:ŽƵƌŶĂůŽĨdŚƌĞĂƚĞŶĞĚdĂdžĂͮǁǁǁ͘ƚŚƌĞĂƚĞŶĞĚƚĂdžĂ͘ŽƌŐͮϮϲDĂƌĐŚϮϬϭϰͮϲ;ϯͿ͗ϱϱϰϰʹϱϱϱϮ

DÊÙ֫ʽʦ®‘ƒ½ƒÄ—Ãʽ›‘罃Ù®—›Ä㮥®‘ƒã®ÊÄÊ¥ƒ‘Ù®—®—

ÊÃÃçÄ®‘ƒã®ÊÄ ¦ÙƒÝÝ«ÊÖ֛ÙÝ;‘Ù®—®—ƒ›͗KÙã«ÊÖã›ÙƒͿ¥ÙÊÃWÊÊđ«—®ò®Ý®ÊÄ͕

/^^E þƒ—:ƒÃÃç<ƒÝ«Ã®Ù͕Wƒ»®ÝãƒÄ KŶůŝŶĞϬϵϳϰʹϳϵϬϳ WƌŝŶƚϬϵϳϰʹϳϴϵϯ EĂŝůĂEĂnjŝƌϭ͕<ŚĂůŝĚDĞŚŵŽŽĚϮ͕DƵŚĂŵŵĂĚƐŚĨĂƋϯΘ:ƵŶĂŝĚZĂŚŝŵϰ KWE^^ 1,2,4 Department of Entomology, University of Poonch, Rawalakot, Azad Jammu Kashmir 12350, 3 ŝŽĚŝǀĞƌƐŝƚLJ/ŶƐƟƚƵƚĞŽĨKŶƚĂƌŝŽ͕hŶŝǀĞƌƐŝƚLJŽĨ'ƵĞůƉŚ͕KŶƚĂƌŝŽ͕ĂŶĂĚĂ͕Eϭ'Ϯtϭ 1 [email protected] (corresponding author),2 [email protected],3 [email protected], 4 [email protected]

ďƐƚƌĂĐƚ͗dŚĞƉƌĞƐĞŶƚƐƚƵĚLJǁĂƐĐŽŶĚƵĐƚĞĚƚŽƌĞƐŽůǀĞĐŽŶŇŝĐƚƐŝŶƚŚĞŝĚĞŶƟĮĐĂƟŽŶŽĨŐƌĂƐƐŚŽƉƉĞƌƐƉĞĐŝĞƐŽĨƚŚĞĨĂŵŝůLJĐƌŝĚŝĚĂĞ;KƌƚŚŽƉƚĞƌĂͿ ŽŶƚŚĞďĂƐŝƐŽĨŵŽƌƉŚŽůŽŐLJĂŶĚEďĂƌĐŽĚŝŶŐ͘'ƌĂƐƐŚŽƉƉĞƌƐƌĞƉƌĞƐĞŶƟŶŐϮϲƐƉĞĐŝĞƐŽĨƚŚĞĨĂŵŝůLJĐƌŝĚŝĚĂĞǁĞƌĞĐŽůůĞĐƚĞĚĨƌŽŵĚŝīĞƌĞŶƚ ŚĂďŝƚĂƚƐĂŶĚŚŽƐƚƉůĂŶƚƐĨƌŽŵWŽŽŶĐŚĚŝǀŝƐŝŽŶŽĨnjĂĚ:ĂŵŵƵ<ĂƐŚŵŝƌ͕WĂŬŝƐƚĂŶ͘^ƉĞĐŝŵĞŶƐǁĞƌĞŝĚĞŶƟĮĞĚƚĂdžŽŶŽŵŝĐĂůůLJĂŶĚEƐĞƋƵĞŶĐĞĚ ĨŽƌƚŚĞĐLJƚŽĐŚƌŽŵĞĐŽdžŝĚĂƐĞ;K/ͿďĂƌĐŽĚĞƌĞŐŝŽŶ͘ĂƌĐŽĚĞƐŽĨϭϵŵŽƌƉŚŽůŽŐŝĐĂůƐƉĞĐŝĞƐǁĞƌĞƐƵĐĐĞƐƐĨƵůůLJŽďƚĂŝŶĞĚĂŶĚƚŚĞƐĞƋƵĞŶĐĞĚĂƚĂ ǁĂƐƵƐĞĚƚŽƐĞƉĂƌĂƚĞƐƉĞĐŝĞƐďLJEĞŝŐŚďŽƌͲ:ŽŝŶŝŶŐĐůƵƐƚĞƌĂŶĂůLJƐŝƐ͘ĂƌĐŽĚĞĚĂƚĂƐƵĐĐĞƐƐĨƵůůLJĚŝƐĐƌŝŵŝŶĂƚĞĚϭϴƐƉĞĐŝĞƐ͕ǁŚŝůĞƚǁŽ͗Patanga japonica;ŽůŝǀĂƌ͕ϭϴϵϴͿĂŶĚP. succincta;:ŽŚĂŶŶƐŽŶ͕ϭϳϲϯͿĐŽƵůĚŶŽƚďĞĚŝƐƟŶŐƵŝƐŚĞĚƐŝŶĐĞƚŚĞLJƐŚĂƌĞĚƚŚĞďĂƌĐŽĚĞƐĞƋƵĞŶĐĞĂŶĚĐůƵƐƚĞƌĞĚ ƚŽŐĞƚŚĞƌŽŶƚŚĞEĞŝŐŚďŽƌͲ:ŽŝŶŝŶŐ;E:ͿƚƌĞĞ͘DŽƌƉŚŽůŽŐŝĐĂůůLJ͕ƐƉĞĐŝŵĞŶƐŽĨShirakiacris shirakii;ŽůşǀĂƌ͕ϭϵϭϰͿǁĞƌĞŝĚĞŶƟĮĞĚĂƐŽŶĞƐƉĞĐŝĞƐ͕ ďƵƚďĂƌĐŽĚĞĚĂƚĂƌĞǀĞĂůĞĚƚŚĂƚŝŶĂĚĚŝƟŽŶƚŽShirakiacris shirakii;ŽůşǀĂƌ͕ϭϵϭϰͿƚǁŽŽƚŚĞƌƐƉĞĐŝĞƐŽĨƚŚĞŐĞŶƵƐShirakiacris are present in ƚŚĞƌĞŐŝŽŶ͘^ŝŵŝůĂƌůLJ͕ŽŶƚŚĞďĂƐŝƐŽĨŵŽƌƉŚŽůŽŐŝĐĂůĐŚĂƌĂĐƚĞƌƐƚǁŽƐƉĞĐŝĞƐǁĞƌĞŝŶĚĞŶƟĮĞĚŝŶƐƵďĨĂŵŝůLJĂƚĂŶƚŽƉŝŶĂĞ͕Catantops erubescens ;tĂůŬĞƌ͕ϭϴϳϬͿand Xenocatantops brachycerus;tŝůůĞŵƐĞ͕ϭϵϯϮͿ͕ďƵƚďĂƌĐŽĚĞĚĂƚĂƐƵŐŐĞƐƚƚŚĞƉƌĞƐĞŶĐĞŽĨĂŶĂĚĚŝƟŽŶĂůCatantops species ŝŶƚŚĞƌĞŐŝŽŶ͘dŚĞƐĞĮŶĚŝŶŐƐƐŚŽǁƚŚĞƵƐĞĨƵůŶĞƐƐŽĨďĂƌĐŽĚĞĚĂƚĂŝŶĚŝƐĐƌŝŵŝŶĂƟŶŐŐƌĂƐƐŚŽƉƉĞƌƐƉĞĐŝĞƐĂŶĚŝŶĚŝĐĂƚĞƚŚĂƚƐƵĐŚĚĂƚĂĐĂŶďĞ ƌĞůŝĂďůLJƵƐĞĚĨŽƌĚĞǀĞůŽƉŝŶŐƌĞĨĞƌĞŶĐĞůŝďƌĂƌŝĞƐĨŽƌƐƉĞĐŝĞƐŝĚĞŶƟĮĐĂƟŽŶǀŝĂƐĞƋƵĞŶĐĞŵĂƚĐŚĞƐ͘

<ĞLJǁŽƌĚƐ͗ĐƌŝĚŝĚĂĞ͕K/͕EďĂƌĐŽĚŝŶŐ͕<ĂƐŚŵŝƌ͕ŵŽƌƉŚŽůŽŐŝĐĂůŝĚĞŶƟĮĐĂƟŽŶ͘

K/͗ŚƩƉ͗ͬͬĚdž͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϭϲϬϵͬ:Ždd͘ŽϯϱϬϳ͘ϱϱϰϰͲϱϮͮŽŽĂŶŬ͗ƵƌŶ͗ůƐŝĚ͗njŽŽďĂŶŬ͘ŽƌŐ͗ƉƵď͗ϯϮϭϱϲͲϱϳ&ͲϰϮϮͲϵϲϱϱͲϰϲϳϰϰϬϬ

