A Hott Approach to Computational Effects

Total Page:16

File Type:pdf, Size:1020Kb

A Hott Approach to Computational Effects The College of Wooster Open Works Senior Independent Study Theses 2019 A HoTT Approach to Computational Effects Phillip A. Wells The College of Wooster, [email protected] Follow this and additional works at: https://openworks.wooster.edu/independentstudy Part of the Theory and Algorithms Commons Recommended Citation Wells, Phillip A., "A HoTT Approach to Computational Effects" (2019). Senior Independent Study Theses. Paper 8566. This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of Wooster Libraries. It has been accepted for inclusion in Senior Independent Study Theses by an authorized administrator of Open Works. For more information, please contact [email protected]. © Copyright 2019 Phillip A. Wells AHoTT Approach to Computational Effects Independent Study Thesis Presented in Partial Fulfillment of the Requirements for the Degree Bachelor of Arts in the Department of Mathematics and Computer Science at The College of Wooster by Phillip A Wells The College of Wooster 2019 Advised by: Nathan Fox Abstract A computational effect is any mutation of real-world state that occurs as the result of a computation. We develop a model for describing computational effects within homotopy type theory, a branch of mathematics separate from other foundations such as set theory. Such a model allows us to describe programs as total functions over values while preserving information about the effects those programs induce. iii Contents Abstract iii 1 Introduction 1 2 Homotopy Type Theory 7 2.1 Type and Space . .8 2.1.1 Judgments . .8 2.1.2 Universes . .9 2.1.3 Functions . 10 2.1.4 Sums and Products . 13 2.1.5 Finite Types . 15 2.1.6 Dependent Types . 16 2.1.7 Dependent Product Types . 17 2.1.8 Dependent Sum Types . 17 2.2 Proof and Logic . 18 2.2.1 The Curry-Howard Correspondence . 18 2.2.2 Identity Types . 19 v vi CONTENTS 2.2.3 Propositions . 19 2.2.4 Predicate Logic . 21 2.2.5 The Univalence Axiom . 23 3 Computation 27 3.1 Formal Languages and Automata . 28 3.1.1 Regular Languages and Finite Automata . 29 3.1.2 Context-Free Languages and Pushdown Automata . 31 3.1.3 Turing Machines and Recursively Enumerable Languages 34 3.2 The Sizes of Infinity . 37 3.3 Computation in HoTT . 41 3.3.1 Turing Machines as Functions . 41 3.3.2 Another Approach: Turing Categories . 43 3.3.3 Last Thoughts . 44 4 The Coq Proof Assistant 47 4.1 Inductive Types . 47 4.2 Basic Proofs . 49 4.3 Records . 50 4.4 Functions . 52 4.5 HoTT in Coq . 53 5 Actions and Effects 55 5.1 Applications . 57 5.1.1 Identity Action . 58 5.1.2 Interactive Input . 59 5.1.3 Exception Handling . 60 6 Conclusion 63 A 3-State Busy Beaver in Coq 65 Chapter 1 Introduction A computational effect is any mutation of the state of the “real world” that occurs as a byproduct of computation. Very few programs are effect-free (pure, as they are often known); even the simple “hello, world” program takes as its objective the writing of information to some standard output. Any input/output action may be considered effect-inducing (and thus contributing to a program being impure), not to mention variable assignment, looping, or exception handling. Effects are everywhere, to put it mildly, and the study of effects has been the subject of much research for decades. Consider the following snippet of C code: 1 i n t a = add ( 2 , 3 ) ; 2 printf(”%i n” , a ) ; n Assuming these lines were written by a competent, well-meaning programmer, we expect that the integer 5 will be computed by add(), and then printed to the standard output. But what if the programmer was less than 1 2 CHAPTER 1. INTRODUCTION capable, or even malicious? The first line provides some basic information about the underlying program: add() is a function that takes two integers and returns an integer (or at least a value that can be converted to an integer). Of course, the type signature of a C function is rarely adequate to describe the behavior of the entire subroutine, so add() is free to do just about anything else it pleases, like modifying memory, accessing secret information, or firing the proverbial missiles. Functional programming is a paradigm that treats computation as a series of mathematical function applications, rather than as an explicit sequence of statements. Rather than supplying the machine with a list of instructions and an order to complete them in, a functional program expresses a function definition by specifying what the output of a computation ought to be given some input. Pure, functional programming languages are better-behaved with respect to effects. Haskell, for instance, requires the programmer to make explicit the flow of data in and out of a program [16]. The upside is that it is much harder to write programs that fail mysteriously. The following lines of code define a function that adds two integers together: 1 add : : Integer > Integer > Integer − − 2 add x y = x + y The type declaration on line 1 is the same our add() subroutine, with the guarantee that this function maps two integers to an integer and does nothing else. If we want to, say, print the output, we must pass the result off to another function written for this purpose, annotated with the expectation that the CHAPTER 1. INTRODUCTION 3 function performs an I/O action. Programming in this way preserves the modularity of code but can be burdensome for the user. If, for instance, a program needs to display a stack trace on an error, then the state of the stack must be passed around along with all the data required to perform the requisite computations. The same goes for incrementing a counter or working with large data structures—any information required to persist