Simulator Study on Gyrocopter Pilot Performance in Different Takeoff Procedure Scenarios

Total Page:16

File Type:pdf, Size:1020Kb

Simulator Study on Gyrocopter Pilot Performance in Different Takeoff Procedure Scenarios Simulator Study on Gyrocopter Pilot Performance in Different Takeoff Procedure Scenarios F. Sachs, I. Pruter, H. Walter, M. Friedrich, O. Mielke German Aerospace Center (DLR), Lilienthalplatz 7, 38108 Braunschweig Abstract This paper deals with different takeoff procedures of gyrocopter. Most common takeoff procedures for cur- rent gyrocopter are very similar to those of airplanes. Nevertheless, there are distinct differences in perform- ing a takeoff with an airplane in contrast to a conventional gyrocopter. A further takeoff procedure highlighted in this work is the vertical takeoff of the gyrocopter, the so called jump takeoff procedure. To compare the two takeoff procedures with respect to pilot’s behavior and performance the unique gyrocop- ter simulator at the Institute of Flight Systems is used for an extensive pilot-in-the-loop simulator study. Three groups of participants were invited to the experiment: fixed wing pilots, gyrocopter pilots and unexpe- rienced persons without any pilot license. Each participant got the task to perform a series of takeoffs at dif- ferent wind conditions using the conventional takeoff procedure and the jump takeoff procedure. During the experiment the participant’s interaction with the simulator as well as their eye movements were logged. Dur- ing each experiment the participants had to fill in a questionnaire on subjective pilot ratings. The paper presents a short theoretical introduction on gyrocopter technology and explains the two takeoff procedures as well as their particularities, advantages and challenges. Furthermore the experiment on the two takeoff procedures and the results of the comparison of the both takeoff procedures are shown. 1. INTRODUCTION Since gyrocopters were certified in the Ultra-Light The rotating wing of a gyrocopter creates lift inde- class in 2004 the number of licensed gyrocopters in pendent from airspeed as long as a sufficiently Germany increases continuously even if the boom of strong upward airstream through the rotor plain is the first years seems to be broken. assured. Therefore stall is not a threatening issue for They are popular especially with private pilots. Their gyrocopter pilots. Due to the high maximum angle of main advantages are low acquisition costs, low op- attack of the rotor disk very low forward speeds are erating costs and affordable spare parts. Further- achievable. more gyrocopters offer unique flight characteristics Ultralight gyrocopters can perform level flights with which are attractive for a vast range of customers. flight speeds of 18 to 20 kts. Decelerating the autogi- ro to zero forward flight speed evokes the transition The German Aerospace Center investigates the to vertical autorotation. At zero forward speed the flight physics of gyrocopters for many years. For gyrocopter sinks with a stabilized sink rate after a several test campaigns and projects two flying de- short transition phase. monstrator are operated: an MTOsport and Cavalon. The gyrocopter is the only flying vehicle that is oper- Both types are produced by the manufacturer Auto- ated in an autorotative state within the complete gyro Ltd. flight regime. The transition from forward flight to vertical autorotation is often performed by pilots as a normal flight maneuver. Low disk loadings and a favorable thrust to weight ratio of current ultra-light gyrocopter allow short takeoff roll distances (~120 m) and thanks to low landing speeds very short landing roll distances (~20 m). Moreover, due to comparatively small moments of inertia, those vehicles show a high agility. Especially during landing the pilot can use the rotor’s Figure 1: Modern Gyrocopter Configurations characteristics perfectly to flare and to stop the air- One main research goal is to look beyond the bor- craft within a short distance. To slow down the vehi- ders of current vehicle designs and respective regu- cle on the ground the rotor is tilted backwards and lations. The possibility of taking off vertically, chang- the rotor force is used to decelerate. es the gyrocopter’s flight envelope radically. For the conventional takeoff procedure the rotor has 1 to spool up during the takeoff run to reach a suffi- 2. THE TAKEOFF PROCEDURE ciently high rotor RPM for flight. At the same time the gyrocopter has to accelerate to reach a velocity high enough to fly. 2.1. The Conventional Takeoff Since the ground run ought to be as short as possi- ble those two purposes are contradictory, because The conventional takeoff is the current standard the rotor and the resulting rotor force are highly in- takeoff procedure for gyrocopter with an acceleration phase on the ground, similar to fixed-wing takeoffs. clined to enable a significant airstream through the rotor