Why and How to Investigate the Role of Protein Phosphorylation in ZIP and Znt Zinc Transporter Activity and Regulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regulatory Effects of Cu, Zn, and Ca on Fe Absorption: the Intricate Play Between Nutrient Transporters
Nutrients 2013, 5, 957-970; doi:10.3390/nu5030957 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Review Regulatory Effects of Cu, Zn, and Ca on Fe Absorption: The Intricate Play between Nutrient Transporters Nathalie Scheers Division of Life Sciences, Food Science, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; E-Mail: [email protected]; Tel.: +46-31-772-3821; Fax: +46-31-772-3830 Received: 4 February 2013; in revised form: 8 March 2013 / Accepted: 15 March 2013 / Published: 20 March 2013 Abstract: Iron is an essential nutrient for almost every living organism because it is required in a number of biological processes that serve to maintain life. In humans, recycling of senescent erythrocytes provides most of the daily requirement of iron. In addition, we need to absorb another 1–2 mg Fe from the diet each day to compensate for losses due to epithelial sloughing, perspiration, and bleeding. Iron absorption in the intestine is mainly regulated on the enterocyte level by effectors in the diet and systemic regulators accessing the enterocyte through the basal lamina. Recently, a complex meshwork of interactions between several trace metals and regulatory proteins was revealed. This review focuses on advances in our understanding of Cu, Zn, and Ca in the regulation of iron absorption. Ascorbate as an important player is also considered. Keywords: iron; absorption; Fe; Zn; Cu; Ca; ascorbate 1. Introduction Iron (Fe) is the second most abundant metal on earth and is a necessity for all life. Iron plays the key role in numerous enzymatic reactions due to its ease in shifting between the two common oxidation states, ferrous (Fe2+) and ferric (Fe3+) iron. -
The Significance of the Evolutionary Relationship of Prion Proteins and ZIP Transporters in Health and Disease
The Significance of the Evolutionary Relationship of Prion Proteins and ZIP Transporters in Health and Disease by Sepehr Ehsani A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto © Copyright by Sepehr Ehsani 2012 The Significance of the Evolutionary Relationship of Prion Proteins and ZIP Transporters in Health and Disease Sepehr Ehsani Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto 2012 Abstract The cellular prion protein (PrPC) is unique amongst mammalian proteins in that it not only has the capacity to aggregate (in the form of scrapie PrP; PrPSc) and cause neuronal degeneration, but can also act as an independent vector for the transmission of disease from one individual to another of the same or, in some instances, other species. Since the discovery of PrPC nearly thirty years ago, two salient questions have remained largely unanswered, namely, (i) what is the normal function of the cellular protein in the central nervous system, and (ii) what is/are the factor(s) involved in the misfolding of PrPC into PrPSc? To shed light on aspects of these questions, we undertook a discovery-based interactome investigation of PrPC in mouse neuroblastoma cells (Chapter 2), and among the candidate interactors, identified two members of the ZIP family of zinc transporters (ZIP6 and ZIP10) as possessing a PrP-like domain. Detailed analyses revealed that the LIV-1 subfamily of ZIP transporters (to which ZIPs 6 and 10 belong) are in fact the evolutionary ancestors of prions (Chapter 3). -
Metabolic Hallmarks of Cancer Cells As Targets for Integrative Therapies