must be systematically handed off like a relay baton. Eugenio Moggi’s Notions of Computation and Monads is perhaps the most famous solution to the problem of safety versus convenience [11]. The paper presents a categorical analysis of programs that include effectful behavior, and the application of Moggi’s strong monads to languages such as F# and Haskell has become the defining feature of the so-called “imperative functional programming style” [9]. While an in-depth understanding of monads in functional programming is not necessary for our purposes here, we give a brief synopsis: a monad in the programmatic sense is a collection of two operations, plus a well-defined method for constructing its elements. These operations provide a general method for creating new types out of existing values—a concept we revisit in Chapter 2—as well as the a method for composing monadic functions [16]. Because monads generalize the notion of effectful computation as something that occurs between non-monadic function applications (and therefore between the evaluation of ordinary expressions) they are sometimes referred to as “programmable semicolons.” A monad contributes to the structure of a functional program in much the same way that a semicolon contributes to the 4 CHAPTER 1. INTRODUCTION structure of an imperative one. For all their advantages, monads are somewhat unsatisfying from a type theorist’s perspective. They prescribe a mechanism for stepping out of the functional environment when necessary, but they fail to capture the essence of computation with respect to the underlying type system. Haskell uses relatively complex structures where dependent types might be better suited. And because the Haskell compiler restricts the number of instances of a type to one, the Haskell compiler must maintain a global instance table, an unfortunate compromise for a language committed to avoiding shared mutable state [3]. Algebraic effects, introduced by Plotkin and Power in 2002, offers a more recent attempt to marry pure functional programming with computational effects. While monads tend towards the unwieldy when there are many effects to step through, algebraic effect handlers were designed precisely with large and hairy programs in mind [2]. The basic idea is to separate effect declaration, in which the context of the effect is described, from effect handling, where the semantic details are ironed out. The process is not dissimilar to that of declaring a function’s type before implementing it, with the added complication that effects are typically described as algebraic data types parameterized by values lifted from the underlying program. For example, an exception handler may exhibit different behavior when processing input/output than when doing arithmetic. Algebraic effects are a bit easier for the functional lay-programmer to adapt to, given their relatively uncomplicated name and design. Like monads, the underlying mathematics is well-developed and understood, and like CHAPTER 1. INTRODUCTION 5 monads, algebraic effects divorce the notion of effectful computation from the surrounding type system. Programs utilizing algebraic effects have the form A B, where A and B are types and is a possible side effect. The benefit of ! this approach is that it is easy to determine which values are non-effectful (evaluating an integer will never induce an effect; evaluating an I/O handler applied to an integer is another story). Nevertheless, it would be nice to unify a theory of effects with a theory of types. The type of a program under such a model is the type of functions that map a value of type A to a value of type B or to a computational effect. Rather than treat effects as a separate entity that binds to a value, we treat effectful actions as values in and of themselves. As a simple example, consider the type of function called main, intended to replace the C function main().
Recommended publications
  • Linear Type Theory for Asynchronous Session Types
    JFP 20 (1): 19–50, 2010. c Cambridge University Press 2009 19 ! doi:10.1017/S0956796809990268 First published online 8 December 2009 Linear type theory for asynchronous session types SIMON J. GAY Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK (e-mail: [email protected]) VASCO T. VASCONCELOS Departamento de Informatica,´ Faculdade de Ciencias,ˆ Universidade de Lisboa, 1749-016 Lisboa, Portugal (e-mail: [email protected]) Abstract Session types support a type-theoretic formulation of structured patterns of communication, so that the communication behaviour of agents in a distributed system can be verified by static typechecking. Applications include network protocols, business processes and operating system services. In this paper we define a multithreaded functional language with session types, which unifies, simplifies and extends previous work. There are four main contributions. First is an operational semantics with buffered channels, instead of the synchronous communication of previous work. Second, we prove that the session type of a channel gives an upper bound on the necessary size of the buffer. Third, session types are manipulated by means of the standard structures of a linear type theory, rather than by means of new forms of typing judgement. Fourth, a notion of subtyping, including the standard subtyping relation for session types (imported into the functional setting), and a novel form of subtyping between standard and linear function types, which allows the typechecker to handle linear types conveniently. Our new approach significantly simplifies session types in the functional setting, clarifies their essential features and provides a secure foundation for language developments such as polymorphism and object-orientation.