itself. Due to this inclination the rotor generates 2.1.1. Conventional Takeoff Procedure a braking force, which counteracts the thrust of the propeller and decreases the acceleration. The takeoff procedure comprises 6 distinct phases. The gyrocopter leaks one main advantage of the The first step is the preparation phase (PP). In that helicopter. This is the ability to takeoff and climb phase the pilot starts the engine and releases the vertically. rotor brake. This phase is followed by the pre- However this gap can be filled by the realization of rotation (PR) of the rotor. While the gyrocopter the so-called jump takeoff, which would make the stands on the ground the pilot couples the rotor with gyrocopter more competitive for rotorcraft applica- the engine and the rotor rotational rate is increased tions. to a takeoff value (approx. 200 rpm). There have been several activities in the field of In the third phase (G-AC) the rotor is tilted back- jump takeoffs already in the 1930th. wards and after a pilot throttle command the gy- The first successful demonstration on a C30 gy- rocopter accelerates rapidly. In that phase the rotor rocopter took place in 1935. rotational rate increases after a short decay at initial- ly low forward speeds. The fourth phase (RT) starts with a pitch-up move- ment of the gyrocopter which has to be counteracted by pilot inputs at a moderate pitch angle. The mo- ment that rotates the gyrocopter about the main landing gear axis is caused by a strongly tilted rotor thrust vector in combination with an increasing rotor thrust. The pilot has to balance the gyrocopter in a pitch-up attitude to further accelerate the rotor to the maximum rate possible without pitching further up before reaching sufficient lift to take off safely. (Figure 6) Figure 2: Cierva C40 in jump takeoff 1938 [1] As soon as a sufficient amount of lift is provided by the rotor, the gyrocopter lifts off. This indicates the Some of the current autogyro designs are already beginning of the fifth phase, the in-air-acceleration equipped for jump takeoffs. Examples are the Carter phase (A-AC). Copter PAV [2], the Carter GyroDemonstrator or the Groen Brothers Hawk 4. While the technical realization has already been demonstrated, the particular demands on pilot’s abilities during such a takeoff have not been fully investigated. This simulator study on jump takeoff is one first step to investigate in how far the jump take- off could be an alternative to current takeoff proce- dures with respect to the necessary pilot actions. The following research questions were addressed by this study: How do pilots accept such a jump takeoff system? Are they capable to act with a modified gy- Figure 3: Gyrocopter at a conventional takeoff in the moment rocopter properly and safely? of rotation How do they evaluate such a takeoff proce- Depending on its weight the gyrocopter lifts off with dure? different speeds. To enhance safety margins the gyrocopter is accelerated close to the runway to a speed that gives sufficient time to react in case of engine breakdown or any other major failure. More- 2 over a speed of best climb has to be reached to perform an efficient and safe climb. As soon as that speed is reached the gyrocopter starts to climb to the desired altitude, this is the last phase of the takeoff (CL). Figure 4 shows key pa- rameters for the conventional start. Figure 5: Drag curve of a reference gyrocopter Other typical hazards in takeoff might be the follow- ing pilot errors: Pulling the Stick to late at already high for- ward speed or not to far enough blade flapping on the ground Inclining the rotor with the wind possible rollover due to wind passing the rotor from below No reaction to strong pitch up movement in takeoff run tail strike Figure 4: Simulated conventional takeoff data [3] Contact of front wheel with runway while rudder deflected at speeds above taxi speed strong yaw moment and tipping danger 2.1.2. Hazards In general the gyrocopter shows very good flight 2.2. The Jump Takeoff characteristics. Nevertheless some flight maneuvers should be avoided. One of such conditions is the The jump takeoff differs strongly from the conven- slow flight close to the ground or to obstacles. Figure tional takeoff. The gyrocopter lifts off vertically and 5 shows the drag curve of a reference gyrocopter. the acceleration phase is done in the air. Minimum drag is reached at approximately 90 km/h. At slower velocities the drag increases. This region 2.2.1. Jump Takeoff Procedure is often designated as the backside of the curve. Similar to the conventional takeoff the first phase of Due to the increase of drag slowing further down the jump takeoff is the preparation phase (PP) too. It requires more thrust. At very low speeds the gy- is also followed by the pre-rotation phase (PR). The rocopter has to sink to accelerate and to decrease differences to the conventional takeoff are that the drag because the engine thrust is insufficient.
