */ c c unlock (m2); Or have combined mutex/condition variable unlock (m1); • } deadlock: - lock (a); lock (b); while (!ready) wait (b, c); void p2 (void *ignored) { unlock (b); unlock (a); lock (m2); - lock (a); lock (b); ready = true; signal (c); lock (m1); unlock (b); unlock (a); /* critical section */ unlock (m1); One lesson: Dangerous to hold locks when crossing unlock (m2); • } abstraction barriers! This program can cease to make progress – how? - I.e., lock (a) then call function that uses condition variable • Can you have deadlock w/o mutexes? • 1/15 2/15 Deadlocks w/o computers Deadlock conditions 1. Limited access (mutual exclusion): - Resource can only be shared with finite users. 2. No preemption: - once resource granted, cannot be taken away. Real issue is resources & how required • 3. Multiple independent requests (hold and wait): E.g., bridge only allows traffic in one direction - don’t ask all at once (wait for next resource while holding • - Each section of a bridge can be viewed as a resource. current one) - If a deadlock occurs, it can be resolved if one car backs up 4. Circularity in graph of requests (preempt resources and rollback). All of 1–4 necessary for deadlock to occur - Several cars may have to be backed up if a deadlock occurs. • Two approaches to dealing with deadlock: - Starvation is possible.
    [Show full text]
  • Download Distributed Systems Free Ebook
    DISTRIBUTED SYSTEMS DOWNLOAD FREE BOOK Maarten van Steen, Andrew S Tanenbaum | 596 pages | 01 Feb 2017 | Createspace Independent Publishing Platform | 9781543057386 | English | United States Distributed Systems - The Complete Guide The hope is that together, the system can maximize resources and information while preventing failures, as if one system fails, it won't affect the availability of the service. Banker's algorithm Dijkstra's algorithm DJP algorithm Prim's algorithm Dijkstra-Scholten algorithm Dekker's algorithm generalization Smoothsort Shunting-yard algorithm Distributed Systems marking algorithm Concurrent algorithms Distributed Systems algorithms Deadlock prevention algorithms Mutual exclusion algorithms Self-stabilizing Distributed Systems. Learn to code for free. For the first time computers would be able to send messages to other systems with a local IP address. The messages passed between machines contain forms of data that the systems want to share like databases, objects, and Distributed Systems. Also known as distributed computing and distributed databases, a distributed system is a collection of independent components located on different machines that share messages with each other in order to achieve common goals. To prevent infinite loops, running the code requires some amount of Ether. As mentioned in many places, one of which this great articleyou cannot have consistency and availability without partition tolerance. Because it works in batches jobs a problem arises where if your job fails — Distributed Systems need to restart the whole thing. While in a voting system an attacker need only add nodes to the network which is Distributed Systems, as free access to the network is a design targetin a CPU power based scheme an attacker faces a physical limitation: getting access to more and more powerful hardware.
    [Show full text]
  • In the Beginning... Example Critical Sections / Mutual Exclusion Critical
    Temporal relations • Instructions executed by a single thread are totally CSE 451: Operating Systems ordered Spring 2013 – A < B < C < … • Absent synchronization, instructions executed by distinct threads must be considered unordered / Module 7 simultaneous Synchronization – Not X < X’, and not X’ < X Ed Lazowska [email protected] Allen Center 570 © 2013 Gribble, Lazowska, Levy, Zahorjan © 2013 Gribble, Lazowska, Levy, Zahorjan 2 Critical Sections / Mutual Exclusion Example: ExampleIn the beginning... • Sequences of instructions that may get incorrect main() Y-axis is “time.” results if executed simultaneously are called critical A sections Could be one CPU, could pthread_create() • (We also use the term race condition to refer to a be multiple CPUs (cores). situation in which the results depend on timing) B foo() A' • Mutual exclusion means “not simultaneous” – A < B or B < A • A < B < C – We don’t care which B' • A' < B' • Forcing mutual exclusion between two critical section C • A < A' executions is sufficient to ensure correct execution – • C == A' guarantees ordering • C == B' • One way to guarantee mutually exclusive execution is using locks © 2013 Gribble, Lazowska, Levy, Zahorjan 3 © 2013 Gribble, Lazowska, Levy, Zahorjan 4 CriticalCritical sections When do critical sections arise? is the “happens-before” relation • One common pattern: T1 T2 T1 T2 T1 T2 – read-modify-write of – a shared value (variable) – in code that can be executed concurrently (Note: There may be only one copy of the code (e.g., a procedure), but it
    [Show full text]
  • The Deadlock Problem