    [Show full text]
  • UNIT-I Mathematical Logic Statements and Notations
    UNIT-I Mathematical Logic Statements and notations: A proposition or statement is a declarative sentence that is either true or false (but not both). For instance, the following are propositions: “Paris is in France” (true), “London is in Denmark” (false), “2 < 4” (true), “4 = 7 (false)”. However the following are not propositions: “what is your name?” (this is a question), “do your homework” (this is a command), “this sentence is false” (neither true nor false), “x is an even number” (it depends on what x represents), “Socrates” (it is not even a sentence). The truth or falsehood of a proposition is called its truth value. Connectives: Connectives are used for making compound propositions. The main ones are the following (p and q represent given propositions): Name Represented Meaning Negation ¬p “not p” Conjunction p q “p and q” Disjunction p q “p or q (or both)” Exclusive Or p q “either p or q, but not both” Implication p ⊕ q “if p then q” Biconditional p q “p if and only if q” Truth Tables: Logical identity Logical identity is an operation on one logical value, typically the value of a proposition that produces a value of true if its operand is true and a value of false if its operand is false. The truth table for the logical identity operator is as follows: Logical Identity p p T T F F Logical negation Logical negation is an operation on one logical value, typically the value of a proposition that produces a value of true if its operand is false and a value of false if its operand is true.
    [Show full text]
  • Chapter 1 Logic and Set Theory
    Chapter 1 Logic and Set Theory To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. – Ian Stewart Does God play dice? The mathematics of chaos In mathematics, a proof is a demonstration that, assuming certain axioms, some statement is necessarily true. That is, a proof is a logical argument, not an empir- ical one. One must demonstrate that a proposition is true in all cases before it is considered a theorem of mathematics. An unproven proposition for which there is some sort of empirical evidence is known as a conjecture. Mathematical logic is the framework upon which rigorous proofs are built. It is the study of the principles and criteria of valid inference and demonstrations. Logicians have analyzed set theory in great details, formulating a collection of axioms that affords a broad enough and strong enough foundation to mathematical reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each of the axioms included in this theory expresses a property of sets that is widely accepted by mathematicians. It is unfortunately true that careless use of set theory can lead to contradictions. Avoiding such contradictions was one of the original motivations for the axiomatization of set theory. 1 2 CHAPTER 1. LOGIC AND SET THEORY A rigorous analysis of set theory belongs to the foundations of mathematics and mathematical logic.
    [Show full text]
  • A General Framework for the Semantics of Type Theory
    A General Framework for the Semantics of Type Theory Taichi Uemura November 14, 2019 Abstract We propose an abstract notion of a type theory to unify the semantics of various type theories including Martin-L¨oftype theory, two-level type theory and cubical type theory. We establish basic results in the semantics of type theory: every type theory has a bi-initial model; every model of a type theory has its internal language; the category of theories over a type theory is bi-equivalent to a full sub-2-category of the 2-category of models of the type theory. 1 Introduction One of the key steps in the semantics of type theory and logic is to estab- lish a correspondence between theories and models. Every theory generates a model called its syntactic model, and every model has a theory called its internal language. Classical examples are: simply typed λ-calculi and cartesian closed categories (Lambek and Scott 1986); extensional Martin-L¨oftheories and locally cartesian closed categories (Seely 1984); first-order theories and hyperdoctrines (Seely 1983); higher-order theories and elementary toposes (Lambek and Scott 1986). Recently, homotopy type theory (The Univalent Foundations Program 2013) is expected to provide an internal language for what should be called \el- ementary (1; 1)-toposes". As a first step, Kapulkin and Szumio (2019) showed that there is an equivalence between dependent type theories with intensional identity types and finitely complete (1; 1)-categories. As there exist correspondences between theories and models for almost all arXiv:1904.04097v2 [math.CT] 13 Nov 2019 type theories and logics, it is natural to ask if one can define a general notion of a type theory or logic and establish correspondences between theories and models uniformly.