ĚŝƚŽƌ͗R.K. Avasthi, Rohtak University, Haryana, India. ĂƚĞŽĨƉƵďůŝĐĂƟŽŶ͗ϮϲDĂƌĐŚϮϬϭϰ;ŽŶůŝŶĞΘƉƌŝŶƚͿ

DĂŶƵƐĐƌŝƉƚĚĞƚĂŝůƐ͗DƐηŽϯϱϬϳͮZĞĐĞŝǀĞĚϮϵ:ĂŶƵĂƌLJϮϬϭϯͮ&ŝŶĂůƌĞĐĞŝǀĞĚϭϱDĂƌĐŚϮϬϭϰͮ&ŝŶĂůůLJĂĐĐĞƉƚĞĚϭϴDĂƌĐŚϮϬϭϰ

ŝƚĂƟŽŶ͗EĂnjŝƌ͕E͕͘<͘DĞŚŵŽŽĚ͕D͘ƐŚĨĂƋΘ:͘ZĂŚŝŵ(2014). DŽƌƉŚŽůŽŐŝĐĂůĂŶĚŵŽůĞĐƵůĂƌŝĚĞŶƟĮĐĂƟŽŶŽĨĂĐƌŝĚŝĚŐƌĂƐƐŚŽƉƉĞƌƐ;ĐƌŝĚŝĚĂĞ͗KƌƚŚŽƉƚĞƌĂͿĨƌŽŵ Poonch division, Azad Jammu Kashmir, Pakistan. Journal of Threatened Taxaϲ;ϯͿ͗ϱϱϰϰʹϱϱϱϮ; ŚƩƉ͗ͬͬĚdž͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϭϲϬϵͬ:Ždd͘ŽϯϱϬϳ͘ϱϱϰϰͲϱϮ

ŽƉLJƌŝŐŚƚ͗ ©EĂnjŝƌĞƚĂů͘ϮϬϭϰ͘ƌĞĂƟǀĞŽŵŵŽŶƐƩƌŝďƵƟŽŶϯ͘ϬhŶƉŽƌƚĞĚ>ŝĐĞŶƐĞ͘:ŽddĂůůŽǁƐƵŶƌĞƐƚƌŝĐƚĞĚƵƐĞŽĨƚŚŝƐĂƌƟĐůĞŝŶĂŶLJŵĞĚŝƵŵ͕ƌĞƉƌŽĚƵĐƟŽŶĂŶĚ ĚŝƐƚƌŝďƵƟŽŶďLJƉƌŽǀŝĚŝŶŐĂĚĞƋƵĂƚĞĐƌĞĚŝƚƚŽƚŚĞĂƵƚŚŽƌƐĂŶĚƚŚĞƐŽƵƌĐĞŽĨƉƵďůŝĐĂƟŽŶ͘

&ƵŶĚŝŶŐ͗^ĞƋƵĞŶĐĞĂŶĂůLJƐŝƐǁĂƐŵĂĚĞƉŽƐƐŝďůĞďLJĂŐƌĂŶƚĨƌŽŵ'ĞŶŽŵĞĂŶĂĚĂĂŶĚƚŚĞKŶƚĂƌŝŽ'ĞŶŽŵŝĐƐ/ŶƐƟƚƵƚĞŝŶƐƵƉƉŽƌƚŽĨƚŚĞ/ŶƚĞƌŶĂƟŽŶĂůĂƌĐŽĚĞŽĨ>ŝĨĞ WƌŽũĞĐƚ͘&ŝŶĂŶĐŝĂůƐƵƉƉŽƌƚǁĂƐĂůƐŽƉƌŽǀŝĚĞĚďLJ,ŝŐŚĞƌĚƵĐĂƟŽŶŽŵŵŝƐƐŝŽŶWĂŬŝƐƚĂŶďLJŐƌĂŶƚ,EŽ͘ϮϬͲϭϰϬϯͬZΘͬϬϵ͘

ŽŵƉĞƟŶŐ/ŶƚĞƌĞƐƚ͗dŚĞĂƵƚŚŽƌƐĚĞĐůĂƌĞŶŽĐŽŵƉĞƟŶŐŝŶƚĞƌĞƐƚƐ͘

ƵƚŚŽƌŽŶƚƌŝďƵƟŽŶĂŶĚĞƚĂŝůƐ͗Eƒ®½ƒEƒþ®ÙͲdŚĞƉƌŝŶĐŝƉůĞĂƵƚŚŽƌ͕ŝƚǁĂƐŚĞƌD^Đ;,ŽŶƐ͘ͿƌĞƐĞĂƌĐŚǁŽƌŬ͘EŽǁƐŚĞŝƐǁŽƌŬŝŶŐĂƐĂůĞĐƚƵƌĞƌ͘<«ƒ½®—Dƒ«ÃÊʗ ͲĐŚĂŝƌŵĂŶĂŶĚƐƵƉĞƌǀŝƐŽƌĚƵƌŝŶŐƚŚĞƐƚƵĚLJ͘,ĞŝƐĂŶŽƌƚŚŽƉƚĞƌŝƐƚĂŶĚĐƵƌƌĞŶƚůLJǁŽƌŬŝŶŐŽŶƐŽŵĞŐĞŶĞƌĂŽĨĐƌŝĚŝĚĂĞ͘D竃Ã×Ý«¥ƒØͲĐŽͲƐƵƉĞƌǀŝƐŽƌ͕ŚĞ ǁĂƐǁŽƌŬŝŶŐĂƐĨŽƌĞŝŐŶƉƌŽĨĞƐƐŽƌŝŶE/'&ĂŝƐůĂďĂĚ͕WĂŬŝƐƚĂŶ͘,ŝƐƌĞƐĞĂƌĐŚŝŶƚĞƌĞƐƚƐĂƌĞŵŽůĞĐƵůĂƌďŝŽůŽŐLJĂŶĚEďĂƌĐŽĚŝŶŐŽĨĂƌƚŚƌŽƉŽĚƐ͘,ĞĐŽŶƚƌŝďƵƚĞĚŝŶ planning, carrying out the study and analyzing the sequence data. :çă®—Zƒ«®ÃͲ assisted during the research in all aspects.

ĐŬŶŽǁůĞĚŐĞŵĞŶƚƐ͗&ŝƌƐƚĂƵƚŚŽƌŝƐŐƌĞĂƚůLJƚŚĂŶŬĨƵůƚŽ/ŶƐĞĐƚDŽůĞĐƵůĂƌ>ĂďE/';EĂƟŽŶĂů/ŶƐƟƚƵƚĞŽĨŝŽƚĞĐŚŶŽůŽŐLJĂŶĚ'ĞŶĞƟĐŶŐŝŶĞĞƌŝŶŐͿ&ĂŝƐůĂďĂĚĨŽƌ ƉƌŽǀŝĚŝŶŐŵĞƌĞƐĞĂƌĐŚĨĂĐŝůŝƟĞƐĂůůƚŚŽƐĞƉĞŽƉůĞ;^ůĞĞŵŬŚƚĞƌ͕DĂƌLJƵŵDĂƐŽŽĚ͕ZŽŵĂŶĂ/ŌŚŬĂƌͿƚŚĞƌĞĂƐƐŝƐƚĞĚŵĞĚƵƌŝŶŐŵLJǁŽƌŬ͘/ǁŽƵůĚůŝŬĞƚŽŽīĞƌŐƌĞĂƚ ƐĞŶƐĞŽĨŐƌĂƟƚƵĚĞƚŽǁĂƌĚƐŝŽĚŝǀĞƌƐŝƚLJ/ŶƐƟƚƵƚĞŽĨKŶƚĂƌŝŽ͕hŶŝǀĞƌƐŝƚLJŽĨ'ƵĞůƉŚ͕ĂŶĂĚĂĨŽƌƉƌŽǀŝĚŝŶŐŵĞĨĂĐŝůŝƟĞƐĨŽƌEďĂƌĐŽĚŝŶŐ͘DLJƐŝŶĐĞƌĞƚŚĂŶŬƐWƌŽĨ͘ ƌ͘D͘ZĂĮƋƵĞ<ŚĂŶĨŽƌƐƵƉƉŽƌƚ͕WƌŽĨƌ͘D͘ZĂŚŝŵ<ŚĂŶ͕DŝƐƐŶƐĂdĂŵŬĞĞŶ͕Dƌ͘ďĚƵů'ŚĂīĂƌ͕^ŚƵŵŝůĂƌŝĨ͕DƵŶĂnjnjĂ<ŚƵƌƐŚŝĚĨŽƌƚŚĞŝƌĂƐƐŝƐƚĂŶĐĞĚƵƌŝŶŐŵLJ ƌĞƐĞĂƌĐŚǁŽƌŬ͘/ĂŵŐƌĞĂƚůLJŝŶĚĞďƚĞĚƚŽDƌ:ƵŶĂŝĚZĂŚŝŵĨŽƌĂůůƐŽƌƚŽĨĂƐƐŝƐƚĂŶĐĞĚƵƌŝŶŐŵLJƌĞƐĞĂƌĐŚǁŽƌŬĂŶĚŵŽƌĂůƐƵƉƉŽƌƚ͘Support from Dr. Paul Hebert, ^ĐŝĞŶƟĮĐŝƌĞĐƚŽƌŽĨŝK>ŝƐĂĐŬŶŽǁůĞĚŐĞĚ͘

ϱϱϰϰ Morphological and molecular identification of Nazir et al.

