Microbiological Risk Assessment (MRA) Tools, Methods, and Approaches for Water Media

Total Page:16

File Type:pdf, Size:1020Kb

Microbiological Risk Assessment (MRA) Tools, Methods, and Approaches for Water Media EPA-820-R-14-009 Microbiological Risk Assessment (MRA) Tools, Methods, and Approaches for Water Media December 2014 Office of Science and Technology Office of Water U.S. Environmental Protection Agency Washington, DC 20460 Microbial Risk Assessment Tools U.S. EPA Office of Water Notice The tools and procedures set forth in this document are intended to describe the United States (U.S.) Environmental Agency’s (EPA) approach for conducting or revising microbial risk assessments to protect human health from exposure to water-based media. They are also intended to serve as guidance to EPA and EPA contractors for conducting microbial risk assessments. This document has been reviewed in accordance with Agency policy and is approved for publication and distribution. Mention of commercial products, trade names, or services in this document or in the references and/or footnotes cited in this document does not convey, and should not be interpreted as conveying, official EPA approval, endorsement, or recommendation. ii Microbial Risk Assessment Tools U.S. EPA Office of Water Foreword This document presents a series of tools, methods, and approaches for planning and conducting microbial risk assessments in support of human health protection for water-based media. This document provides guidance for microbial risk assessments conducted or revised by EPA or EPA contractors and should not be considered regulatory. The tools and approaches described herein focus on conducting risk assessment for water-related media (such as microorganisms in treated drinking water, source water for drinking water, recreational waters, shellfish waters, and biosolids), but are sufficiently general to help guide the development of microbial risk assessments of pathogens that might be found in food, food products, or other media. iii Microbial Risk Assessment Tools U.S. EPA Office of Water Acknowledgments Project Leader Stephen Schaub* U.S. EPA Office of Science and Technology U.S. EPA Technical Reviewers Alfred Dufour U.S. EPA Office of Research and Development/National Exposure Research Laboratory Stig Regli U.S. EPA Office of Ground Water and Drinking Water Philip Berger U.S. EPA Office of Ground Water and Drinking Water Sharon Nappier U.S. EPA Office of Science and Technology John Ravenscroft** U.S. EPA Office of Science and Technology * Principal author ** Contact Initial draft report developed by ICF International under U.S. EPA Contract 68-C-02-009; interim draft developed by Tetra Tech Clancy Environmental, Soller Environmental, and ICF International under U.S. EPA Contract EP-C-07-036; final report developed by ICF International and Soller Environmental under U.S. EPA Contract EP-C-11-005. Contributing authors: Audrey Ichida, Jeffrey Soller, William Mendez, Jonathan Cohen, Timothy Bartrand, Mark Gibson, Jennifer Welham, Margaret McVey, Gunther Craun, Walter Jakubowski, Cynthia McOliver, and Martha Embrey. The International Life Sciences Institute Risk Science Institute (ILSI-RSI) under cooperative agreements with the U.S. EPA Office of Water, Office of Science and Technology, Health and Ecological Criteria Division, developed a report titled Revised Framework for Microbial Risk Assessment to address critical areas of microbial risk assessment (ILSI, 2000). This MRA Tools document evolved out of that report. The steering committee for the development of that report included the following: Stephen Schaub U.S. EPA Office of Science and Technology, lead Gunther F. Craun G.F. Craun & Associates Alfred Dufour U.S. EPA Office of Research and Development Charles Gerba University of Arizona Charles Haas Drexel University Alan Roberson American Water Works Association Mark Sobsey University of North Carolina iv Microbial Risk Assessment Tools U.S. EPA Office of Water External Peer Review Workgroup This document has been subject to external peer review following the Office of Management and Budget’s Peer Review Guidance (2004) and EPA’s Peer Review Handbook. Potential areas for conflict of interest have been investigated via direct inquiry with the potential peer reviewers and review of their current and past affiliations. Reviewers did not have conflicts of interest. Peer reviewers included: Margaret Coleman Syracuse Research Corporation (currently Coleman Scientific Consulting) Joseph Eisenberg University of Michigan Charles Gerba University of Arizona A subsequent draft version of this document was reviewed by EPA’s Science Advisory Board – Drinking Water Committee. The committee met on September 21-22, 2009. This document has been revised in response to their comments. v Microbial Risk Assessment Tools U.S. EPA Office of Water vi Microbial Risk Assessment Tools U.S. EPA Office of Water Table of Contents Notice .............................................................................................................................................. ii Foreword ........................................................................................................................................ iii Acknowledgments.......................................................................................................................... iv External Peer Review Workgroup ...................................................................................................v Tables, Figures, and Text Boxes .................................................................................................... ix Abbreviations and Acronyms ........................................................................................................ xi Executive Summary ..................................................................................................................... xiii 1. Introduction ................................................................................................................................1 1.1. Purpose and Scope of this MRA Tools Document............................................................... 