    [Show full text]
  • Folktale Documentation Release 1.0
    Folktale Documentation Release 1.0 Quildreen Motta Nov 05, 2017 Contents 1 Guides 3 2 Indices and tables 5 3 Other resources 7 3.1 Getting started..............................................7 3.2 Folktale by Example........................................... 10 3.3 API Reference.............................................. 12 3.4 How do I................................................... 63 3.5 Glossary................................................. 63 Python Module Index 65 i ii Folktale Documentation, Release 1.0 Folktale is a suite of libraries for generic functional programming in JavaScript that allows you to write elegant modular applications with fewer bugs, and more reuse. Contents 1 Folktale Documentation, Release 1.0 2 Contents CHAPTER 1 Guides • Getting Started A series of quick tutorials to get you up and running quickly with the Folktale libraries. • API reference A quick reference of Folktale’s libraries, including usage examples and cross-references. 3 Folktale Documentation, Release 1.0 4 Chapter 1. Guides CHAPTER 2 Indices and tables • Global Module Index Quick access to all modules. • General Index All functions, classes, terms, sections. • Search page Search this documentation. 5 Folktale Documentation, Release 1.0 6 Chapter 2. Indices and tables CHAPTER 3 Other resources • Licence information 3.1 Getting started This guide will cover everything you need to start using the Folktale project right away, from giving you a brief overview of the project, to installing it, to creating a simple example. Once you get the hang of things, the Folktale By Example guide should help you understanding the concepts behind the library, and mapping them to real use cases. 3.1.1 So, what’s Folktale anyways? Folktale is a suite of libraries for allowing a particular style of functional programming in JavaScript.
    [Show full text]
  • Theorem Proving in Classical Logic
    MEng Individual Project Imperial College London Department of Computing Theorem Proving in Classical Logic Supervisor: Dr. Steffen van Bakel Author: David Davies Second Marker: Dr. Nicolas Wu June 16, 2021 Abstract It is well known that functional programming and logic are deeply intertwined. This has led to many systems capable of expressing both propositional and first order logic, that also operate as well-typed programs. What currently ties popular theorem provers together is their basis in intuitionistic logic, where one cannot prove the law of the excluded middle, ‘A A’ – that any proposition is either true or false. In classical logic this notion is provable, and the_: corresponding programs turn out to be those with control operators. In this report, we explore and expand upon the research about calculi that correspond with classical logic; and the problems that occur for those relating to first order logic. To see how these calculi behave in practice, we develop and implement functional languages for propositional and first order logic, expressing classical calculi in the setting of a theorem prover, much like Agda and Coq. In the first order language, users are able to define inductive data and record types; importantly, they are able to write computable programs that have a correspondence with classical propositions. Acknowledgements I would like to thank Steffen van Bakel, my supervisor, for his support throughout this project and helping find a topic of study based on my interests, for which I am incredibly grateful. His insight and advice have been invaluable. I would also like to thank my second marker, Nicolas Wu, for introducing me to the world of dependent types, and suggesting useful resources that have aided me greatly during this report.
    [Show full text]
  • Learning Dependency-Based Compositional Semantics
    Learning Dependency-Based Compositional Semantics Percy Liang∗ University of California, Berkeley Michael I. Jordan∗∗ University of California, Berkeley Dan Klein† University of California, Berkeley Suppose we want to build a system that answers a natural language question by representing its semantics as a logical form and computing the answer given a structured database of facts. The core part of such a system is the semantic parser that maps questions to logical forms. Semantic parsers are typically trained from examples of questions annotated with their target logical forms, but this type of annotation is expensive. Our goal is to instead learn a semantic parser from question–answer pairs, where the logical form is modeled as a latent variable. We develop a new semantic formalism, dependency-based compositional semantics (DCS) and define a log-linear distribution over DCS logical forms. The model parameters are estimated using a simple procedure that alternates between beam search and numerical optimization. On two standard semantic parsing benchmarks, we show that our system obtains comparable accuracies to even state-of-the-art systems that do require annotated logical forms. 1. Introduction One of the major challenges in natural language processing (NLP) is building systems that both handle complex linguistic phenomena and require minimal human effort. The difficulty of achieving both criteria is particularly evident in training semantic parsers, where annotating linguistic expressions with their associated logical forms is expensive but until recently, seemingly unavoidable. Advances in learning latent-variable models, however, have made it possible to progressively reduce the amount of supervision ∗ Computer Science Division, University of California, Berkeley, CA 94720, USA.