INTRODUCTION (Colgan 1991; Chapco & Litzenberger 2003; Rowell & Flook 2004). Several researchers have used DNA data Grasshoppers are the most prevalent pests in all in phylogenetic analysis to identify species sorts of vegetation in pastures and grasslands. Family (Chapco & Litzenberger 2002; Mukha et al. 2001; Song encompasses the short-horned grasshoppers & Wenzel (2007) Ketmaier et al. 2010). Use of DNA data and locusts, phytophagous that are widely has also been used in combination with morphological distributed throughout the world and considered ruinous data to establish species relationships (Brust 2008). in the arid zone (Watts et al. 1982). Taxonomists generally Keeping in view the economic importance of use morphological identification for studies used to plan grasshoppers and their damage to crops in Azad control strategies, but this method of identification has Kashmir, a need for correct identification of this group several limitations (Scotland et al. 2003). Cryptic species of pests has emerged. Azad Jammu & Kashmir lies (sibling species) may be incorrectly identified due to between 73–750N and of 33–360E and comprises an phenotypic malleability. Morphologically enigmatic taxa area of 5,134m2 (13,297km2) (Fig. 1). Poonch division are common in many groups neglected by this approach of Azad Jammu Kashmir comprises an area of 2,792km2. (Jarman & Elliott 2000). Morphological keys are often Its topography is mainly hilly, climatic conditions and limited to particular life stages, limiting the effectiveness floristic composition significantly varies from place to of identification. Finally, a high level of proficiency is place. Administratively, this division consists of four required to use the keys to avoid misdiagnoses. This has districts, Bagh, Poonch, Sudhnoti, and Haveli. A survey led to the use of molecular data to resolve cryptic species was conducted to identify grasshopper species of family (Xiao et al. 2010). In micro genomic identification, Acrididae from Poonch division. Major contributions system differences among DNA sequences are used to to the Acrididae fauna of Kashmir have been provided identify the different organisms (Wilson 1995). In fact by some entomologists like Kirby (1914), Fletcher these sequences are genetic barcodes enclosed in each (1919), Mahmood (1995), Mahmood & Yousaf (1999), cell. The barcode region, a 658-bp nucleotide fragment Mahmood & Yousaf (2000); Mahmood et al. (2002); of mitochondrial COI has been accepted by scientists for identification of species (Hebert et al. 2003). N The use of short standardized gene regions as internal W E species tag to recognize the species is an accurate, S reliable, and rapid method. Due to copious benefits in identification, DNA barcoding is getting considerable concentration in the field of science (Hebert et al. 2004). The basic scientific advantage of DNA barcoding is fast and digital species identification at any life stage or piece of an organism, and the simplification of species explorations (Janzen et al. 2005). The selected DNA sequence precisely separates the species on the basis of interspecific and intraspecific variations (Matz & Nielsen 2005). Barcoding has helped in resolving cryptic species complexes (Burns et al. 2007; Deng et al. 2012) and performing ecological studies on various animal phyla (Valentini et al. 2009). The generated data is also being used to construct barcode reference libraries for identification of unknowns by matching sequences with the known species (Guralnick & Hill 2009; Janzen et al. 2009). A combination of molecular and morphological data can produce reliable data sets to be used in barcode libraries (Emery et al. 2009). Use of PCR as a tool to amplify and sequence genes and then exploit the nucleotide data for phylogenetic analysis and develop evolutionary relationships among grasshopper species Figure 1. Map of illustrated Poonch division with has previously been practiced by a number of researchers highlighted collection localities

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 March 2014 | 6(3): 5544–5552 5545 Morphological and molecular identification of grasshoppers Nazir et al.

Table 1. Characteristics of collection localities of study area cyanide and stretched out on the stretching board with

District Locality Altitude(ft) Latitude Longitude the help of standard entomological pins (No. 16–40).

Rawalakot 5393 33.80N 73.80E The specimens were dried, examined with the use of a Leica MZ6 microscope and identified using keys (Bie- Hajeera 3167 33.60N 73.30E Bienko & Mischenko (1951), Drish (1961), Ritchie (1982), Jandali 6785 33.30N 73.30E Poonch and Mason (1973), Suhail (1994), Mahmood (1995). The 0 0 Banjosa 6212 33.0 N 73.9 E terminology of Kirby (1914) and Bie-Benko & Mischenko 0 0 Tolipeer 8800 33.0 N 73.9 E (1951) were used in this identification process. The Abbaspur 4261 33.60N 73.00E specimens of each identified species were confirmed Mang 4842 33.20N 73.90E from (Eades et al. 2011). Plundari 4000 33.20N 73.90E Sudhnoti Baloch 5304 33.80N 73.00E Sequencing/ DNA barcoding

Trarkhel 5600 33.90N 73.70E Morphologically identified grasshopper specimens

Khautta 5189 33.60N 74.50E were transferred to the Molecular Biology

Degwar 5000 33.10N 74.40E Lab, National Institute for Biotechnology and Genetic (NIBGE), Faisalabad for DNA barcoding Hajipeer 8221 33.50N 74.90E for their identification at the molecular level. The Haveli Kalamola 8207 33.30N 74.00E specimens were processed following standard DNA 0 0 Aliabad 8606 33.8 N 73.1 E barcoding protocols as outlined previously (Hebert 0 0 Bedori 12229 33.0 N 74.9 E et al. 2003). In brief, labeled specimens were arrayed Lasdana 8069 33.50N 73.40E in a 96-well PCR plate fashion to correspond with the Bagh City 6000 33.80N 73.50E location of tissue samples in the plates. Specimen Bagh Dherkot 5657 34.60N 73.30E data on field identification, taxonomic identification, Dhulli 6082 33.60N 73.30E identifier, voucher type, collectors, collection date, province, region, locality, latitude, longitude and elevation was entered on a spreadsheet. Specimen data Mahmood & Rizwan (2002); Mahmood & Shah (2003) and images were uploaded to the Barcode of Life Data Mahmood et al. (2004); Reshi & Azim (2008); Azim & System (BOLD) (www.boldsystems.org) hosted by the Reshi (2010) but nobody has made any effort to identify Biodiversity Institute of Ontario, University of Guelph, them on a molecular level either by DNA barcoding or Canada. Tissue sampling was performed by removing a by using any other marker. To remove identification small part of the insect’s leg and transferring it into the conflicts among 26 morphological species of the family labeled 96 well PCR plate in the corresponding well. Six Acrididae from Poonch, and to add species sequences to copies of each species were used for molecular studies. the international barcode reference library, studies were performed to identify the grasshoppers morphologically DNA isolation and by DNA barcoding. Nevertheless, our knowledge A small part of the leg from individual grasshoppers of the grasshopper fauna of Azad Jammu Kashmir is was transferred to the PCR plate and genomic DNA was still insufficient, particularly of species living in natural extracted following protocols described by Ivanova et al. habitats and being commonly distributed over small (2006) at the Canadian Centre for DNA Barcoding within areas. the Biodiversity Institute of Ontario.