Recommended publications
  • Jay Carter, Founder &
    CARTER AVIATION TECHNOLOGIES An Aerospace Research & Development Company Jay Carter, Founder & CEO CAFE Electric Aircraft Symposium www.CarterCopters.com July 23rd, 2017 Wichita©2015 CARTER AVIATIONFalls, TECHNOLOGIES,Texas LLC SR/C is a trademark of Carter Aviation Technologies, LLC1 A History of Innovation Built first gyros while still in college with father’s guidance Led to job with Bell Research & Development Steam car built by Jay and his father First car to meet original 1977 emission standards Could make a cold startup & then drive away in less than 30 seconds Founded Carter Wind Energy in 1976 Installed wind turbines from Hawaii to United Kingdom to 300 miles north of the Arctic Circle One of only two U.S. manufacturers to survive the mid ‘80s industry decline ©2015 CARTER AVIATION TECHNOLOGIES, LLC 2 SR/C™ Technology Progression 2013-2014 DARPA TERN Won contract over 5 majors 2009 License Agreement with AAI, Multiple Military Concepts 2011 2017 2nd Gen First Flight Find a Manufacturing Later Demonstrated Partner and Begin 2005 L/D of 12+ Commercial Development 1998 1 st Gen 1st Gen L/D of 7.0 First flight 1994 - 1997 Analysis & Component Testing 22 years, 22 patents + 5 pending 1994 Company 11 key technical challenges overcome founded Proven technology with real flight test ©2015 CARTER AVIATION TECHNOLOGIES, LLC 3 SR/C™ Technology Progression Quiet Jump Takeoff & Flyover at 600 ft agl Video also available on YouTube: https://www.youtube.com/watch?v=_VxOC7xtfRM ©2015 CARTER AVIATION TECHNOLOGIES, LLC 4 SR/C vs. Fixed Wing • SR/C rotor very low drag by being slowed Profile HP vs.
    [Show full text]
  • Effectiveness of the Compound Helicopter Configuration in Rotorcraft Performance Increase
    transactions on aerospace research 4(261) 2020, pp.81-106 DOI: 10.2478/tar-2020-0023 eISSN 2545-2835 effectiveness of the compound helicopter configuration in rotorcraft performance increase Jarosław stanisławski Retired doctor of technical sciences [email protected] • ORCID: 0000-0003-1629-4632 abstract The article presents the results of calculations applied to compare flight envelopes of varying helicopter configurations. Performance of conventional helicopter with the main and tail rotors, in the case of compound helicopter, can be improved by applying wings and pusher propellers which generate an additional lift and horizontal thrust. The simplified model of a helicopter structure, consisting of a stiff fuselage and the main rotor treated as a stiff disk, is applied for evaluation of the rotorcraft performance and the required range of control system deflections. The more detailed model of deformable main rotor blades, applying the Galerkin method, is used to calculate rotor loads and blade deformations in defined flight states. The calculations of simulated flight states are performed considering data of a hypothetical medium class helicopter with the take-off mass of 6,000kg. In the case of both of the helicopter configurations, the articulated main rotor hub is taken under consideration. According to the Galerkin method, the elastic blade model allows to compute blade deformations as a combination of the blade bending and torsional eigen modes. Introduction of additional wing and pusher propellers allows to increase the range of operational speed over 300 km/h. Results of the simulation are presented as time- runs of rotor loads and blade deformations and in a form of disk distribution plots of rotor parameters.