    The deadlock problem n A set of blocked processes each holding a resource and waiting to acquire a resource held by another process. n Example n locks A and B Deadlocks P0 P1 lock (A); lock (B) lock (B); lock (A) Arvind Krishnamurthy Spring 2004 n Example n System has 2 tape drives. n P1 and P2 each hold one tape drive and each needs another one. n Deadlock implies starvation (opposite not true) The dining philosophers problem Deadlock Conditions n Five philosophers around a table --- thinking or eating n Five plates of food + five forks (placed between each n Deadlock can arise if four conditions hold simultaneously: plate) n Each philosopher needs two forks to eat n Mutual exclusion: limited access to limited resources n Hold and wait void philosopher (int i) { while (TRUE) { n No preemption: a resource can be released only voluntarily think(); take_fork (i); n Circular wait take_fork ((i+1) % 5); eat(); put_fork (i); put_fork ((i+1) % 5); } } Resource-allocation graph Resource-Allocation & Waits-For Graphs A set of vertices V and a set of edges E. n V is partitioned into two types: n P = {P1, P2, …, Pn }, the set consisting of all the processes in the system. n R = {R1, R2, …, Rm }, the set consisting of all resource types in the system (CPU cycles, memory space, I/O devices) n Each resource type Ri has Wi instances. n request edge – directed edge P1 ® Rj Resource-Allocation Graph Corresponding wait-for graph n assignment edge – directed edge Rj ® Pi 1 Deadlocks with multiple resources Another example n P1 is waiting for P2 or P3, P3 is waiting for P1 or P4 P1 is waiting for P2, P2 is waiting for P3, P3 is waiting for P1 or P2 n Is there a deadlock situation here? Is this a deadlock scenario? Announcements Methods for handling deadlocks th n Midterm exam on Feb.
    [Show full text]
  • 05 Mutex Algorithms I
    G52CON: Concepts of Concurrency Lecture 5: Algorithms for Mutual Exclusion "I Brian Logan School of Computer Science [email protected] Outline of this lecture" •# mutual exclusion protocols •# criteria for a solution –# safety properties –# liveness properties •# simple spin lock •# spin lock using turns •# spin lock using the Test-and-Set special instruction © Brian Logan 2014 G52CON Lecture 5: Algorithms for Mutual 2 Exclusion I Archetypical mutual exclusion" Any program consisting of n processes for which mutual exclusion is required between critical sections belonging to just one class can be written: // Process 1 // Process 2 ... // Process n init1; init2; initn; while(true) { while(true) { while(true) { crit1; crit2; critn; rem1; rem2; remn; } } } where initi denotes any (non-critical) initialisation, criti denotes a critical section, remi denotes the (non-critical) remainder of the program, and i is 1, 2, … n. © Brian Logan 2014 G52CON Lecture 5: Algorithms for Mutual 3 Exclusion I Archetypical mutual exclusion" We assume that init, crit and rem may be of any size: •#crit must execute in a finite time—process does not terminate in crit •#init and rem may be infinite—process may terminate in init or rem •#crit and rem may vary from one pass through the while loop to the next With these assumptions it is possible to rewrite any process with critical sections into the archetypical form. © Brian Logan 2014 G52CON Lecture 5: Algorithms for Mutual 4 Exclusion I Ornamental Gardens problem" // West turnstile // East turnstile init1; init2; while(true) { while(true) { // wait for turnstile // wait for turnstile < count = count + 1; > < count = count + 1; > // other stuff ..
    [Show full text]
  • The Mutual Exclusion Problem Part II: Statement and Solutions
    56b The Mutual Exclusion Problem Part II: Statement and Solutions L. Lamport1 Digital Equipment Corporation 6 October 1980 Revised: 1 February 1983 1 May 1984 27 February 1985 June 26, 2000 To appear in Journal of the ACM 1Most of this work was performed while the author was at SRI International, where it was supported in part by the National Science Foundation under grant number MCS-7816783. Abstract The theory developed in Part I is used to state the mutual exclusion problem and several additional fairness and failure-tolerance requirements. Four “dis- tributed” N-process solutions are given, ranging from a solution requiring only one communication bit per process that permits individual starvation, to one requiring about N! communication bits per process that satisfies every reasonable fairness and failure-tolerance requirement that we can conceive of. Contents 1 Introduction 3 2TheProblem 4 2.1 Basic Requirements ........................ 4 2.2 Fairness Requirements ...................... 6 2.3 Premature Termination ..................... 8 2.4 Failure ............................... 10 3 The Solutions 14 3.1 The Mutual Exclusion Protocol ................. 15 3.2 The One-Bit Solution ...................... 17 3.3 A Digression ........................... 21 3.4 The Three-Bit Algorithm .................... 22 3.5 FCFS Solutions .......................... 26 4Conclusion 32 1 List of Figures 1 The One-Bit Algorithm: Process i ............... 17 2 The Three-Bit Algorithm: Process i .............. 24 3TheN-Bit FCFS Algorithm: Process i............. 28 4TheN!-Bit FCFS Algorithm: Process i. ............ 31 2 1 Introduction This is the second part of a two-part paper on the mutual exclusion problem. In Part I [9], we described a formal model of concurrent systems and used it to define a primitive interprocess communication mechanism (communica- tion variables) that assumes no underlying mutual exclusion.