1 1.2. Development of the MRA Tools Document ........................................................................ 3 1.3. MRA Framework ................................................................................................................. 7 1.4. General MRA Concepts ..................................................................................................... 11 1.5. Microbial Risk Assessment for Decision-Making ............................................................. 12 1.6. Factors Unique to Microbial Risk Assessment as Compared to Chemical Risk Assessment ................................................................................................................. 13 1.6.1. Microbial Growth and Death .................................................................................... 13 1.6.2. Detection Methodologies .......................................................................................... 14 1.6.3. Genetic Diversity of Pathogens ................................................................................ 15 1.6.4. Host Immunity and Susceptibility ............................................................................ 15 1.6.5. Dose-Response Range can be Broad ........................................................................ 15 1.6.6. Secondary Transmission ........................................................................................... 15 1.6.7. Heterogeneous Spatial and Temporal Distribution ................................................... 16 1.6.8. Zoonotic Potential ..................................................................................................... 16 2. Planning and Scoping and Problem Formulation ....................................................................17 2.1. Introduction to Planning and Scoping and Problem Formulation ...................................... 17 2.2. Overall Problem Formulation and Planning and Scoping .................................................. 20 2.2.1. Statement of Concern ................................................................................................ 21 2.2.2. Statement of Purpose and Objectives ....................................................................... 21 2.2.3. History and Context within the Agency.................................................................... 23 2.2.4. Scope ......................................................................................................................... 23 2.2.5. Questions to be Addressed in the Risk Assessment.................................................. 25 2.2.6. Conceptual Model and Narrative .............................................................................. 26 2.2.7. Planning and Scoping: Analysis (Operational) Plan ................................................. 28 2.3. Analytical Approaches ....................................................................................................... 28 2.3.1. Representative Model Forms for MRA Risk Estimation .......................................... 30 2.3.2. Data Representation in MRA Risk Estimation Models ............................................ 35 2.4. Elements to Consider During Problem Formulation .......................................................... 40 2.4.1. Infectious Disease Hazard Characterization ............................................................. 40 2.4.2. Initial Host Characterization ..................................................................................... 46 2.5. Linkage between Problem Formulation
Recommended publications
  • Fish and Fishery Products Hazards and Controls Guidance
    CHAPTER 14: Pathogenic Bacteria Growth and Toxin Formation as a Result of Inadequate Drying This guidance represents the Food and Drug Administration’s (FDA’s) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations. If you want to discuss an alternative approach, contact the FDA staff responsible for implementing this guidance. If you cannot identify the appropriate FDA staff, call the telephone number listed on the title page of this guidance. UNDERSTAND THE POTENTIAL HAZARD. expected conditions of storage and distribution. Additionally, finished product package closures Pathogenic bacteria growth and toxin formation should be free of gross defects that could expose in the finished product as a result of inadequate the product to moisture during storage and drying of fishery products can cause consumer distribution. Chapter 18 provides guidance on illness. The primary pathogens of concern are control of container closures. Staphylococcus aureus (S. aureus) and Clostridium Some dried products that are reduced oxygen botulinum (C. botulinum). See Appendix 7 for a packaged (e.g., vacuum packaged, modified description of the public health impacts of atmosphere packaged) are dried only enough these pathogens. to control growth and toxin formation by C. botulinum type E and non-proteolytic types B • Control by Drying and F (i.e., types that will not form toxin with Dried products are usually considered shelf stable a water activity of below 0.97).