    [Show full text]
  • 8. Level, Non-Accelerated Flight
    Performance 8. Level, Non-Accelerated Flight For non-accelerated flight, the tangential acceleration, , and normal acceleration, . As a result, the governing equations become: (1) If we add the additional assumptions of level flight, , and that the thrust is aligned with the velocity vector, , then Eq. (1) reduces to the simple form: (2) The last two equations tell us that the altitude is a constant, and the velocity is the range rate. For now, however, we are interested in the first two equations that can be rewritten as: (3) The key thing to remember about these equations is that the weight,W,isagivenand it is equal to the Lift. Consequently, lift is not at our disposal, it must equal the given weight! Thus for a given aircraft and any given altitude, we can determine the required lift coefficient (and hence angle-of-attack) for any given airspeed. (4) Therefore at a given weight and altitude, the lift coefficient varies as 1 over V2. A sketch of lift coefficient vs. speed looks as follows: 1 It is clear from the figure that as the vehicle slows down, in order to remain in level flight, the lift coefficient (and hence angle-of-attack) must increase. [You can think of it in terms of the momentum flux. The momentum flux (the mass flow rate time the velocity out in the z direction) creates the lift force. Since the mass flow rate is directional proportional to the velocity, then the slower we go, the more the air must be deflected downward. We do this by increasing the angle-of-attack!].
    [Show full text]
  • Open Walsh Thesis.Pdf
    The Pennsylvania State University The Graduate School College of Engineering A PRELIMINARY ACOUSTIC INVESTIGATION OF A COAXIAL HELICOPTER IN HIGH-SPEED FLIGHT A Thesis in Aerospace Engineering by Gregory Walsh c 2016 Gregory Walsh Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2016 The thesis of Gregory Walsh was reviewed and approved∗ by the following: Kenneth S. Brentner Professor of Aerospace Engineering Thesis Advisor Jacob W. Langelaan Associate Professor of Aerospace Engineering George A. Lesieutre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering ∗Signatures are on file in the Graduate School. Abstract The desire for a vertical takeoff and landing (VTOL) aircraft capable of high forward flight speeds is very strong. Compound lift-offset coaxial helicopter designs have been proposed and have demonstrated the ability to fulfill this desire. However, with high forward speeds, noise is an important concern that has yet to be thoroughly addressed with this rotorcraft configuration. This work utilizes a coupling between the Rotorcraft Comprehensive Analysis System (RCAS) and PSU-WOPWOP, to computationally explore the acoustics of a lift-offset coaxial rotor sys- tem. Specifically, unique characteristics of lift-offset coaxial rotor system noise are identified, and design features and trim settings specific to a compound lift-offset coaxial helicopter are considered for noise reduction. At some observer locations, there is constructive interference of the coaxial acoustic pressure pulses, such that the two signals add completely. The locations of these constructive interferences can be altered by modifying the upper-lower rotor blade phasing, providing an overall acoustic benefit.
    [Show full text]
  • Over Thirty Years After the Wright Brothers
    ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,991,744 B1 Khan (45) Date of Patent: Mar
    USOO899.174.4B1 (12) United States Patent (10) Patent No.: US 8,991,744 B1 Khan (45) Date of Patent: Mar. 31, 2015 (54) ROTOR-MAST-TILTINGAPPARATUS AND 4,099,671 A 7, 1978 Leibach METHOD FOR OPTIMIZED CROSSING OF 35856 A : 3. Wi NATURAL FREQUENCIES 5,850,6154. W-1 A 12/1998 OSderSO ea. 6,099.254. A * 8/2000 Blaas et al. ................... 416,114 (75) Inventor: Jehan Zeb Khan, Savoy, IL (US) 6,231,005 B1* 5/2001 Costes ....................... 244f1725 6,280,141 B1 8/2001 Rampal et al. (73) Assignee: Groen Brothers Aviation, Inc., Salt 6,352,220 B1 3/2002 Banks et al. Lake City, UT (US) 6,885,917 B2 4/2005 Osder et al. s 7,137,591 B2 11/2006 Carter et al. (*) Notice: Subject to any disclaimer, the term of this 16. R 1239 sign patent is extended or adjusted under 35 2004/0232280 A1* 11/2004 Carter et al. ............... 244f1725 U.S.C. 154(b) by 494 days. OTHER PUBLICATIONS (21) Appl. No.: 13/373,412 John Ballard etal. An Investigation of a Stoppable Helicopter Rotor (22) Filed: Nov. 14, 2011 with Circulation Control NASA, Aug. 1980. Related U.S. Application Data (Continued) (60) Provisional application No. 61/575,196, filed on Aug. hR". application No. 61/575,204, Primary Examiner — Joseph W. Sanderson • Y-s (74) Attorney, Agent, or Firm — Pate Baird, PLLC (51) Int. Cl. B64C 27/52 (2006.01) B64C 27/02 (2006.01) (57) ABSTRACT ;Sp 1% 3:08: A method and apparatus for optimized crossing of natural (52) U.S.