PCR amplification and sequencing MATERIAL AND METHODS Amplification of the COI-5′ (barcode) was performed with primer pair LCO1490_t1/ HCO2198_t1 The collection of grasshoppers was carried out (TGTAAAACGACGGCCAGTGGTCAACAAATCATAAAGATATTGG / from the maximum floristic composition and cultivated CAGGAAACAGCTATGACTAAACTTCAGGGTGACCAAAAAATCA) crops like rice, maize, soybean, etc. A detailed survey following the PCR conditions; 940C (1 min), five cycles of of grasshoppers from the 19 localities of the study area 940C (40 s), 450C (40 s), 72°C (1 min); 35 cycles of 940C (Table 1) from the year 2010–2011 and the collections (40 s), 510C (40 s), 720C (1 min) and final extension of were carried out with the help of a sweep net (24 inches 720C (5 min). PCRs were carried out in 12.5µL reactions diameter). The collected specimens were killed by containing standard PCR ingredients and 2µL of DNA

5546 Journal of Threatened Taxa | www.threatenedtaxa.org | 26 March 2014 | 6(3): 5544–5552 Morphological and molecular identification of grasshoppers Nazir et al. template. PCR products were analyzed on 2% agarose to be abundant in areas of higher elevation while their E-gel® 96 system (Invitrogen Inc.). Amplicons were population declined in lower elevations. sequenced bidirectionally using the BigDye Terminator parsiniferum parsiniferum (Walker, 1871) of subfamily Cycle Sequencing Kit (Applied Biosystems) on an Applied was found to be abundant at higher Biosystems 3730XL DNA Analyzer. Sequences were elevations while the species of genus Hieroglyphus, assembled, aligned and edited using CodonCode Aligner Hieroglyphus nigroreplatus (Bolivar, 1912), Hieroglyphus (CodonCode Corporation, USA). Obtained barcode banian (Fabricius, 1798), Hieroglyphus concolar (Walker, sequences were edited and analyzed and uploaded to 1870) and Hieroglyphus oryzivorus (Carl, 1916) were the BOLD for further analysis and storage. Specimens found on rice crops abundantly. Their population was used for tissue sampling were saved as voucher restricted to lower elevations. While the species of specimens for future reference. subfamily Oxyinae particularly genus Oxya was recorded to be most abundant throughout the surveyed area, Sequence data analysis among them Oxya fuscovittata (Marschall, 1836) Sequence similarity analysis to determine the and O. hyla hyla (Serville, 1831) were most abundant matching species in the DNA/barcode databases were over all sorts of vegetation. Subfamily performed by using “Blast” and “Identification Request” with the single species Acorypha glucopsis (Walker, tools of the NCBI and BOLD. Currently barcodes of 1870) was recorded as abundant at higher elevations. 3008 specimens representing 421 Acridid species are Eyprepocnemidinae also with the species Shirakiacris readily available on BOLD for sequence comparisons. shirakii (Bolívar, 1914) and according to barcode ClustalW nucleotide sequence alignments (Thompson results two more species (morphologically identified as et al. 1994) were performed using MEGA V5 (Tamura Shirakiacris shirakii (Bolívar, 1914) but barcode results et al. 2011) under default parameters. Patterns of showed them to be different species under the same sequence divergence among taxa were visualized genus were found to be abundant at higher altitudes. using the neighbor-joining method (Thompson et al. The species of subfamily Pachyacris vinosa 1994). Evolutionary distances were computed using (Walker, 1870) was found to be very rich in higher the maximum composite likelihood method based upon altitudes and moderately in lower areas, while the the units of the number of base substitutions per site population of Paraconophyma kashmiricum (Mischenko, after all positions containing gaps and missing data were 1950) was restricted only to the higher elevations of the eliminated from the dataset (Complete deletion model). surveyed area. The population of Catantops erubescens To perform pairwise distance analysis and to generate (Walker, 1870) and Xenocatantops brachycerus were not distance histograms and distance ranks we used an very plentiful but recorded from some higher areas from online version of Automatic Barcode Gap Discovery grasses, while Catantops innatobalis (Walker, 1871) was (ABGD) (Puillandre et al. 2012). very rare with only a single specimen collected. Species of subfamily Patanga succincta (Johannson, 1763) and Patanga japonica (Bolivar, 1898) RESULTS were most abundant in the surveyed area.

Morphological identification and distribution of acridid Barcode analysis species in Poonch DNA barcodes of 85 specimens of 21 species were Details of the specimen collection habitats and their successfully sequenced and the size of the barcode was host plants are outlined in Table 2. The studies resulted in uniform among all the species producing successful the morphological identification of 26 species under 15 barcodes. The sequences have either been allocated genera of nine subfamilies of the family Acrididae (Table GenBank accession numbers or have been submitted 2). Among subfamily Oedipodinae species of the genus to the European Molecular Biology Laboratory Gastrimargus were found to be abundant at a higher (EMBL)/ (DDBJ)/Gene Bank databases for assignment altitude while Sphingonotus longipennis (Saussure, of accessions. We performed identity analysis of the 1884), Aiolopus thalassinus tumulus (Fabricius, 1798), species based on barcode sequence matches with Trilophidia japonica (Sassure, 1888), Trilophidia turpis those of other species already deposited in the Barcode (Walker, 1870) were not abundant; only a few specimens of Life Data System (BOLD) and National Center for of these species were collected during the survey. The Biotechnology Information (NCBI) databases. From the species of genus of subfamily were found database searches we found that only one species,

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 March 2014 | 6(3): 5544–5552 5547 Morphological and molecular identification of grasshoppers Nazir et al.

100 100 82 82 Acrida turrita Acrida (6) turrita (6) 100 100 72 72 Aiolopus thalassinus Aiolopus tamulus thalassinus (4) tamulus (4) 100 100 65 Sphingonotus longipennis (5) 65 Sphingonotus longipennis (5) 100 Gastrimargus africanus africanus (1) 100 39 100 Gastrimargus africanus africanus (1) 39 Gastrimargus100 africanus sulphureus (4) 100 Gastrimargus africanus sulphureus (4) 42 Acorypha100 galucopsis (3) 42 100 Acorypha galucopsis (3) 31 Spathosternum100 parsiniferum (2) 31 99 Spathosternum parsiniferum (2) 100 (5) Oxya99 hyla hyla 100 100 Oxya Oxyafuscovittata hyla hyla(6) (5) 100100 Hieroglyphus Oxya fuscovittata concolor (6) (6) 92 100 84 Hieroglyphus Hieroglyphus oryzivorus (1) concolor (6) 92 100 73 Hieroglyphus banian (6) 84 Hieroglyphus oryzivorus (1) 100 100 73 Hieroglyphus nigroreplatus (7) (6) 100 Hieroglyphus banian 100 85 Patanga japonica/succincta (8) 100 Hieroglyphus nigroreplatus (7) Pachyacris100 vinosa (4) 85 100 Patanga japonica/succincta (8) 71 100 Shirakiacris100 sp1 (3) 100 Pachyacris vinosa (4) Shirakiacris100 shirakii (1) 100 71 100 (3) 48 Shirakiacris Shirakiacris sp2 sp1 (3) 100100 Shirakiacris(3) shirakii (1) 99 Catantops erubescens 100 100 48 100 Catantops innatobalis (3) Shirakiacris sp2 (3) 100 100 Xenocatantops brachycerus (3) 99 Catantops erubescens (5) 100 100 Catantops innatobalis (3) 100 0.02 Xenocatantops brachycerus (5)

0.02

64 MAORT089-10| P. japonica

18 MAORT086-10| P. succincta

21 20 MAORT090-10| P. japonica 64 MAORT089-10| P. japonica MAORT082-10|P. succincta 18 18 MAORT086-10| P. succincta MAORT084-10|P. succincta 43 21 MAORT088-10|20 P. succincta MAORT090-10| P. japonica MAORT087-10|P. succincta MAORT082-10|P. succincta 18 MAORT081-10|P. succincta MAORT084-10|P. succincta 43 MAORT088-10|P. succincta

0.0005 MAORT087-10|P. succincta MAORT081-10|P. succincta Figure 2. DNA barcode-based neighbor joining cluster analysis of species belonging to family Acrididae collected from Poonch. The tree is based on 85 sequences derived from 22 species. Bootstrap values (500 replicates) are shown above the branches. The tree is drawn to scale, with branch lengths in the same units as those used to infer the phylogenetic tree. Tree nodes are collapsed for each species. Numbers in brackets next to each species names represent the number of individuals analyzed. Sequence0.0005 distances were computed using the K2P method and are shown as in base substitutions per site. All positions containing gaps and missing data were eliminated using pairwise deletion option. Analyses were conducted in MEGA5. Sub-tree in a box indicates branching pattern of two species, Patanga Japonica and P. succincta which show no pattern of genetic difference in the COI barcode region.

Aiolopus thalassinus tumulus (Fabricius, 1798) shared Africa. Barcodes of none of the other species from our the barcode with conspecifics from Kenya and South studies matched with those from any other country in

5548 Journal of Threatened Taxa | www.threatenedtaxa.org | 26 March 2014 | 6(3): 5544–5552 Morphological and molecular identification of grasshoppers Nazir et al.