    [Show full text]
  • Explain What Water Activity Is and How It Relates to Bacterial Growth
    Explain what water activity is and how it relates to bacterial growth. Differentiate between the major types of foodborne illnesses -- infection, intoxication, and toxin-mediated infection. Water in food that is not bound to food molecules can support the growth of bacteria, yeast, and mold. The term water activity (a w) refers to this unbound water. The water activity of a food is not the same thing as its moisture content. Although moist foods are likely to have greater water activity than are dry foods, this is not always so. In fact, a variety of foods may have exactly the same moisture content and yet have quite different water activities. The water activity (a w) of a food is the ratio between the vapor pressure of the food itself, when in a completely undisturbed balance with the surrounding air media, and the vapor pressure of distilled water under identical conditions. A water activity of 0.80 means the vapor pressure is 80 percent of that of pure water. The water activity increases with temperature. The moisture condition of a product can be measured as the equilibrium relative humidity (ERH) expressed in percentage or as the water activity expressed as a decimal. Most foods have a water activity above 0.95 and that will provide sufficient moisture to support the growth of bacteria, yeasts, and mold. The amount of available moisture can be reduced to a point that will inhibit the growth of microorganisms. Water activity values of selected foods Food Water activity Fresh meat and fish .99 Liverwurst .96 Cheese spread .95 Bread .95 Red bean paste .93 Caviar .92 Aged cheddar .85 Fudge sauce .83 Salami .82 Soy sauce .8 Jams and jellies .8 Peanut butter .7 Dried fruit .6 Cookies .3 Instant coffee .2 Predicting Food Spoilage Water activity (a w) has its most useful application in predicting the growth of bacteria, yeast, and mold.
    [Show full text]
  • Water Safety Code
    CONTENTS Water Safety Code Contents 1 The Water Safety Code 2 Appendices 2 Guidance Notes 6 Appendix 1 2.1 Definitions 6 Coach/Participant Ratios 30 2.1.1 Safety Adviser 6 2.1.2 Medical Adviser 7 Appendix 2 Safety Audit Sheet - 2.2 Safety Plan 8 Clubs 31 2.3 Safety Audit 8 Appendix 3 Safety Audit Sheet - 2.4 Accident/Incident reporting 9 Events 34 2.5 Responsibilities 10 Appendix 4 2.5.1 Education 10 Incident Report Form 36 2.5.2 The Athlete/Participant 10 2.5.3 Steersmen/women and coxswains 11 Appendix 4a 2.5.4 The Coach 12 ARA Regatta/Head Medical Return 38 2.5.5 Launch Drivers 13 2.5.6 Trailer Drivers 14 Appendix 5 Navigation, Sounds 2.6 Equipment 15 and Signals 39 2.7 Safety at Regattas and other rowing/sculling events 16 Appendix 6 2.7.1 General 16 Safety Launch Drivers 2.7.2 Duty of Care 18 - Guidance Notes 40 2.7.3 Risk Assessment 19 2.8 Safety Aids 21 2.8.1 Lifejackets and buoyancy aids 21 2.9 Hypothermia 23 2.10 Resuscitation 25 2.11 Water borne diseases 28 Page 1 THE WATE R SAFETY CODE 1 The Water Safety Code 1.1 Every affiliated Club, School, College, Regatta and Head Race (hereafter reference will only be made to Club) shall have at all times a Safety Adviser whose duty it will be to understand and interpret the Guidance Notes and requirements of the Code, and ensure at all times its prominent display, observation and implementation.
    [Show full text]
  • 4 Water Safety Plans
    4 Water safety plans he most effective means of consistently ensuring the safety of a drinking-water Tsupply is through the use of a comprehensive risk assessment and risk manage- ment approach that encompasses all steps in water supply from catchment to con- sumer. In these Guidelines, such approaches are termed water safety plans (WSPs). The WSP approach has been developed to organize and systematize a long history of management practices applied to drinking-water and to ensure the applicability of these practices to the management of drinking-water quality. It draws on many of the principles and concepts from other risk management approaches, in particular the multiple-barrier approach and HACCP (as used in the food industry). This chapter focuses on the principles of WSPs and is not a comprehensive guide to the application of these practices. Further information on how to develop a WSP is available in the supporting document Water Safety Plans (section 1.3). Some elements of a WSP will often be implemented as part of a drinking-water supplier’s usual practice or as part of benchmarked good practice without consolida- tion into a comprehensive WSP. This may include quality assurance systems (e.g., ISO 9001:2000). Existing good management practices provide a suitable platform for inte- grating WSP principles. However, existing practices may not include system-tailored hazard identification and risk assessment as a starting point for system management. WSPs can vary in complexity, as appropriate for the situation. In many cases, they will be quite simple, focusing on the key hazards identified for the specific system.