    [Show full text]
  • Powered Paraglider Longitudinal Dynamic Modeling and Experimentation
    POWERED PARAGLIDER LONGITUDINAL DYNAMIC MODELING AND EXPERIMENTATION By COLIN P. GIBSON Bachelor of Science in Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 2014 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 2016 POWERED PARAGLIDER LONGITUDINAL DYNAMIC MODELING AND EXPERIMENTATION Thesis Approved: Dr. Andrew S. Arena Thesis Adviser Dr. Joseph P. Conner Dr. Jamey D. Jacob ii Name: COLIN P. GIBSON Date of Degree: DECEMBER, 2016 Title of Study: POWERED PARAGLIDER LONGITUDINAL DYNAMIC MODELING AND EXPERIMENTATION Major Field: MECHANICAL AND AEROSPACE ENGINEERING Abstract: Paragliders and similar controllable decelerators provide the benefits of a compact packable parachute with the improved glide performance and steering of a conventional wing, making them ideally suited for precise high offset payload recovery and airdrop missions. This advantage over uncontrollable conventional parachutes sparked interest from Oklahoma State University for implementation into its Atmospheric and Space Threshold Research Oklahoma (ASTRO) program, where payloads often descend into wooded areas. However, due to complications while building a powered paraglider to evaluate the concept, more research into its design parameters was deemed necessary. Focus shifted to an investigation of the effects of these parameters on the flight behavior of a powered system. A longitudinal dynamic model, based on Lagrange’s equation for adaptability when adding free-hanging masses, was developed to evaluate trim conditions and analyze system response. With the simulation, the effects of rigging angle, fuselage weight, center of gravity (cg), and apparent mass were calculated through step thrust input cases.
    [Show full text]
  • Static Pressure Distribution on Long Cylinders As a Function of the Yaw Angle and Reynolds Number
    fluids Article Static Pressure Distribution on Long Cylinders as a Function of the Yaw Angle and Reynolds Number William W. Willmarth 1,† and Timothy Wei 2,* 1 Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA 2 Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA * Correspondence: [email protected] † Deceased author. Abstract: This paper addresses the challenges of pressure-based sensing using axisymmetric probes whose axes are at small angles to the mean flow. Mean pressure measurements around three yawed circular cylinders with aspect ratios of 28, 64, and 100 were made to determine the effect of changes in the yaw angle, g, and freestream velocity on the average pressure coefficient, CpN, and drag coeffi- cient, CDN. The existence of four distinct types of circumferential pressure distributions—subcritical, transitional, supercritical, and asymmetric—were confirmed, along with the appropriateness of scaling CpN and CDN on a streamwise Reynolds number, Resw, based on the freestream velocity and the fluid path length along the cylinder in the streamwise direction. It was found that there was a distinct difference in the values of CDN and CpN at identical Resw values for cylinders yawed between 5◦ and 30◦, and for cylinders at greater than a 30◦ yaw. For g < 5◦, there did not appear to be any large-scale vortices in the near wake, and CDN and CpN appeared to become independent of ◦ ◦ Resw. Over the range of 5 ≤ g ≤ 30 , there was a complex interplay of freestream speed, yaw angle, and aspect ratio that affected the formation and shedding of Kármán-like vortices.