Table. 2 Morphologically identified species and their hosts

Subfamily Species Habitat description and host plants Kalamola in grassy meadows, 8 males, 1 female, 13.ix.2010; 3 females, Gastrimargus africanus africanus 04.ix.2010; Khautta on grasses 1 male, 03.x.2010; Trarkhel on maize 3 males, (Saussure, 1888) 24.vii.2010; Jandali on maize, 1 female, 08.x.2010. Kalamola on grasses 3 males, 3 females, 13.x.2010; 1 female, 18.ix.2010; Gastrimargus africanus sulphureus Banjosa on grasses 2 males, 4 females, 06.viii.2010; Khautta on grasses 1 (Bie- Bienko, 1951) male, 1 female, 23.ix.2010; Trarkhel on shrubs 3 males, 1 female, 12.xi.2010. Aiolopus thalassinus tamulus Oedipodinae Hajipeer, 5 males, 4 females, 23.ix.2011 (Fabricius, 1798) Hajipeer on wild herbs, 6 males, 23.ix.2011; Hajeera on cultivated plant nursery, Trilophidia japonica (Saussure, 1888) 3 females, 4 males, 02.ix.2010 Trilophidia turpis (Walker, 1870) Hajipeer on wild herbs, 5 males, 4 females, 23.ix.2011 Sphingonotus longipennis (Saussure, Hajipeer on grassy meadows, 6 females, 5 males, 23.ix.2011 1884) Rawalakot on grasses, soybean and maize fields, 3 females, 20.x.2010; Acrida turrita (Linne, 1758) 1 male, 24.x.2010; Hajeera on rice field and grasses, 4 females, 1 male, 24.x.2010; 2 females, 1 male, 20.x.2010. Acridinae Mang on grasses, 4 females, 24.x.2010; Plundari on maize fields and grasses, Acrida gigantea (Herbst, 1786) 3 females, 4 males, 24.x.2010; Rawalakot on soybean field 1 female, 6 males, 25.x.2010. Degwar on grasses, 1 female, 06.vii.2010; 1 female, 3 males, 20.ix.2010; 2 Spathosternum parsiniferum females, 20.ix.2011; 1 male, 04.ix.2011; 1 male,, 19.ix.2011; 1 male, 20.ix.2011; Spathosterninae parsiniferum (Walker, 1871) 1 male, 3 females, 23.ix.2011. Khautta on maize fields and grasses, 1 female, 05.viii.2011; 1 female, 04.viii.2011 Hieroglyphus nigrorepletus (Bolivar, Hajeera on rice fields, 4 females, 6 males, 30.ix.2010 1912) Hieroglyphus banian (Fabricius, 1798) Hajeera on rice fields, 5 males, 7 females, 20.x.2010 Hieroglyphus concolor (Walker, 1870) Hajeera on rice fields, 5 females, 7 males, 09.ix.2010

Hieroglyphus oryzivorus (Carl, 1916) Hajeera on rice fields, 5 males, 6 females, 20.x.2010 Rawalakot on grasses and soybean fields, 20 females, 5 males, 19.viii.2010; Banjosa on wild shrubs, 9 females, 2 males, 14.viii.2010; Tolipeer on wild Oxya fuscovittata (Marschall, 1836) grasses, 6 females, 04.ix.2010; Jandali on maize field and grasses, 17 females, 14 males, 16.viii.2010 Hajeera on grasses and rice fields, 32 females, 2 males, 20.x.2010; Baloch on Oxyinae Oxya hyla hyla (Serville, 1831) grasses 12 females, 07.viii.2011. Oxya hyla intricata (Stål, 1861) Hajeera on rice fields and grasses, 3 females, 7 males, 20.x.2010.

Oxyina bidentata (Willemse, 1925) Rawalakot on grasses and maize field, 3 females, 4 males, 19.viii.2010. Acorypha glaucopsis (Walker, 1870) Degwar on wild grasses and herbs, 4 females, 20.ix.2009; 1 female, 04.ix.2010; Calliptaminae 2 females, 06.ix.2010; 1 female, 19.ix.2010; 3 males, 04.viii.2010 (N. Nazir) Rawalakot on grasses and maize fields, 2 females, 3 males, 19.viii.2010; Khautta on grasses and plant nursery, 2 females, 23.viii.2010; 3 males, 03.iii.2010; Eyprepocnemidinae Shirakiacris shirakii (Bolívar, 1914) Degwar on wild plants and grasses, 3 females, 22.viii.2010; 2 males, 03.viii.2010 (N. Nazir) Degwar on wild grasses and herbs, 2 females, 01.x.2010; 1 female,, 06.vii.2010; Catantopinae 1 female, 09.x.2010; 2 males, 10.x.2010; Khautta on maize fields and grasses, Pachyacris vinosa (Walker, 1870) 3 females, 10.x.2010; Abbaspur on maize fields, plants nursery and grasses, 2 females, 08.ix.2010 (N. Nazir) Degwar on grasses and wild herbs, 3 females, 19.vii.2010; 2 males, 21.vii.2011; Paraconophyma kashmirica Kalamola on wild grasses and herbs, 3 males, 15.ix.2011; 4 females, 13.ix.2010; (Mishchenko, 1950) Bedori on grazing meadows, wild grasses, 2 females, 19.vii.2010; Aliabad on grasses, 2 females, 12.viii.2010 (N. Nazir) Khautta on grasses and maize fields, 2 females, 4 males, 07.vii.2010; 4 females, Catantops erubescens (Walker, 1870) 20.vii.2010 (N. Nazir) Hajipeer on wild flower plants, 3 females, 2 males, 23.ix.2011; Halan Shumali on Xenocatantops brachycerus wild plants, 1 female, 5 males, 23.ix.2011; Bagh on grasses, 2 females, 1 male, (Willemse, 1932) 23.ix.2011 (N. Nazir) Catantops innatobalis (Walker, 1871) Khautta on wild flowers and grasses, 4 females, 6 males, 07.vii.2010 (N. Nazir) Rawalakot on grasses and soybean field, 3 females, 2 males, 03.ix.2010; Bagh on grasses 4 females, 23.ix.2011; Trarkhel on maize fields, 2 females, 1 Patanga succincta (Johannson, 1763) male, 16.x.2010; Jandali on dry residues of maize plants, 6 females, 4 males, Cyrtacanthacridinae 18.x.2010 (N. Nazir) Rawalakot 4 females, 1 male, 03.ix.2010; Trarkhel 5 females, 3 males, 16.x.2010. Patanga japonica (Bolivar, 1898) (N. Nazir).

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 March 2014 | 6(3): 5544–5552 5549 DŽƌƉŚŽůŽŐŝĐĂůĂŶĚŵŽůĞĐƵůĂƌŝĚĞŶƟĮĐĂƟŽŶŽĨŐƌĂƐƐŚŽƉƉĞƌƐ EĂnjŝƌĞƚĂů͘