    [Show full text]
  • 2 the Guidelines: a Framework for Safe Drinking-Water
    2 The Guidelines: a framework for safe drinking-water he quality of drinking-water may be controlled through a combination of pro- Ttection of water sources, control of treatment processes and management of the distribution and handling of the water. Guidelines must be appropriate for national, regional and local circumstances, which requires adaptation to environmental, social, economic and cultural circumstances and priority setting. 2.1 Framework for safe drinking-water: requirements The Guidelines outline a preventive management “framework for safe drinking- water” that comprises five key components: — health-based targets based on an evaluation of health concerns (chapter 3); — system assessment to determine whether the drinking-water supply (from source through treatment to the point of consumption) as a whole can deliver water that meets the health-based targets (section 4.1); — operational monitoring of the control measures in the drinking-water supply that are of particular importance in securing drinking-water safety (section 4.2); — management plans documenting the system assessment and monitoring plans and describing actions to be taken in normal operation and incident conditions, including upgrade and improvement, documentation and communication (sec- tions 4.4–4.6); and — a system of independent surveillance that verifies that the above are operating properly (chapter 5). In support of the framework for safe drinking-water, the Guidelines provide a range of supporting information, including microbial aspects (chapters 7 and 11), chemi- cal aspects (chapters 8 and 12), radiological aspects (chapter 9) and acceptability aspects (chapter 10). Figure 2.1 provides an overview of the interrelationship of the individual chapters of the Guidelines in ensuring drinking-water safety.
    [Show full text]
  • Diving Safety Manual Revision 3.2
    Diving Safety Manual Revision 3.2 Original Document: June 22, 1983 Revision 1: January 1, 1991 Revision 2: May 15, 2002 Revision 3: September 1, 2010 Revision 3.1: September 15, 2014 Revision 3.2: February 8, 2018 WOODS HOLE OCEANOGRAPHIC INSTITUTION i WHOI Diving Safety Manual DIVING SAFETY MANUAL, REVISION 3.2 Revision 3.2 of the Woods Hole Oceanographic Institution Diving Safety Manual has been reviewed and is approved for implementation. It replaces and supersedes all previous versions and diving-related Institution Memoranda. Dr. George P. Lohmann Edward F. O’Brien Chair, Diving Control Board Diving Safety Officer MS#23 MS#28 [email protected] [email protected] Ronald Reif David Fisichella Institution Safety Officer Diving Control Board MS#48 MS#17 [email protected] [email protected] Dr. Laurence P. Madin John D. Sisson Diving Control Board Diving Control Board MS#39 MS#18 [email protected] [email protected] Christopher Land Dr. Steve Elgar Diving Control Board Diving Control Board MS# 33 MS #11 [email protected] [email protected] Martin McCafferty EMT-P, DMT, EMD-A Diving Control Board DAN Medical Information Specialist [email protected] ii WHOI Diving Safety Manual WOODS HOLE OCEANOGRAPHIC INSTITUTION DIVING SAFETY MANUAL REVISION 3.2, September 5, 2017 INTRODUCTION Scuba diving was first used at the Institution in the summer of 1952. At first, formal instruction and proper information was unavailable, but in early 1953 training was obtained at the Naval Submarine Escape Training Tank in New London, Connecticut and also with the Navy Underwater Demolition Team in St.