    [Show full text]
  • Time Complexity Bounds for Shared-Memory Mutual Exclusion
    Time Complexity Bounds for Shared-memory Mutual Exclusion by Yong-Jik Kim A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science. Chapel Hill 2003 Approved by: James H. Anderson, Advisor Sanjoy K. Baruah, Reader Jan F. Prins, Reader Michael Merritt, Reader Lars S. Nyland, Reader Jack Snoeyink, Reader ii c 2003 Yong-Jik Kim ALL RIGHTS RESERVED iii ABSTRACT YONG-JIK KIM: Time Complexity Bounds for Shared-memory Mutual Exclusion. (Under the direction of James H. Anderson.) Mutual exclusion algorithms are used to resolve conflicting accesses to shared re- sources by concurrent processes. The problem of designing such an algorithm is widely regarded as one of the “classic” problems in concurrent programming. Recent work on scalable shared-memory mutual exclusion algorithms has shown that the most crucial factor in determining an algorithm’s performance is the amount of traffic it generates on the processors-to-memory interconnect [23, 38, 61, 84]. In light of this, the RMR (remote-memory-reference) time complexity measure was proposed [84]. Under this measure, an algorithm’s time complexity is defined to be the worst-case number of remote memory references required by one process in order to enter and then exit its critical section. In the study of shared-memory mutual exclusion algorithms, the following funda- mental question arises: for a given system model, what is the most efficient mutual exclusion algorithm that can be designed under the RMR measure? This question is important because its answer enables us to compare the cost of synchronization in dif- ferent systems with greater accuracy.
    [Show full text]
  • 9 Mutual Exclusion
    System Architecture 9 Mutual Exclusion Critical Section & Critical Region Busy-Waiting versus Blocking Lock, Semaphore, Monitor November 24 2008 Winter Term 2008/09 Gerd Liefländer © 2008 Universität Karlsruhe (TH), System Architecture Group 1 Overview Agenda HW Precondition Mutual Exclusion Problem Critical Regions Critical Sections Requirements for valid solutions Implementation levels User-level approaches HW support Kernel support Semaphores Monitors © 2008 Universität Karlsruhe (TH), System Architecture Group 2 Overview Literature Bacon, J.: Operating Systems (9, 10, 11) Nehmer,J.: Grundlagen moderner BS (6, 7, 8) Silberschatz, A.: Operating System Concepts (4, 6, 7) Stallings, W.: Operating Systems (5, 6) Tanenbaum, A.: Modern Operating Systems (2) Research papers on various locks © 2008 Universität Karlsruhe (TH), System Architecture Group 3 Atomic Instructions To understand concurrency, we need to know what the underlying indivisible HW instructions are Atomic instructions run to completion or not at all It is indivisible: it cannot be stopped in the middle and its state cannot be modified by someone else in the middle Fundamental building block: without atomic instructions we have no way for threads to work together properly load, store of words are usually atomic However, some instructions are not atomic VAX and IBM 360 had an instruction to copy a whole array © 2008 Universität Karlsruhe (TH), System Architecture Group 4 Mutual Exclusion © 2008 Universität Karlsruhe (TH), System Architecture Group 5 Mutual Exclusion Problem Assume at least two concurrent activities 1. Access to a physical or to a logical resource or to shared data has to be done exclusively 2. A program section of an activity, that has to be executed indivisibly and exclusively is called critical section CS1 3.