    [Show full text]
  • Modelling & Implementation of Aerodynamic Zero-Lift Drag
    School of Innovation, Design and Engineering BACHELOR THESIS IN AERONAUTICAL ENGINEERING 15 CREDITS, BASIC LEVEL 300 Modelling & implementation of Aerodynamic Zero-lift Drag into ADAPDT Author: David Bergman Report code: MDH.IDT.FLYG.0215.2009.GN300.15HP.Ae Dokumentslag Type of document Reg-nr Reg. No REPORT TDA-2009-0200 Ägare (tj-st-bet, namn) Owner (department, name) Datum Date Utgåva Issue Sida Page TDAA-EXB, David Bergman 2009-11-03 1 1 (46) Fastställd av Confirmed by Infoklass Info. class Arkiveringsdata File TDAA-RL, Roger Larsson PUBLIC TDA-ARKIV Giltigt för Valid for Ärende Subject Fördelning To Modelling & implementation of Aerodynamic Zero-lift TDAA-RL, TDAA-PW, TDAA-SH, Drag into ADAPDT TDAA-ET, TDAA-HJ, Gustaf Enebog (MDH) ABSTRACT The objective of this thesis work was to construct and implement an algorithm into the program ADAPDT to calculate the zero-lift drag profile for defined aircraft geometries. ADAPDT, short for AeroDynamic Analysis and Preliminary Design Tool, is a program that calculates forces and moments about a flat plate geometry based on potential flow theory. Zero-lift drag will be calculated by means of different hand-book methods found suitable for the objective and applicable to the geometry definition that ADAPDT utilizes. Drag has two main sources of origin: friction and pressure distribution, all drag acting on the aircraft can be traced back to one of these two physical phenomena. In aviation drag is divided into induced drag that depends on the lift produced and zero-lift drag that depends on the geometry of the aircraft. used, disclosedused, How reliable and accurate the zero-lift drag computations are depends on the geometry data that can be extracted and used.
    [Show full text]
  • Chapter 9 Energy
    VOLUME I PERFORMANCE FLIGHT TEST PHASE CHAPTER 9 ENERGY >£>* ^ AUGUST 1991 USAF TEST PILOT SCHOOL EDWARDS AFB, CA I Approved for public rate-erne; ! Distribution Uni;: r<cA 19970116 079 Table of Contents 9.1 INTRODUCTION 9.1 9.1.1 AIRCRAFT PERFORMANCE MODELS 9.1 9.1.2 NEED FOR NONSTEADY STATE MODELS 9.1 9.2 STEADY STATE CLIMBS AND DESCENTS 9.2 9.2.1 FORCES ACTING ON AN AIRCRAFT IN FLIGHT 9.2 9.2.2 ANGLE OF CLIMB PERFORMANCE 9.5 9.2.3 RATE OF CLIMB PERFORMANCE 9.9 9.2.4 TIME TO CLIMB DETERMINATION 9.14 9.2.5 GLIDING PERFORMANCE 9.16 9.2.6 POLAR DIAGRAMS 9.18 9.3 BASIC ENERGY STATE CONCEPTS 9.22 9.3.1 ASSUMPTIONS 9.22 9.3.2 ENERGY DEFINITIONS 9.23 9.3.3 SPECD7IC ENERGY 9.24 9.3.4 SPECD7IC EXCESS POWER 9.24 9.4 THEORETICAL BASIS FOR ENERGY OPTIMIZATIONS 9.25 9.5 GRAPHICAL TOOLS FOR ENERGY APPROXIMATION 9.25 9.5.1 SPECD7IC ENERGY OVERLAY 9.26 9.5.2 SPECmC EXCESS POWER PLOTS 9.28 9.6 TIME OPTIMAL CLIMBS 9.36 9.6.1 GRAPHICAL APPROXIMATIONS TO RUTOWSKI CONDITIONS 9.36 9.6.2 MINIMUM TIME TO ENERGY LEVEL PROFILES 9.37 9.6.3 SUBSONIC TO SUPERSONIC TRANSITIONS 9.38 9.7 FUEL OPTIMAL CLIMBS 9.40 9.7.1 FUEL EFFICIENCY 9.41 9.7.2 COMPARISON OF FUEL OPTIMAL AND TIME OPTIMAL PATHS 9.43 9.8 MANEUVERABILITY 9.44 9.9 INSTANTANEOUS MANEUVERABILITY 9.44 9.9.1 LIFT BOUNDARY LIMITATION 9.45 9.9.2 STRUCTURAL LIMITATION 9.46 9.9.3 qLIMTTATION 9.46 9.9.4 PILOT LIMITATIONS 9.46 9.10 THRUST LIMITATIONS/SUSTAINED MANEUVERABILITY 9.47 9.10.1 SUSTAINED TURN PERFORMANCE 9.47 9.10.2 FORCES IN ATURN 9.47 9.11 VERTICAL TURNS 9-52 9.12 OBLIQUE PLANE MANEUVERING 9.53 9.13
    [Show full text]
  • Performance Analysis of the Slowed-Rotor Compound Helicopter Configuration