Journal of Translational Science Review Article ISSN: 2059-268X Metabolic hallmarks of cancer cells as targets for integrative therapies John Ionescu* and Alexandru Tudor Constantinescu Spezialklinik Neukirchen, Krankenhausstr 9, 93453 Neukirchen, Germany Introduction proteins (ZIP4, ZIP10, LIV-1) is also well documented in cancer cells [15-17]. In 2018, 18.1 million people around the world had cancer, and 9.6 million died from the disease. By 2040, those figures will nearly double Once absorbed in the cell, iron is used on the one hand for the [1]. An increasing body of evidence is suggesting that the reason for synthesis of iron-containing enzymes, on the other hand is stored as this evolution is twofold: on the one hand, environmental, nutritional ferritin complex. and lifestyle factors play an important role in the disease etiology, The high intracellular concentration of transitional metals leads to while, on the other hand, most current therapies are killing tumor and high ROS production via Haber-Weiss and Fenton reactions [4] (Figure healthy cells alike, instead of specifically targeting common metabolic 2), and may be responsible for the considerable genetic variability/ hallmarks of cancer cells. Among the latter we could mention: the heterogeneity of tumor cells, even within the same tumor, among other significant changes of pH and redox potential inside and outside exogenous ROS sources [18-20]. the tumor cells, their energy generating pathways relying on aerobic glycolysis, glutaminolysis or fatty acid oxidation, the activation of the In view of these facts, the widespread clinical prescription of NADPH:quinone-oxidoreductases, as well as the high accumulation iron and zinc preparations for cancer patients appears to be rather of transitional metals and organic pollutants in the tumor tissue counterproductive, as the malignant cells are preferentially supplied accompanied by inactivation of several antioxidative and detox systems. -
Aberrant Expression of ZIP and Znt Zinc Transporters in Urotsa Cells Transformed to Malignant Cells by Cadmium
Article Aberrant Expression of ZIP and ZnT Zinc Transporters in UROtsa Cells Transformed to Malignant Cells by Cadmium Soisungwan Satarug 1,2,*, Scott H. Garrett 2, Seema Somji 2, Mary Ann Sens 2 and Donald A. Sens 2 1 Kidney Disease Research Collaborative, Centre for Health Service Research, The University of Queensland Translational Research Institute, Woolloongabba, Brisbane 4102, Australia 2 Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA; [email protected] (S.H.G.); [email protected] (S.S.); [email protected] (M.A.S.); [email protected] (D.A.S.) * Correspondence: [email protected] Abstract: Maintenance of zinc homeostasis is pivotal to the regulation of cell growth, differentiation, apoptosis, and defense mechanisms. In mammalian cells, control of cellular zinc homeostasis is through zinc uptake, zinc secretion, and zinc compartmentalization, mediated by metal transporters of the Zrt-/Irt-like protein (ZIP) family and the Cation Diffusion Facilitators (CDF) or ZnT family. We quantified transcript levels of ZIP and ZnT zinc transporters expressed by non-tumorigenic UROtsa cells and compared with those expressed by UROtsa clones that were experimentally transformed to cancer cells by prolonged exposure to cadmium (Cd). Although expression of the ZIP8 gene in parent UROtsa cells was lower than ZIP14 (0.1 vs. 83 transcripts per 1000 β-actin transcripts), an increased expression of ZIP8 concurrent with a reduction in expression of one or two zinc influx transporters, namely ZIP1, ZIP2, and ZIP3, were seen in six out of seven transformed UROtsa clones. -
Anatomy and Function of Synaptic Zinc in the Striatum
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2015-09-28 Anatomy and Function of Synaptic Zinc in the Striatum Thackray, Sarah Elizabeth Thackray, S. E. (2015). Anatomy and Function of Synaptic Zinc in the Striatum (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/24841 http://hdl.handle.net/11023/2537 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Anatomy and Function of Synaptic Zinc in the Striatum by Sarah Elizabeth Thackray A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN PSYCHOLOGY CALGARY, ALBERTA SEPTEMBER, 2015 © Sarah Elizabeth Thackray 2015 Abstract Synaptic zinc is located in many regions of the brain. One area that contains a high amount is the input center of the basal ganglia: the striatum. Environmental enrichment was used to examine potential changes in morphology of striatal cells of mice with (ZnT3 wildtype) and without (ZnT3 knockout) the zinc transporter (ZnT3) necessary to load zinc into vesicles. No changes were found in dendritic length for any regions of the striatum. However, all regions of the striatum showed an increase in spine density in both genotypes, with enriched ZnT3 KO mice having a greater increase in the nucleus accumbens region. -