    [Show full text]
  • Prevalence and Characteristics of Arcobacter Butzleri
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Prevalence and characteristics of Arcobacter butzleri: a potential food borne pathogen - in fecal samples, on carcasses and in retail meat of cattle, pig and poultry in Switzerland Keller, Sibille ; Räber, Sibylle Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-163301 Dissertation Published Version Originally published at: Keller, Sibille; Räber, Sibylle. Prevalence and characteristics of Arcobacter butzleri: a potential food borne pathogen - in fecal samples, on carcasses and in retail meat of cattle, pig and poultry in Switzerland. 2005, University of Zurich, Vetsuisse Faculty. Institut für Lebensmittelsicherheit und -hygiene der Vetsuisse-Fakultät Universität Zürich Direktor: Prof. Dr. Roger Stephan Prevalence and characteristics of Arcobacter butzleri - a potential food borne pathogen - in fecal samples, on carcasses and in retail meat of cattle, pig and poultry in Switzerland Inaugural-Dissertation zur Erlangung der Doktorwürde der Vetsuisse-Fakultät Universität Zürich vorgelegt von Sibille Keller Sibylle Räber Tierärztin Tierärztin von Meggen LU von Benzenschwil AG genehmigt auf Antrag von Prof. Dr. Roger Stephan, Referent Prof. Dr. Kurt Houf, Korreferent Zürich 2005 Sibille Keller Sibylle Räber Für meine Eltern Für meine Eltern Margrith und Peter Kathrin und Roland Content page 1 Summary 3 2 Introduction 4 3 Arcobacter, a potential foodborne
    [Show full text]
  • DEVELOPMENT of MOLECULAR TOOLS to ASSESS WHETHER ARCOBACTER BUTZLERI IS an ENTERIC PATHOGEN of HUMAN BEINGS ANDREW L WEBB Bachel
    DEVELOPMENT OF MOLECULAR TOOLS TO ASSESS WHETHER ARCOBACTER BUTZLERI IS AN ENTERIC PATHOGEN OF HUMAN BEINGS ANDREW L WEBB Bachelor of Science, University of Lethbridge, 2011 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE Department of Biological Sciences University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Andrew Lawrence Webb, 2016 DEVELOPMENT OF MOLECULAR TOOLS TO ASSESS WHETHER ARCOBACTER BUTZLERI IS AN ENTERIC PATHOGEN OF HUMAN BEINGS ANDREW LAWRENCE WEBB Date of Defence: June 27, 2016 G. Douglas Inglis Research Scientist Ph.D. Thesis Co-Supervisor L. Brent Selinger Professor Ph.D. Thesis Co-Supervisor Eduardo N. Taboada Research Scientist Ph.D. Thesis Examination Committee Member Robert A. Laird Associate Professor Ph.D. Thesis Examination Committee Member Sylvia Checkley Associate Professor Ph.D., DVM External Examiner University of Calgary Calgary, Alberta, Canada Tony Russell Assistant Professor Ph.D. Chair, Thesis Examination Committee DEDICATION This thesis is dedicated to my partner Jen, who has been a source of endless patience and support. Furthermore, I dedicate this thesis to my parents, for their unwavering confidence in me and their desire to help me do what I love. iii ABSTRACT The pathogenicity of Arcobacter butzleri remains enigmatic, in part due to a lack of genomic data and tools for comprehensive detection and genotyping of this bacterium. Comparative whole genome sequence analysis was employed to develop a high throughput and high resolution subtyping method representative of whole genome phylogeny. In addition, primers targeting a taxon-specific gene (quinohemoprotein amine dehydrogenase) were designed to detect and quantitate A.
    [Show full text]
  • Complete Genome Sequence of Arcobacter Nitrofigilis Type Strain (CIT)
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Arcobacter nitrofigilis type strain (CI). Permalink https://escholarship.org/uc/item/4kk473v4 Journal Standards in genomic sciences, 2(3) ISSN 1944-3277 Authors Pati, Amrita Gronow, Sabine Lapidus, Alla et al. Publication Date 2010-06-15 DOI 10.4056/sigs.912121 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 2:300-308 DOI:10.4056/sigs.912121 Complete genome sequence of Arcobacter nitrofigilis type strain (CIT) Amrita Pati1, Sabine Gronow3, Alla Lapidus1, Alex Copeland1, Tijana Glavina Del Rio1, Matt Nolan1, Susan Lucas1, Hope Tice1, Jan-Fang Cheng1, Cliff Han1,2, Olga Chertkov1,2, David Bruce1,2, Roxanne Tapia1,2, Lynne Goodwin1,2, Sam Pitluck1, Konstantinos Liolios1, Natalia Ivanova1, Konstantinos Mavromatis1, Amy Chen4, Krishna Palaniappan4, Miriam Land1,5, Loren Hauser1,5, Yun-Juan Chang1,5, Cynthia D. Jeffries1,5, John C. Detter1,2, Manfred Rohde6, Markus Göker3, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz4, Philip Hugenholtz1, Hans-Peter Klenk3, and Nikos C. Kyrpides1* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 3 DSMZ – German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Nikos C. Kyrpides Keywords: symbiotic, Spartina alterniflora Loisel, nitrogen fixation, micro-anaerophilic, mo- tile, Campylobacteraceae, GEBA Arcobacter nitrofigilis (McClung et al.