    [Show full text]
  • Concurrency and Parallelism in Functional Programming Languages
    Concurrency and Parallelism in Functional Programming Languages John Reppy [email protected] University of Chicago April 21 & 24, 2017 Introduction Outline I Programming models I Concurrent I Concurrent ML I Multithreading via continuations (if there is time) CML 2 Introduction Outline I Programming models I Concurrent I Concurrent ML I Multithreading via continuations (if there is time) CML 2 Introduction Outline I Programming models I Concurrent I Concurrent ML I Multithreading via continuations (if there is time) CML 2 Introduction Outline I Programming models I Concurrent I Concurrent ML I Multithreading via continuations (if there is time) CML 2 Introduction Outline I Programming models I Concurrent I Concurrent ML I Multithreading via continuations (if there is time) CML 2 Programming models Different language-design axes I Parallel vs. concurrent vs. distributed. I Implicitly parallel vs. implicitly threaded vs. explicitly threaded. I Deterministic vs. non-deterministic. I Shared state vs. shared-nothing. CML 3 Programming models Different language-design axes I Parallel vs. concurrent vs. distributed. I Implicitly parallel vs. implicitly threaded vs. explicitly threaded. I Deterministic vs. non-deterministic. I Shared state vs. shared-nothing. CML 3 Programming models Different language-design axes I Parallel vs. concurrent vs. distributed. I Implicitly parallel vs. implicitly threaded vs. explicitly threaded. I Deterministic vs. non-deterministic. I Shared state vs. shared-nothing. CML 3 Programming models Different language-design axes I Parallel vs. concurrent vs. distributed. I Implicitly parallel vs. implicitly threaded vs. explicitly threaded. I Deterministic vs. non-deterministic. I Shared state vs. shared-nothing. CML 3 Programming models Different language-design axes I Parallel vs.
    [Show full text]
  • Why Mutual Exclusion? Why Mutual Exclusion?
    Recap: Consensus • On a synchronous system – There’s an algorithm that works. • On an asynchronous system CSE 486/586 Distributed Systems – It’s been shown (FLP) that it’s impossible to guarantee. Mutual Exclusion • Getting around the result – Masking faults – Using failure detectors – Still not perfect Steve Ko • Impossibility Result Computer Sciences and Engineering – Lemma 1: schedules are commutative University at Buffalo – Lemma 2: some initial configuration is bivalent – Lemma 3: from a bivalent configuration, there is always another bivalent configuration that is reachable. CSE 486/586, Spring 2013 CSE 486/586, Spring 2013 2 Why Mutual Exclusion? Why Mutual Exclusion? • Bank’s Servers in the Cloud: Think of two • Bank’s Servers in the Cloud: Think of two simultaneous deposits of $10,000 into your bank simultaneous deposits of $10,000 into your bank account, each from one ATM. account, each from one ATM. – Both ATMs read initial amount of $1000 concurrently from – Both ATMs read initial amount of $1000 concurrently from the bank’s cloud server the bank’s cloud server – Both ATMs add $10,000 to this amount (locally at the ATM) – Both ATMs add $10,000 to this amount (locally at the ATM) – Both write the final amount to the server – Both write the final amount to the server – What’s wrong? – What’s wrong? • The ATMs need mutually exclusive access to your account entry at the server (or, to executing the code that modifies the account entry) CSE 486/586, Spring 2013 3 CSE 486/586, Spring 2013 4 Mutual Exclusion Mutexes • Critical section problem • To synchronize access of multiple threads to – Piece of code (at all clients) for which we need to ensure common data structures there is at most one client executing it at any point of time.
    [Show full text]
  • Lock Implementation Goals • We Evaluate Lock Implementations Along Following Lines
    Fall 2017 :: CSE 306 Implementing Locks Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau) Fall 2017 :: CSE 306 Lock Implementation Goals • We evaluate lock implementations along following lines • Correctness • Mutual exclusion: only one thread in critical section at a time • Progress (deadlock-free): if several simultaneous requests, must allow one to proceed • Bounded wait (starvation-free): must eventually allow each waiting thread to enter • Fairness: each thread waits for same amount of time • Also, threads acquire locks in the same order as requested • Performance: CPU time is used efficiently Fall 2017 :: CSE 306 Building Locks • Locks are variables in shared memory • Two main operations: acquire() and release() • Also called lock() and unlock() • To check if locked, read variable and check value • To acquire, write “locked” value to variable • Should only do this if already unlocked • If already locked, keep reading value until unlock observed • To release, write “unlocked” value to variable Fall 2017 :: CSE 306 First Implementation Attempt • Using normal load/store instructions Boolean lock = false; // shared variable Void acquire(Boolean *lock) { Final check of condition & write while (*lock) /* wait */ ; while to should happen atomically *lock = true; lock } Void release(Boolean *lock) { *lock = false; } • This does not work. Why? • Checking and writing of the lock value in acquire() need to happen atomically. Fall 2017 :: CSE 306 Solution: Use Atomic RMW Instructions • Atomic Instructions guarantee atomicity •
    [Show full text]