    [Show full text]
  • Logical Vs. Natural Language Conjunctions in Czech: a Comparative Study
    ITAT 2016 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 68–73 http://ceur-ws.org/Vol-1649, Series ISSN 1613-0073, c 2016 K. Prikrylová,ˇ V. Kubon,ˇ K. Veselovská Logical vs. Natural Language Conjunctions in Czech: A Comparative Study Katrin Prikrylová,ˇ Vladislav Kubon,ˇ and Katerinaˇ Veselovská Charles University in Prague, Faculty of Mathematics and Physics Czech Republic {prikrylova,vk,veselovska}@ufal.mff.cuni.cz Abstract: This paper studies the relationship between con- ceptions and irregularities which do not abide the rules as junctions in a natural language (Czech) and their logical strictly as it is the case in logic. counterparts. It shows that the process of transformation Primarily due to this difference, the transformation of of a natural language expression into its logical representa- natural language sentences into their logical representation tion is not straightforward. The paper concentrates on the constitutes a complex issue. As we are going to show in most frequently used logical conjunctions, and , and it the subsequent sections, there are no simple rules which analyzes the natural language phenomena which∧ influence∨ would allow automation of the process – the majority of their transformation into logical conjunction and disjunc- problematic cases requires an individual approach. tion. The phenomena discussed in the paper are temporal In the following text we are going to restrict our ob- sequence, expressions describing mutual relationship and servations to the two most frequently used conjunctions, the consequences of using plural. namely a (and) and nebo (or). 1 Introduction and motivation 2 Sentences containing the conjunction a (and) The endeavor to express natural language sentences in the form of logical expressions is probably as old as logic it- The initial assumption about complex sentences contain- self.
    [Show full text]
  • Presupposition Projection and Entailment Relations
    Presupposition Projection and Entailment Relations Amaia Garcia Odon i Acknowledgements I would like to thank the members of my thesis committee, Prof. Dr. Rob van der Sandt, Dr. Henk Zeevat, Dr. Isidora Stojanovic, Dr. Cornelia Ebert and Dr. Enric Vallduví for having accepted to be on my thesis committee. I am extremely grateful to my adviser, Louise McNally, and to Rob van der Sandt. Without their invaluable help, I would not have written this dissertation. Louise has been a wonderful adviser, who has always provided me with excellent guid- ance and continuous encouragement. Rob has been a mentor who has generously spent much time with me, teaching me Logic, discussing my work, and helping me clear up my thoughts. Very special thanks to Henk Zeevat for having shared his insights with me and for having convinced me that it was possible to finish on time. Thanks to Bart Geurts, Noor van Leusen, Sammie Tarenskeen, Bob van Tiel, Natalia Zevakhina and Corien Bary in Nijmegen; to Paul Dekker, Jeroen Groe- nendijk, Frank Veltman, Floris Roelofsen, Morgan Mameni, Raquel Fernández and Margot Colinet in Amsterdam; to Fernando García Murga, Agustín Vicente, Myriam Uribe-Etxebarria, Javier Ormazabal, Vidal Valmala, Gorka Elordieta, Urtzi Etxeberria and Javi Fernández in Vitoria-Gasteiz, to David Beaver and Mari- bel Romero. Also thanks to the people I met at the ESSLLIs of Bordeaux, Copen- hagen and Ljubljana, especially to Nick Asher, Craige Roberts, Judith Tonhauser, Fenghui Zhang, Mingya Liu, Alexandra Spalek, Cornelia Ebert and Elena Pa- ducheva. I gratefully acknowledge the financial help provided by the Basque Government – Departamento de Educación, Universidades e Investigación (BFI07.96) and Fun- dación ICREA (via an ICREA Academia award to Louise McNally).