Itraq-BASED QUANTITATIVE ANALYSIS of HIPPOCAMPAL POSTSYNAPTIC DENSITY-ASSOCIATED PROTEINS in a RAT CHRONIC MILD STRESS MODEL of DEPRESSION
Neuroscience 298 (2015) 220–292 iTRAQ-BASED QUANTITATIVE ANALYSIS OF HIPPOCAMPAL POSTSYNAPTIC DENSITY-ASSOCIATED PROTEINS IN A RAT CHRONIC MILD STRESS MODEL OF DEPRESSION X. HAN, a,b,c W. SHAO, a,b,c Z. LIU, a,b,c S. FAN, a,b,c displayed differences in the abundance of several types of J. YU, b,c J. CHEN, b,c R. QIAO, b,c J. ZHOU b,c* AND proteins. A detailed protein functional analysis pointed to a,b,c,d P. XIE * a role for PSD-associated proteins involved in signaling a Department of Neurology, The First Affiliated Hospital, and regulatory functions. Within the PSD, the N-methyl-D-as- Chongqing Medical University, Chongqing, China partate (NMDA) receptor subunit NR2A and its downstream targets contribute to CMS susceptibility. Further analysis b Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China of disease relevance indicated that the PSD contains a com- c plex set of proteins of known relevance to mental illnesses Chongqing Key Laboratory of Neurobiology, Chongqing, China including depression. In sum, these findings provide novel d Department of Neurology, Yongchuan Hospital, Chongqing insights into the contribution of PSD-associated proteins Medical University, Chongqing, China to stress susceptibility and further advance our understand- ing of the role of hippocampal synaptic plasticity in MDD. Ó 2015 IBRO. Published by Elsevier Ltd. All rights reserved. Abstract—Major depressive disorder (MDD) is a prevalent psychiatric mood illness and a major cause of disability and suicide worldwide. However, the underlying pathophys- iology of MDD remains poorly understood due to its hetero- Key words: major depressive disorder, chronic mild stress, genic nature. -
The Role of Zip Superfamily of Metal Transporters in Chronic Diseases, Purification & Characterization of a Bacterial Zip Tr
Wayne State University Wayne State University Theses 1-1-2011 The Role Of Zip Superfamily Of Metal Transporters In Chronic Diseases, Purification & Characterization Of A Bacterial Zip Transporter: Zupt. Iryna King Wayne State University Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses Part of the Biochemistry Commons, and the Molecular Biology Commons Recommended Citation King, Iryna, "The Role Of Zip Superfamily Of Metal Transporters In Chronic Diseases, Purification & Characterization Of A Bacterial Zip Transporter: Zupt." (2011). Wayne State University Theses. Paper 63. This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. THE ROLE OF ZIP SUPERFAMILY OF METAL TRANSPORTERS IN CHRONIC DISEASES, PURIFICATION & CHARACTERIZATION OF A BACTERIAL ZIP TRANSPORTER: ZUPT by IRYNA KING THESIS Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE 2011 MAJOR: BIOCHEMISTRY & MOLECULAR BIOLOGY Approved by: ___________________________________ Advisor Date © COPYRIGHT BY IRYNA KING 2011 All Rights Reserved DEDICATION I dedicate this work to my father, Julian Banas, whose footsteps I indisputably followed into science & my every day inspiration, my son, William Peter King ii ACKNOWLEDGMENTS First and foremost I would like to thank the department of Biochemistry & Molecular Biology at Wayne State University School of Medicine for giving me an opportunity to conduct my research and be a part of their family. I would like to thank my advisor Dr. Bharati Mitra for taking me into the program and nurturing a biochemist in me. -
World Journal of Gastroenterology