ϲϲϯ ǁŝƚŚƐƚƌŽŶŐƚƐƚƌĂƉƐƵƉƉŽƌƚ;&ŝŐ͘ϮͿ͘ Pachyacris vinosa ϱϵϲ lies on the same branch as on the Patanga succincta nbr 530 ;:ŽŚĂŶŶƐŽŶ͕ ϭϳϲϯͿ and Patanga japonica ;Bolivar, ϰϲϰ ϭϴϵϴͿ ǁŚŝůĞ ĂĐĐŽƌĚŝŶŐ ƚŽ KƌƚŚŽƉƚĞƌĂ ^ƉĞĐŝĞ &ŝůĞ ;Kd^Ϳ ϯϵϳ Patanga succincta ;:ŽŚĂŶŶƐŽŶ͕ ϭϳϲϯͿ and Patanga 331 japonica ;ŽůŝǀĂƌ͕ ϭϴϵϴͿ are under the subfamily Ϯϲϱ LJƌƚĂĐĂŶƚŚĂĐƌŝĚŝŶĂĞ;<ŝƌďLJ͕ϭϵϬϮͿĂŶĚPachyacris vinosa ϭϵϴ ;tĂůŬĞƌ͕ ϭϴϳϬͿ ƵŶĚĞƌ ƚŚĞ ƐƵďĨĂŵŝůLJ ĂƚĂŶƚŽƉŝŶĂĞ ŝĞͲ 132 ŝĞŶŬŽ Θ DŝƐĐŚĞŶŬŽ ;ϭϵϱϭͿ͘  ĐĐŽƌĚŝŶŐ ƚŽ ďĂƌĐŽĚŝŶŐ ϲϲ results both of them share the same genus and subfamily ǁŚŝĐŚ ƐƵƉƉŽƌƚƐ ŝĞͲŝĞŶŬŽ Θ DŝƐĐŚĞŶŬŽ ;ϭϵϱϭͿ ǁŚŽ kept Pachyacris vinosa;tĂůŬĞƌ͕ϭϴϳϬͿ͕ Patanga succincta 0.00 0.01 0.02 0.04 0.05 Ϭ͘Ϭϲ 0.07 Ϭ͘Ϭϵ 0.10 0.11 0.12 0.14 0.15 Ϭ͘ϭϲ 0.17 Ϭ͘ϭϵ 0.20 0.21 0.22 0.24 Dist. value ;:ŽŚĂŶŶƐŽŶ͕ϭϳϲϯͿand Patanga japonica;ŽůŝǀĂƌ͕ϭϴϵϴͿ ;Ϳ,ŝƐƚŽŐƌĂŵŽĨŝŶƚƌĂƐƉĞĐŝĮĐĚŝƐƚĂŶĐĞƐ ƵŶĚĞƌƚŚĞƐĂŵĞƐƵďĨĂŵŝůLJĂƚĂŶƚŽƉŝŶĂĞ͘ 40 dŚĞ ĚŝƐƚĂŶĐĞ ĚĂƚĂ ĂŶĚ ƚŚĞ ŐƌŽƵƉƐ ƉƌŽĚƵĐĞĚ ďLJ ϯϴ ϯϲ ZĞĐƵƌƐŝǀĞWĂƌƟƟŽŶ ƌĞĐƵƌƐŝǀĞ ĂŶĚ ŝŶŝƟĂů ƉĂƌƟƟŽŶƐ ŐĞŶĞƌĂƚĞĚ ďLJ ' ĂƌĞ 34 /ŶŝƟĂůWĂƌƟƟŽŶ no. groups 32 ƉƌĞƐĞŶƚĞĚŝŶ&ŝŐ͘ϯĂŶĚϯ͘/ŶƚŚĞĚĂƚĂƐĞƚϭϴƐƉĞĐŝĞƐ 30 Ϯϴ are represented by two or more than two specimens. Ϯϲ 24 dŚĞĚŝƐƚƌŝďƵƟŽŶƐŽĨĚŝƐƚĂŶĐĞƐƐŚŽǁĂŐĂƉďĞƚǁĞĞŶƚŚĞ 22 ŝŶƚƌĂƐƉĞĐŝĮĐ ĂŶĚ ƚŚĞ ŝŶƚĞƌƐƉĞĐŝĮĐ ĚŝƐƚĂŶĐĞƐ ;&ŝŐ͘ ϯͿ͘ 20 ϭϴ dŚĞƉĂƌƟƟŽŶƐĂŶĂůLJƐŝƐƐŚŽǁƐƚŚĞƉƌĞƐĞŶĐĞŽĨϭϵŐƌŽƵƉƐ ϭϲ 14 ďLJƌĞĐƵƌƐŝǀĞƉĂƌƟƟŽŶĂƚĂĚŝǀĞƌŐĞŶĐĞůĞǀĞůŽĨϮ͘ϭϱйŝŶ 12 10 ƚŚĞĚĂƚĂƐĞƚ;&ŝŐ͘ϯͿ͘ ϴ ϲ 4 2 0 /^h^^/KE^ 0.0010 0.0017 Ϭ͘ϬϬϮϴ Ϭ͘ϬϬϰϲ 0.0077 Ϭ͘ϬϭϮϵ 0.0215 Ϭ͘Ϭϯϱϵ Ϭ͘Ϭϱϵϵ 0.1000 WƌŝŽƌ/ŶƚƌĂƐƉĞĐŝĮĐĚŝǀĞƌŐĞŶĐĞ;WͿ ;ͿWĂƌƟƟŽŶĂŶĂůLJƐŝƐ͘ dŚĞǀĂƌŝĂďŝůŝƚLJŝŶƚŚĞŐĞŶƵƐGastrimargus was found &ŝŐƵƌĞϯ͘WĂŝƌǁŝƐĞĚŝƐƚĂŶĐĞĚŝǀĞƌŐĞŶĐĞĂŶĂůLJƐŝƐŽĨĐƌŝĚŝĚ ŐƌĂƐƐŚŽƉƉĞƌƐƉĞĐŝĞƐĂƐƉĞƌĨŽƌŵĞĚďLJ'͘ in two subspecies and when they were barcoded their ƐĞƋƵĞŶĐĞ ĚĂƚĂ ƐŚŽǁ Ă ĐŽŶƐŝĚĞƌĂďůĞ ǀĂƌŝĂƟŽŶ ĂŵŽŶŐ the two morpho subspecies. Some of the species were K>ŽƌE/ĚĂƚĂďĂƐĞƐ͘ ĐŽůůĞĐƚĞĚĨƌŽŵĂǀĞƌLJůŽǁĂůƟƚƵĚĞƚŽǀĞƌLJŚŝŐŚĞƌĂůƟƚƵĚĞƐ ůƵƐƚĞƌĂŶĂůLJƐŝƐŽĨƚŚĞďĂƌĐŽĚĞĚĂƚĂƐŚŽǁĞĚƚŚĂƚϭϴ ƐŚŽǁŝŶŐ Ă ǁŝĚĞ ƌĂŶŐĞ ŽĨ ĚŝƐƚƌŝďƵƟŽŶ͘  /Ŷ ƚŚĞ ƉƌĞƐĞŶƚ ŽĨƚŚĞϮϭƐƉĞĐŝĞƐŝŶĐůƵĚĞĚŝŶƚŚĞĚĂƚĂƐĞƚĨŽƌŵĞĚĚŝƐƟŶĐƚ ƐƚƵĚLJϮϲƐƉĞĐŝĞƐŽĨĨĂŵŝůLJĐƌŝĚŝĚĂĞǁĞƌĞŝĚĞŶƟĮĞĚĂŶĚ ĂŶĚ ŶŽŶͲŽǀĞƌůĂƉƉŝŶŐ ŵŽŶŽƉŚLJůĞƟĐ ĐůƵƐƚĞƌƐ ;&ŝŐ͘ ϮͿ͘ ƐƵďũĞĐƚĞĚ ƚŽ E ďĂƌĐŽĚŝŶŐ ŵĂĚĞ ĐŽŵƉĂƌŝƐŽŶƐ ǁŝƚŚ dƌĞĞŶŽĚĞƐĨŽƌĞĂĐŚŵŽƌƉŚŽůŽŐŝĐĂůƐƉĞĐŝĞƐǁŝƚŚŵƵůƟƉůĞ ƚŚĞ ŶƵĐůĞŽƟĚĞ ĚĂƚĂ ĂŵŽŶŐ ƐƉĞĐŝĞƐ ĂŶĚ ƉŚLJůŽŐĞŶĞƟĐ ƐƉĞĐŝŵĞŶƐǁĞƌĞĐŽůůĂƉƐĞĚǁŚŝĐŚĂƉƉĞĂƌĂƐǀĞƌƟĐĂůůŝŶĞƐ ĂŶĂůLJƐŝƐƉĞƌĨŽƌŵĞĚ͘KƵƚŽĨϮϲƐƉĞĐŝĞƐ͕ďĂƌĐŽĚŝŶŐƌĞƐƵůƚƐ ŽƌƚƌŝĂŶŐůĞƐŝŶƚŚĞƚƌĞĞŝŶĚŝĐĂƟŶŐƚŚĞůĞǀĞůŽĨŝŶƚƌĂƐƉĞĐŝĮĐ ŽĨϮϭƐƉĞĐŝĞƐǁĞƌĞŽďƚĂŝŶĞĚ͘dŚĞƌĞŵĂŝŶŝŶŐĮǀĞƐƉĞĐŝĞƐ ĚŝǀĞƌŐĞŶĐĞ͘  dǁŽ ƐƉĞĐŝĞƐ͕ Patanga japonica (Bolivar, ĞŝƚŚĞƌ ĚŝĚ ŶŽƚ LJŝĞůĚ ĂŵƉůŝĮĐĂƟŽŶ Žƌ ƚŚĞ ƐĞƋƵĞŶĐĞƐ ϭϴϵϴͿĂŶĚPatanga succincta;:ŽŚĂŶŶƐŽŶ͕ϭϳϲϯͿƐŚĂƌĞĚ ǁĞƌĞŶŽƚŽĨŐŽŽĚƋƵĂůŝƚLJͬǁĞƌĞĐŽŶƚĂŵŝŶĂƚĞĚ͘ŵŽŶŐ ƚŚĞ ƐĂŵĞ ĐůƵƐƚĞƌ ŽŶ ƚŚĞ ĚĞŶĚƌŽŐƌĂŵ͘  dŚĞ ƐƵďƚƌĞĞ ƚŚĞƐĞƐĞƋƵĞŶĐĞĚƐƉĞĐŝĞƐŵŽƌƉŚŽůŽŐŝĐĂůůLJŝĚĞŶƟĮĞĚƚǁŽ ;&ŝŐ͘ ϮͿ ŝŶĚŝĐĂƚĞƐ ƚŚĞ ŵŝŶŽƌ ŐĞŶĞƟĐ ĚŝƐƚĂŶĐĞƐ ĂŵŽŶŐ same subspecies of genus Gastrimargus shown in the the specimens of these two species but with no clear ƉŚLJůŽŐĞŶĞƟĐ ƚƌĞĞ ƌĞƉƌĞƐĞŶƚƐ Ă ůŽƚ ŽĨ ǀĂƌŝĂƟŽŶ ǁŚŝĐŚ ƉĂƩĞƌŶŽĨƐƉĞĐŝĞƐŐƌŽƵƉŝŶŐ͘^ƉĞĐŝŵĞŶƐŽĨƚŚĞƐƉĞĐŝĞƐ͕ ƌĞƋƵŝƌĞƐ ĨƵƌƚŚĞƌ ƚĂdžŽŶŽŵŝĐ ĞdžƉĞƌƟƐĞ ƚŽ ƌĞƐŽůǀĞ ƚŚŝƐ Eyprepocnemis shiriaki produced three separate clusters confusion. Similarly, two species of genus Patanga also ǁŝƚŚƐŝŐŶŝĮĐĂŶƚƚƐƚƌĂƉƐƵƉƉŽƌƚ;ϭϬϬйͿŝŶĚŝĐĂƟŶŐƚŚĂƚ ƌĞƋƵŝƌĞƚĂdžŽŶŽŵŝĐĞdžƉĞƌƟƐĞĂŶĚŝƚŝƐŝŶƚŚĞƉƌŽĐĞƐƐŽĨ ƚŚĞƐƉĞĐŝĞƐŝƐĂĐŽŵƉůĞdžŽĨĂƚůĞĂƐƚƚŚƌĞĞƐƉĞĐŝĞƐ;&ŝŐ͘ϮͿ͘ ƌĞŵŽǀĂůďLJƚŚĞƚĂdžŽŶŽŵŝƐƚĮƌƐƚĂƵƚŚŽƌĂŶĚĐŽͲĂƵƚŚŽƌƐ͘ dŚĞ ƐƉĞĐŝĞƐ Gastrimargus africanus is represented by EƵĐůĞŽƟĚĞ ĚĂƚĂ ŽĨ ƚŚĞ ŐĞŶĞ ƐĞƋƵĞŶĐĞĚ ŝŶ ƚŚĞƐĞ two subspecies, G. africanus africanus;^ĂƵƐƐƵƌĞ͕ϭϴϴϴͿ studies did not match perfectly with any of the other and Gastrimargus africanus sulphureus ;ŝĞͲ ŝĞŶŬŽ ŐƌĂƐƐŚŽƉƉĞƌƐƉĞĐŝĞƐŝŶƚŚĞ'ĞŶĞĂŶŬ͘^ŝŵŝůĂƌůLJ͕ƚŚĞƌĞ ϭϵϱϭͿ͘ŽƚŚƚŚĞƐƵďƐƉĞĐŝĞƐŵĂĚĞŵŽŶŽƉŚLJůĞƟĐĐůƵƐƚĞƌƐ ǁĞƌĞ ƐŝŐŶŝĮĐĂŶƚ ŶƵĐůĞŽƟĚĞ ǀĂƌŝĂƟŽŶƐ ĂŵŽŶŐ Ăůů ƚŚĞ