    [Show full text]
  • Aliarcobacter Butzleri from Water Poultry: Insights Into Antimicrobial Resistance, Virulence and Heavy Metal Resistance
    G C A T T A C G G C A T genes Article Aliarcobacter butzleri from Water Poultry: Insights into Antimicrobial Resistance, Virulence and Heavy Metal Resistance Eva Müller, Mostafa Y. Abdel-Glil * , Helmut Hotzel, Ingrid Hänel and Herbert Tomaso Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 07743 Jena, Germany; Eva.Mueller@fli.de (E.M.); Helmut.Hotzel@fli.de (H.H.); [email protected] (I.H.); Herbert.Tomaso@fli.de (H.T.) * Correspondence: Mostafa.AbdelGlil@fli.de Received: 28 July 2020; Accepted: 16 September 2020; Published: 21 September 2020 Abstract: Aliarcobacter butzleri is the most prevalent Aliarcobacter species and has been isolated from a wide variety of sources. This species is an emerging foodborne and zoonotic pathogen because the bacteria can be transmitted by contaminated food or water and can cause acute enteritis in humans. Currently, there is no database to identify antimicrobial/heavy metal resistance and virulence-associated genes specific for A. butzleri. The aim of this study was to investigate the antimicrobial susceptibility and resistance profile of two A. butzleri isolates from Muscovy ducks (Cairina moschata) reared on a water poultry farm in Thuringia, Germany, and to create a database to fill this capability gap. The taxonomic classification revealed that the isolates belong to the Aliarcobacter gen. nov. as A. butzleri comb. nov. The antibiotic susceptibility was determined using the gradient strip method. While one of the isolates was resistant to five antibiotics, the other isolate was resistant to only two antibiotics. The presence of antimicrobial/heavy metal resistance genes and virulence determinants was determined using two custom-made databases.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Fate of Arcobacter Spp. Upon Exposure to Environmental
    FATE OF ARCOBACTER SPP. UPON EXPOSURE TO ENVIRONMENTAL STRESSES AND PREDICTIVE MODEL DEVELOPMENT by ELAINE M. D’SA (Under the direction of Dr. Mark A. Harrison) ABSTRACT Growth and survival characteristics of two species of the ‘emerging’ pathogenic genus Arcobacter were determined. The optimal pH growth range of most A. butzleri (4 strains) and A. cryaerophilus (2 strains) was 6.0-7.0 and 7.0-7.5 respectively. The optimal NaCl growth range was 0.09-0.5 % (A. butzleri) and 0.5-1.0% (A. cryaerophilus), while growth limits were 0.09-3.5% and 0.09-3.0% for A. butzleri and A. cryaerophilus, respectively. A. butzleri 3556, 3539 and A. cryaerophilus 1B were able to survive at NaCl concentrations of up to 5% for 48 h at 25°C, but the survival limit dropped to 3.5-4.0% NaCl after 96 h. Thermal tolerance studies on three strains of A. butzleri determined that the D-values at pH 7.3 had a range of 0.07-0.12 min (60°C), 0.38-0.76 min (55°C) and 5.12-5.81 min (50°C). At pH 5.5, thermotolerance decreased under the synergistic effects of heat and acidity. D-values decreased for strains 3556 and 3257 by 26-50% and 21- 66%, respectively, while the reduction for strain 3494 was lower: 0-28%. Actual D- values of the three strains at pH 5.5 had a range of 0.03-0.11 (60°C), 0.30-0.42 (55°C) and 1.97-4.42 (50°C).
    [Show full text]