World Journal of W J G Gastroenterology Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2019 October 14; 25(38): 5732-5772 DOI: 10.3748/wjg.v25.i38.5732 ISSN 1007-9327 (print) ISSN 2219-2840 (online) REVIEW Role of ion channels in gastrointestinal cancer Kyle J Anderson, Robert T Cormier, Patricia M Scott ORCID number: Kyle J Anderson Kyle J Anderson, Robert T Cormier, Patricia M Scott, Department of Biomedical Sciences, (0000-0001-7144-0992); Robert T University of Minnesota Medical School, Duluth, MN 55812, United States Cormier (0000-0003-4423-7053); Patricia M Scott Corresponding author: Patricia M Scott, PhD, Assistant Professor, Department of Biomedical (0000-0002-6336-2653). Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, United States. [email protected] Author contributions: All authors Telephone: +1-218-726-8361 equally contributed to this paper Fax: +1-218-726-8014 with conception and design of the study, literature review and analysis, drafting and critical revision and editing, and final approval of the final version. Abstract In their seminal papers Hanahan and Weinberg described oncogenic processes a Supported by: grants from the normal cell undergoes to be transformed into a cancer cell. The functions of ion National Cancer Institute (NIH R15CA195061A-01), Whiteside channels in the gastrointestinal (GI) tract influence a variety of cellular processes, Institute for Clinical Research, many of which overlap with these hallmarks of cancer. In this review we focus on Essentia Health Systems, Mezin- the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and Koats Colorectal Cancer zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the Foundation, Randy Shaver Cancer KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). -
The Zinc Transporter, ZIP12, Regulates the Pulmonary Vascular Response to Chronic Hypoxia
The zinc transporter, ZIP12, regulates the pulmonary vascular response to chronic hypoxia Lan Zhao1†*, Eduardo Oliver1*, Klio Maratou4, Santosh S. Atanur4, Olivier D. Dubois1, Emanuele Cotroneo1, Chien-Nien Chen1, Lei Wang1, Cristina Arce1, Pauline L. Chabosseau4, Joan Ponsa-Cobas3, Maria G. Frid7, Benjamin Moyon5, Zoe Webster5, Almaz Aldashev6, Jorge Ferrer3, Guy A. Rutter2, Kurt R. Stenmark7, Timothy J. Aitman4, 8, Martin R. Wilkins1 1 Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, 2 Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, and 3 Section of Epigenomics and Disease, Department of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom. 4 Physiological Genomics and Medicine Group and 5 Transgenics and Embryonic Stem Cell Laboratory, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, United Kingdom. 6 Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan. 7 Department of Pediatrics and Medicine, Division of Critical Care Medicine and Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Denver, CO, United States. 8 Current address: Centre for Genomic and Experimental Medicine, University of Edinburgh, EH4 2XU, United Kingdom.* These authors contributed equally to this work. †Corresponding author: Dr Lan Zhao. Centre for Pharmacology and Therapeutics, Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK. Telephone: 44-(0) 20 7594 6823; e-mail: [email protected] 1 The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. -
Localization of Zinc-Enriched Neurons in the Mouse Peripheral Q Sympathetic System Zhan-You Wanga,B,C,* , Jia-Yi Lia , Gorm Danscherb , Annica Dahlstromè A
http://www.paper.edu.cn Brain Research 928 (2002) 165±174 www.bres-interactive.com Interactive report Localization of zinc-enriched neurons in the mouse peripheral q sympathetic system Zhan-You Wanga,b,c,* , Jia-Yi Lia , Gorm Danscherb , Annica DahlstromÈ a aDepartment of Anatomy and Cell Biology, University of Gothenburg, Box 420, SE-405 30 Gothenburg, Sweden bDepartment of Neurobiology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark cDepartment of Histology and Embryology, China Medical University, Shenyang 110001, PR China Accepted 17 November 2001 Abstract Growing evidence supports the notion that zinc ions located in the synaptic vesicles of zinc-enriched neurons (ZEN) play important physiological roles and are involved in certain pathological changes in the central nervous system. Here we present data revealing the distribution of zinc ions and the co-localization of zinc transporter 3 (ZnT3) and tyrosine hydroxylase (TH) in crush-operated sciatic nerves and lumbar sympathetic ganglia of mice, using