ϱϱϱϬ Journal of Threatened Taxa | www.threatenedtaxa.org | 26 March 2014 | 6(3): 5544–5552 Morphological and molecular identification of grasshoppers Nazir et al. sequenced genes of the 18 species. The DNA barcode DNA barcoding of six Ceroplastes species (Hemiptera: Coccoidea: region of COI (COI-5′) showed significant nucleotide Coccidae) from China. Molecular Ecology Resources 12(5): 791–796; http://dx.doi.org/10.1111/j.1755-0998.2012.03152.x differences among grasshopper species and came out as Drish, V.M. (1961). A preliminary revision of the families and a promising region to be used for grasshopper species subfamilies of Acridoidae (: Insecta). Bulletin of British Museum (Natural History) Entomology 10: 351–419. identification. The phylogenetic analysis based on the Eades, D.C., D. Otte, M.M. Cigliano & H. Braun (2011). Orthoptera barcode region of COI also provided better relationships Species File. Version 5.0/5.0. [may 2013]. . Emery, V.J., L.J. Eckert & G. Christopher (2009). Combining DNA is a new phenomenon and is not only being used to barcoding and morphological analysis to identify specialist floral identify species but is also being used to study species parasites (Lepidoptera: Coleophoridae: Momphinae: Mompha). relationships and to investigate genetic diversities Molecular ecology Resource 9(s1): 217–223; http://dx.doi. org/10.1111/j.1755-0998.2009.02647.x among insect populations (Mondal et al. 1999; Fletcher, J.B. (1919). Annotated list of Indian crop pest. Report of Hajibabaei et al. 2006; Emery et al. 2009; Ashfaq et al. Proceedings of 3rd Entomological Meeting, Pusa, 1: 306pp. 2011). In conclusion, the use of nucleotide data from Guralnick, R. & A. Hill (2009). Biodiversity informatics: automated approaches for documenting global biodiversity patterns the barcode region of COI supported the grasshoppers, and processes. Bioinformatics 25(4): 421–428; http://dx.doi. identifications and phylogenetic relationships performed org/10.1093/bioinformatics/btn659 on the basis of morphological characters. The nucleotide Hajibabaei, M., D.H. Janzen, J.M. Burns, W. Hallwachs & P.D.N. Hebert (2006). DNA barcodes distinguish species of tropical Lepidoptera. data, however, could not be used to make comparisons Proceedings of National Academy of Science 103(4): 968–971; with other such sequences in the gene bank databases http://dx.doi.org/10.1073/pnas.0510466103 Hebert, P.D.N., A. Cywinska, S.L. Ball & J.R. deWaard (2003). Biological as sequences from the same region of COI were not identifications through DNA barcodes.Proceedings of Royal Society, available in the gene bank. This shows the limitation of London, B. 270(1512): 313–321; http://dx.doi.org/10.1098/ the use of DNA data for species identification. Sequences rspb.2002.2218 Hebert, P.D.N., M.Y. Stoeckle, T.S. Zemlak & C.N. Francis (2004). produced from the grasshopper species in the current Identification of birds through DNA barcodes.PLoS Biology 2: 1657– studies and their submission in the gene bank database 1663. will be a good addition to the sequence database as well Ivanova, N.V., J.R. deWaard, P.D.N. Hebert (2006). An inexpensive, automation-friendly protocol for recovering high-quality as to the barcode reference library. DNA. Molecular Ecology Notes 6(4): 998–1002; http://dx.doi. org/10.1111/j.1471-8286.2006.01428.x Janzen, D.H., M. Hajibabaei, J.M. Burns, W. Hallwachs, E. Remigio & P.D.N. Hebert (2005). Wedding biodiversity inventory of a large REFERENCES and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of Royal Society B: Biological Sciences 360(1462): Ashfaq, M., J. Ara, A.R. Noor, P.D.N. Hebert & S. Mansoor (2011). 1835–1845; http://dx.doi.org/10.1098/rstb.2005.1715 Molecular phylogenetic analysis of a scale insect (Drosicha Janzen, D.H., W. Hallwachs, P. Blandin, J.M. Burns, J.M. Cadiou, mangiferae; Hemiptera: Monophlebidae) infesting mango orchards I. Chacon, T. Dapkey, A.R. Deans, M.E. Epstein, B. Espinoza, J.G. in Pakistan. European Journal of Entomology 108(4): 553–559. Franclemont, W.A. Haber, M. Hajibabaei, J.P.W. Hall, P.D.N. Hebert, Azim, M.N. & S.A. Reshi (2010). Taxonomic notes on the tribe Acridini I.D. Gauld, D.J. Harvey, A. Hausmann, I.J. Kitching, D. Lafontaine, Latreille (Acridinae: Acrididae: Orthoptera) of Kashmir, India. Acta J.F. Landry, C. Lemaire, J.Y. Miller, J.S. Miller, L. Miller, S.E. Miller, Zoológica Mexicana (nueva serie) 26(1): 219–222. J. Montero, E. Munroe, S.R. Green, S. Ratnasingham, J.E. Rawlins, Bie-Bienko, G.Y. & L.L. Mischenko (1951). Locust and Grasshoppers of R.K. Robbins, J.J. Rodriguez, R. Rougerie, M.J. Sharkey, M.A. Smith, USSR and Adjacent Countries. Pt I & II, Monson, Jerusalem, 691pp. M.A. Solis, J.B. Sullivan, P. Thiaucourt, D.B. Wahl, S.J. Weller, J.B. Brust, L.M. (2008). and distribution of Acridid grasshoppers Whitfield, K.R. Willmott, D.M. Wood, N.E. Woodley & A.J. Wilson in Nebraska and effect of temperature and immersion on grassland (2009). Integration of DNA barcoding into an ongoing inventory of pests. PhD Thesis, University of Nebraska. complex tropical biodiversity. Molecular Ecology Resources 9: 1–26; Burns, J.M., D.H. Janzen, M. Hajibabaei, W. Hallwachs, P.D.N. Hebert http://dx.doi.org/10.1111/j.1755-0998.2009.02628.x (2007). DNA barcodes of closely related (but morphologically and Jarman, S.N. & N.G. Elliott (2000). DNA evidence for morphological ecologically distinct) species of skipper butterflies (Hesperiidae) can and cryptic Cenozoic speciations in the Anaspididae, ‘living fossils’ differ by only one to three nucleotides.Journal of the Lepidopterists from the Triassic. Journal of Evolution Biology 13(4): 624–633; Society 61: 138–153. http://dx.doi.org/10.1046/j.1420-9101.2000.00207.x Chapco, W. & G. Litzenberger (2002). A molecular phylogenetic study Ketmaier, V., H. Stuckas, J. Hempel, I. Landeck, M. Tobler, M. Plath of two relict species of melanopline grasshoppers. Genome 45(2): & R. Tiedemann (2010). Genetic and morphological divergence 313–318; http://dx.doi.org/10.1139/g01-156 among Gravel Bank Grasshoppers, Chorthippus pullus (Acrididae), Chapco, W. & G. Litzenberger (2003). A molecular phylogenetic from contrasting environments. Organism Diversity and Evolution analysis of the grasshopper genus Melanoplus Stål (Orthoptera: 10(5): 381–395; http://dx.doi.org/10.1007/s13127-010-0031-1 Acrididae) - an update. Journal of Orthoptera Research 11(1): 1–9; Kirby, W.F. (1914). Orthoptera (Acrididae). Fauna of British India http://dx.doi.org/10.1665/1082-6467(2002)011[0001:AMPAOT]2. including Ceylon and Burma. Taylor and Francis, London, 276pp. 0.CO;2 Mahmood, K. (1995). Taxonomic studies of (Orthoptera) of Colgan, D.J. (1991). Phylogenetic studies of acridoid grasshoppers Azad Jammu and Kashmir. PhD Thesis. Department of Entomology, comparing 2n2- and 4-base recognizing endonucleases. Journal University of Faisalabad, Pakistan. of Evolutionary Biology 4(4): 575–591; http://dx.doi.org/10.1046/ Mahmood, K. & M. Yousaf (1999). New records of Oedipodinae j.1420-9101.1991.4040575.x (Acrididae: Orthoptera) from Azad Jammu and Kashmir with the Deng, J., F. Yu, T.X. Zhang, H.Y. Hu, C.D. Zhu, S.A. Wu & Y.Z. Zhang (2012). description of a new species. Journal of Orthoptera Research 3:

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 March 2014 | 6(3): 5544–5552 5551 Morphological and molecular identification of grasshoppers Nazir et al.

271–275. Ritchie, J. (1982). A taxonomic Revision of the genus Gastrimargus Mahmood, K. & M. Yousaf (2000). Taxonomic studies on Saussure (Orthoptera: Acrididae). Bulletin of British Museum Pyrgomorphidae and Catantopinae (Acridiodea; Orthoptera) from (Natural History) Entomology 44: 293–329. Azad Jammu and Kashmir. Pakistan Journal of Biological Sciences Rowell, C.H.F. & P.K. Flook (2004). A dated molecular phylogeny of the 3(11): 1914–1916. Proctolabinae (Orthoptera, Acrididae), especially the Lithoscirtae, Mahmood, K. & U. Rizwan (2002). Grasshoppers species composition and the evolution of their adaptive traits and present biogeography. and distribution pattern in District Poonch, Azad Jammu and Journal of Orthoptera Research 13(1): 35–56; http://dx.doi. Kashmir, Pakistan (conference paper). org/10.1665/1082-6467(2004)013[0035:ADMPOT]2.0.CO;2 Mahmood, K., Y. Mohammad & K. Abdul (2002). Taxonomic study of Scotland, R.W., R.G. Olmstead & J.R. Bennett (2003). Phylogeny some Catantopinae (Acrididae: Orthoptera) from Azad Jammu and reconstruction: The role of morphology. Systematic Biology 52(4): Kashmir. Pakistan Journal of Zoology 34(3): 233–237. 539–548. Mahmood, K. & W. Shah (2003). New records of Eyprepocnemidinae Song, H. & J.W. Wenzel (2007). Phylogeny of bird-grasshopper (Acrididae: Orthoptera) from Azad Jammu and Kashmir. Pakistan subfamily Cyrtacanthacridinae (Orthoptera: Acrididae) and the Journal of Arid Agriculture 6(1): 25–27. evolution of locust phase polyphenism. Cladistics 24(4): 515–542; Mahmood, K., K. Abbas & W.H. Shah (2004). A Preliminary Study of http://dx.doi.org/10.1111/j.1096-0031.2007.00190.x grasshoppers (Acrididae: Orthoptera) of Baltistan, Azad Jammu & Suhail, A. (1994). Taxonomic studies on Acridoidea (Orthoptera) Kashmir, Pakistan. Pakistan Journal of Zoology 36(1): 21–25. of Pakistan. PhD Thesis. Department of Agriculture Entomology, Mason, J.B. (1973). A revision of the genera Hieroglyphus Krauss, University of Agriculture Faisalabad, Pakistan, 343pp. Parahieroglyphus Carl and Hieroglyphodes Uvarov (Orthoptera: Tamura K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar Acridiodea). Bulletin of British Museum (Natural History) (2011). MEGA5: Molecular evolutionary genetics analysis using Entomology 28(7): 509–560. maximum likelihood, evolutionary distance, and maximum Matz, M.V. & R. Nielsen (2005). A likelihood ratio test for species parsimony methods. Molecular Biology Evolution 28(10): 2731– membership based on DNA sequence data. Philosophical 2739; http://dx.doi.org/10.1093/molbev/msr121 Transactions of Royal Society B: Biological Sciences 360(1462): Thompson, J.D., D.G. Higgins & T.J. Gibson (1994). ClustalW: improving 1969–1974; http://dx.doi.org/10.1098/rstb.2005.1728 the sensitivity of progressive multiple sequence alignment through Mondal, S.K., A.K. Hazra & S.K. Tandon (1999). Studies on taxonomy, sequence weighting, position-specific gap penalties and weight biology and ecology of grasshoppers infesting field crops and matrix choice. Nucleic Acids Research 22(22): 4673–4680; http:// vegetables with notes on nymphal taxonomy of some species in dx.doi.org/10.1093/nar/22.22.4673 West Bengal. Records of the Zoological Survey of India. Occasional Valentini, A., F. Pompanon & P. Taberlet (2009). DNA barcoding for Paper 173: 1–178. ecologists. Trends in Ecology and Evolution 24(2): 110–117; http:// Mukha, D., W.M. Brian & C. Schal (2001). Evolution and phylogenetic dx.doi.org/10.1016/j.tree.2008.09.011 information content of the ribosomal DNA repeat unit in the Watts, J.G., E.W. Huddleston & J.C. Owens (1982). Rangeland Blattodea (Insecta). Journal of Insect Biochemistry and Molecular entomology. Annual Review of Entomology 27: 283–311; http:// Biology 32(9): 951–960; http://dx.doi.org/10.1016/S0965- dx.doi.org/10.1146/annurev.en.27.010182.001435 1748(01)00164-3 Wilson, K.H. (1995). Molecular biology as a tool for taxonomy. Clinical Puillandre, N., A. Lambert, S. Brouillet & G. Achaz (2012). ABGD, Infectious Diseases 20: 192–208. automated barcode gap discovery for primary species delimitation. Xiao, J.H., N.H. Wang, Y.W. Li, R.W. Murphy, D.G. Wan, L.M. Niu, Molecular Ecology 21(8): 1864–1877; http://dx.doi.org/10.1111/ H.Y. Hu, Y.G. Fu & D.W. Huang (2010). Molecular approaches to j.1365-294X.2011.05239.x identify cryptic species and polymorphic species within a complex Reshi, S.A. & N. Azim (2008). Studies on some aspects of biodiversity of community of Fig Wasps. PLoS ONE 5: e15067; http://dx.doi. of Cyrtacanthacridini (Orthoptera: Acrididae) of Kashmir, Himalayas. org/10.1371/journal.pone.0015067 Annals of Plant Protection Sciences 16(2): 393-395

Threatened Taxa

5552 Journal of Threatened Taxa | www.threatenedtaxa.org | 26 March 2014 | 6(3): 5544–5552