    Performance Analysis of the Slowed-Rotor Compound Helicopter Configuration Matthew W. Floros Wayne Johnson Raytheon ITSS Army/NASA Rotorcraft Division Moffett Field, California NASA Ames Research Center Moffett Field, California The calculated performance of a slowed-rotor compound aircraft, particularly at high flight speeds, is exam- ined. Correlation of calculated and measured performance is presented for a NASA Langley high advance ratio test and the McDonnell XV-1 demonstrator to establish the capability to model rotors in such flight conditions. The predicted performance of a slowed-rotor vehicle model based on the CarterCopter Technology Demonstra- tor is examined in detail. An isolated rotor model and a model of a rotor and wing are considered. Three tip speeds and a range of collective pitch settings are investigated. A tip Mach number of 0.2 and zero collective pitch are found to be the optimum condition to minimize rotor drag. Performance is examined for both sea level and cruise altitude conditions. Nomenclature Much work has been focused on tilt rotor aircraft; both military and civilian tilt rotors are currently in development. But other configurations may provide comparable benefits to CT thrust coefficient tilt rotors in terms of range and speed. Two such configura- CQ torque coefficient tions are the compound helicopter and the autogyro. These CH longitudinal inplane force coefficient configurations provide STOL or VTOL capability, but are ca- D drag pable of higher speeds than a conventional helicopter because L lift the rotor does not provide the propulsive force or at high MTIP tip Mach number speed, the vehicle lift. The drawback is that redundant lift VT tip speed and/or propulsion add weight and drag which must be com- q dynamic pressure pensated for in some other way.
    [Show full text]
  • Wartimelbiiiboiu”
    L- .- . FOR AERONAUTICS WARTIME lBIIIBOIU” ORIGINALLYISSUED August1945 = AdvanceConfidentid.ReyortL5G31 A SIMIZE METHODFOR ESTIMATINGTJmmNAL vmOOm INCLUDINGEFFECTOF COMPRESSIB- ON DRAG By ReLph P. Bielat Laugley-. Memorial.Aeronautical.Laboratory LangleyField,Va. NAC-A ., . ... &$!.4.(:.4 ~~~p/~~f LMVGL.E~-~.. WASHINGTON . -.~.tfIg.?~.4~.,! ~~[ja&A~ ~~t-~:, ‘-~@?ATo~y NACA WARTIME REPORT’Sarereprintsofpapersoriginallyissuedtoprovick%dpfdFdi.i@~$utionof advanceresearchresultstoanauthorizedgrouprequiringthemforthewar effort.Theywerepre- viouslyheldundera securitystatusbutarenow unclassified.Some ofthesereportswerenottech- nicallyedited.AU havebeenreproducedwithoutchangeinordertoexpeditegener~distribution. L-78 ...___________ --___________-------__-- 3 1176013542007 X...........................................-.r ADVANCE CONI’IIE?NI’IALREPCIR!! A SIMPLE NETHOD FOR RSTIMA’TIJNG‘TdRMINAL VELOCITY INCIX?DING EFFiWT OF COMPRESSIBILITY ON DRAG By Ralph P. Bi,elat EmmlMY A generalized drag curve that provides an estimate for Eke drag rise 5.zeto compressibility has been obtained from an analysis of wind-tunnel data of several airfoils, i’uselagesj nacelles, and windshields at speeds up to and above the wing critical speed. The airfoils analyzed had little or no sweepback and effective aspect ratios above 6.5. A chart based on the generalized Cwag CUrVe is ~rese~~ea~ from which the ter:~inal v~lo~i’b~ of a conventional airplane that employs a w~-ngof’moderate aspect ratio and very little sweepback in tivertical c!ivemay be rapidly esti- mated, In
    [Show full text]