zinc selenide autometallography (ZnSeAMG ) and ZnT3 immuno¯uorescence combined with confocal scanning microscopy, respectively. Six hours after the crush operation, ZnSeAMG grains and ZnT3 immunoreactivity were predominantly present in a subpopulation of thin unmyelinated sciatic nerve axons. In order to identify the type(s) of ZEN axons involved, double labeling with ZnT3 and (1) TH, (2) vesicular acetylcholine transporter (VAChT), (3) calcitonin gene-related peptide (CGRP), and (4) neuropeptide Y (NPY) was performed. Confocal microscopic observations showed that ZnT3 was located in a subpopulation of sciatic axons in distended parts proximal and distal to the crush site. Most, if not all, ZnT3-positive axons contained TH immuno¯uorescence, a few showed co-localization of ZnT3 and VAChT with very weak immunostaining, while no congruence was observed between ZnT3 and CGRP or NPY. -
Variants in TRIM22 That Affect NOD2 Signaling Are Associated with Very Early Onset Inflammatory Bowel Disease
Accepted Manuscript Variants in TRIM22 that Affect NOD2 Signaling Are Associated With Very Early Onset Inflammatory Bowel Disease Qi Li, Cheng Hiang Lee, Lauren A. Peters, Lucas A. Mastropaolo, Cornelia Thoeni, Abdul Elkadri, Tobias Schwerd, Jun Zhu, Bin Zhang, Yongzhong Zhao, Ke Hao, Antonio Dinarzo, Gabriel Hoffman, Brian A. Kidd, Ryan Murchie, Ziad Al Adham, Conghui Guo, Daniel Kotlarz, Ernest Cutz, Thomas D. Walters, Dror S. Shouval, Mark Curran, Radu Dobrin, Carrie Brodmerkel, Scott B. Snapper, Christoph Klein, John H. Brumell, Mingjing Hu, Ralph Nanan, Brigitte Snanter-Nanan, Melanie Wong, Francoise Le Deist, Elie Haddad, Chaim M. Roifman, Colette Deslandres, Anne M. Griffiths, Kevin J. Gaskin, Holm H. Uhlig, Eric E. Schadt, Aleixo M. Muise PII: S0016-5085(16)00123-2 DOI: 10.1053/j.gastro.2016.01.031 Reference: YGAST 60258 To appear in: Gastroenterology Accepted Date: 22 January 2016 Please cite this article as: Li Q, Lee CH, Peters LA, Mastropaolo LA, Thoeni C, Elkadri A, Schwerd T, Zhu J, Zhang B, Zhao Y, Hao K, Dinarzo A, Hoffman G, Kidd BA, Murchie R, Al Adham Z, Guo C, Kotlarz D, Cutz E, Walters TD, Shouval DS, Curran M, Dobrin R, Brodmerkel C, Snapper SB, Klein C, Brumell JH, Hu M, Nanan R, Snanter-Nanan B, Wong M, Le Deist F, Haddad E, Roifman CM, Deslandres C, Griffiths AM, Gaskin KJ, Uhlig HH, Schadt EE, Muise AM, Variants in TRIM22 that Affect NOD2 Signaling Are Associated With Very Early Onset Inflammatory Bowel Disease, Gastroenterology (2016), doi: 10.1053/j.gastro.2016.01.031. This is a PDF file of an unedited manuscript that has been accepted for publication. -
Evaluation of New Techniques for Zinc and Cortisol
EVALUATION OF NEW TECHNIQUES FOR ZINC AND CORTISOL ASSESSMENT WITH A PLACEBO-CONTROLLED ZINC SUPPLEMENTATION TRIAL IN A SUBSAMPLE OF ETHIOPIAN WOMEN By MAYA LUCIA JORAY Bachelor of Science in Food Technology University of Applied Sciences Wädenswil, Zürich, Switzerland 2001 Master of Science in International Studies Oklahoma State University Stillwater, OK 2004 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 2011 EVALUATION OF NEW TECHNIQUES FOR ZINC AND CORTISOL ASSESSMENT WITH A PLACEBO-CONTROLLED ZINC SUPPLEMENTATION TRIAL IN A SUBSAMPLE OF ETHIOPIAN WOMEN Dissertation Approved: Dr. B. J. Stoecker Dissertation Adviser Dr. S. L. Clarke Dr. E. Lucas Dr. P. Rayas Duarte Dr. M. E. Payton Interim Dean of the Graduate College ii TABLE OF CONTENTS Chapter Page I. INTRODUCTION ......................................................................................................1 Purpose ....................................................................................................................4 Objective .................................................................................................................5 Null hypotheses ........................................................................................................5 Assumptions and limitations ....................................................................................6 Organization of the dissertation ...............................................................................7