    [Show full text]
  • Dependable Atomicity in Type Theory
    Dependable Atomicity in Type Theory Andreas Nuyts1 and Dominique Devriese2 1 imec-DistriNet, KU Leuven, Belgium 2 Vrije Universiteit Brussel, Belgium Presheaf semantics [Hof97, HS97] are an excellent tool for modelling relational preservation prop- erties of (dependent) type theory. They have been applied to parametricity (which is about preservation of relations) [AGJ14], univalent type theory (which is about preservation of equiv- alences) [BCH14, Hub15], directed type theory (which is about preservation of morphisms) and even combinations thereof [RS17, CH19]. Of course, after going through the endeavour of con- structing a presheaf model of type theory, we want type-theoretic profit, i.e. we want internal operations that allow us to write cheap proofs of the `free' theorems [Wad89] that follow from the preservation property concerned. While the models for univalence, parametricity and directed type theory are all just cases of presheaf categories, approaches to internalize their results do not have an obvious common ances- tor (neither historically nor mathematically). Cohen et al. [CCHM16] have used the final type extension operator Glue to prove univalence. In previous work with Vezzosi [NVD17], we used Glue and its dual, the initial type extension operator Weld, to internalize parametricity to some extent. Before, Bernardy, Coquand and Moulin [BCM15, Mou16] have internalized parametricity using completely different `boundary filling’ operators Ψ (for extending types) and Φ (for extending func- tions). Unfortunately, Ψ and Φ have so far only been proven sound with respect to substructural (affine-like) variables of representable types (such as the relational or homotopy interval I). More 1 recently, Licata et al. [LOPS18] have exploited the fact that the homotopyp interval I is atomic | meaning that the exponential functor (I ! xy) has a right adjoint | in order to construct a universe of Kan-fibrant types from a vanilla Hofmann-Streicher universe [HS97] internally.
    [Show full text]
  • Martin-Löf's Type Theory
    Martin-L¨of’s Type Theory B. Nordstr¨om, K. Petersson and J. M. Smith 1 Contents 1 Introduction . 1 1.1 Different formulations of type theory . 3 1.2 Implementations . 4 2 Propositions as sets . 4 3 Semantics and formal rules . 7 3.1 Types . 7 3.2 Hypothetical judgements . 9 3.3 Function types . 12 3.4 The type Set .......................... 14 3.5 Definitions . 15 4 Propositional logic . 16 5 Set theory . 20 5.1 The set of Boolean values . 21 5.2 The empty set . 21 5.3 The set of natural numbers . 22 5.4 The set of functions (Cartesian product of a family of sets) 24 5.5 Propositional equality . 27 5.6 The set of lists . 29 5.7 Disjoint union of two sets . 29 5.8 Disjoint union of a family of sets . 30 5.9 The set of small sets . 31 6 ALF, an interactive editor for type theory . 33 1 Introduction The type theory described in this chapter has been developed by Martin-L¨of with the original aim of being a clarification of constructive mathematics. Unlike most other formalizations of mathematics, type theory is not based on predicate logic. Instead, the logical constants are interpreted within type 1This is a chapter from Handbook of Logic in Computer Science, Vol 5, Oxford University Press, October 2000 1 2 B. Nordstr¨om,K. Petersson and J. M. Smith theory through the Curry-Howard correspondence between propositions and sets [10, 22]: a proposition is interpreted as a set whose elements represent the proofs of the proposition.
    [Show full text]
  • Personality Type Effects on Perceptions of Online Credit Card Payment Services Steven Walczak1 and Gary L
    Journal of Theoretical and Applied Electronic Commerce Research This paper is available online at ISSN 0718–1876 Electronic Version www.jtaer.com VOL 11 / ISSUE 1 / JANUARY 2016 / 67-83 DOI: 10.4067/S0718-18762016000100005 © 2016 Universidad de Talca - Chile Personality Type Effects on Perceptions of Online Credit Card Payment Services Steven Walczak1 and Gary L. Borkan2 1 University of South Florida, School of Information, Tampa, FL, USA, [email protected] 2 Auraria Higher Education, Information Technology Department, Denver, CO, USA, [email protected] Received 22 September 2014; received in revised form 13 May 2015; accepted 18 May 2015 Abstract Credit cards and the subsequent payment of credit card debt play a crucial role in e-commerce transactions. While website design effects on trust and e-commerce have been studied, these are usually coarse grained models. A more individualized approach to utilization of online credit card payment services is examined that utilizes personality as measured by the Myers-Briggs personality type assessment to determine variances in perception of online payment service features. The results indicate that certain overriding principles appear to be largely universal, namely security and efficiency (or timeliness) of the payment system. However there are differences in the perceived benefit of these features and other features between personality types, which may be capitalized upon by payment service providers to attract a broader base of consumers and maintain continuance of existing users. Keywords: Credit-card, Electronic commerce, Myers-Briggs, Payment portals, Personality, Portal features 67 Personality Type Effects on Perceptions of Online Credit Card Payment Services Steven Walczak Gary L.
    [Show full text]