A Parallelized, Automated Platform Enabling Individual Or Sequential Chip of Histone Marks and Transcription Factors

Total Page:16

File Type:pdf, Size:1020Kb

A Parallelized, Automated Platform Enabling Individual Or Sequential Chip of Histone Marks and Transcription Factors A parallelized, automated platform enabling individual or sequential ChIP of histone marks and transcription factors Riccardo Dainesea,b, Vincent Gardeuxa,b, Gerard Llimosa,b, Daniel Alperna,b, Jia Yuan Jianga, Antonio Carlos Alves Meireles-Filhoa,b, and Bart Deplanckea,b,1 aSchool of Life Sciences, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; and bSwiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland Edited by Bing Ren, Ludwig Institute for Cancer Research, La Jolla, CA, and accepted by Editorial Board Member Christopher K. Glass April 16, 2020 (received for review August 6, 2019) Despite its popularity, chromatin immunoprecipitation followed preamplification RNA-seq workflow consists of only three steps— by sequencing (ChIP-seq) remains a tedious (>2 d), manually in- that is, cell lysis, RNA capturing and reverse transcription—ChIP- tensive, low-sensitivity and low-throughput approach. Here, we seq typically involves several preamplification steps (cross-linking, combine principles of microengineering, surface chemistry, and lysis, fragmentation, IP, end repair, and adapter ligation). Finally, molecular biology to address the major limitations of standard any given RNA transcript is present in each cell in numerous copies, ChIP-seq. The resulting technology, FloChIP, automates and mini- which increases the likelihood of its capture and detection, whereas aturizes ChIP in a beadless fashion while facilitating the down- each locus-specific protein−DNA contact occurs a maximum of two stream library preparation process through on-chip chromatin times in a diploid cell. The combination of these idiosyncratic dif- tagmentation. FloChIP is fast (<2 h), has a wide dynamic range 6 ferences, together with the lack of enabling solutions, has thus far (from 10 to 500 cells), is scalable and parallelized, and supports prevented the ChIP-seq technology, as opposed to other NGS- antibody- or sample-multiplexed ChIP on both histone marks and ’ based methods, from reaching its full potential in terms of adop- transcription factors. In addition, FloChIP s interconnected design tion, utility, and biomedical relevance. allows for straightforward chromatin reimmunoprecipitation, In addition to the standard ChIP protocol, a modification of which allows this technology to also act as a microfluidic sequen- its workflow involving sequential ChIP has been developed to tial ChIP-seq system. Finally, we ran FloChIP for the transcription infer the genomic cooccurrence of two distinct (protein) targets. factor MEF2A in 32 distinct human lymphoblastoid cell lines, pro- In principle, sequential ChIP consists of performing ChIP twice viding insights into the main factors driving collaborative DNA binding of MEF2A and into its role in B cell-specific gene regula- on the same input chromatin, which leads to a multiplication of tion. Together, our results validate FloChIP as a flexible and the inefficiencies mentioned above. Therefore, not only does reproducible automated solution for individual or sequential sequential ChIP show the same limitations as regular ChIP-seq, ChIP-seq. but these come in an augmented form due to its consecutive nature. As a result, few studies have so far performed sequential microfluidics | epigenetics | ChIP-seq | transcription factor Significance he genome-wide distribution and dynamics of protein−DNA Tinteractions constitute a fundamental aspect of gene regu- Chromatin immunoprecipitation followed by next-generation lation. Chromatin immunoprecipitation followed by next gener- sequencing (ChIP-seq) has become the most widely used ation sequencing (ChIP-seq) (1) has become the most widespread method to infer the genomic binding locations of chromatin- technique for mapping protein−DNA interactions genome-wide. associated proteins such as histones and transcription factors. ChIP-seq has been successfully applied to dozens of transcription Since its emergence in 2007, ChIP-seq has been performed factors (TFs), histone modifications, chromatin modifying com- through a long sequence of manual steps, with consequent plexes, and other chromatin-associated proteins in humans and limitations in throughput and sensitivity of the technique. other model organisms (2). The ENCODE (Encyclopedia of DNA Here, we present a microfluidic implementation of the ChIP Elements) and modENCODE consortia alone have already per- procedure, named FloChIP, which greatly streamlines the ex- formed more than 8,000 ChIP-seq experiments, which have greatly perimental workflow. We show that FloChIP can perform enhanced our collective understanding of how gene regulatory standard ChIP and sequential ChIP assays in parallel and re- processes are orchestrated in humans as well as several model or- producibly in an automated fashion for histone marks and ganisms (3). In addition, ChIP-seq proved to be essential to acquire transcription factors. new insights into genomic organization (4–6) and into the mecha- nisms underlying genomic variation-driven phenotypic diversity and Author contributions: R.D. and B.D. designed research; R.D. performed research; R.D., G.L., D.A., J.Y.J., and A.C.A.M.-F. contributed new reagents/analytic tools; R.D. and V.G. disease susceptibility (5, 7, 8). More specifically, this assay proved analyzed data; and R.D. and B.D. wrote the paper. crucial in determining the DNA binding properties of hundreds of The authors declare no competing interest. TFs (9). Nevertheless, in comparison to other widespread methods This article is a PNAS Direct Submission. B.R. is a guest editor invited by the based on next generation sequencing (NGS)—e.g., RNA-seq (10) Editorial Board. and assay for transposase-accessible chromatin using sequencing Published under the PNAS license. — (ATAC-seq) (11) ChIP-seq lags behind in some key metrics, that Data deposition: All data have been deposited on ArrayExpress: E-MTAB-7179 (MEF2A is, throughput, sensitivity, and automation, which hinders its wider data), E-MTAB-7150 (decreasing cell number data), E-MTAB-7186 (sequential ChIP data), adoption and reproducibility. For example, while RNA-seq can now E-MTAB-8533 (TF benchmarking data), and E-MTAB-8551 (histone mark data). be regularly performed on hundreds or thousands of single cells 1To whom correspondence may be addressed. Email: [email protected]. using readily available workflows (12, 13), ChIP-seq has largely This article contains supporting information online at https://www.pnas.org/lookup/suppl/ remained labor intensive and limited to a few samples per run, doi:10.1073/pnas.1913261117/-/DCSupplemental. each composed of millions of cells. Moreover, while a typical First published May 27, 2020. 13828–13838 | PNAS | June 16, 2020 | vol. 117 | no. 24 www.pnas.org/cgi/doi/10.1073/pnas.1913261117 Downloaded by guest on September 29, 2021 ChIP followed by NGS (14, 15) (sequential ChIP-seq), and most BSA, which passively adsorbs to the hydrophobic walls of the of the available studies have so far relied on qPCR to validate microfluidic device. This layer has both an insulating role, pre- putative bivalent regions (16–18) (sequential ChIP-qPCR). venting nonspecific adsorption of chromatin to the chip walls, and a In recent years, several attempts have been made to alleviate docking role for the next layer, which is obtained by flowing on-chip some of the limitations of the ChIP-seq and sequential ChIP a solution containing neutravidin that strongly binds to the biotin approaches. Gasper et al. (19) and Aldridge et al. (20) addressed groups of the first layer. The third layer is formed by flowing a the issue of automation by implementing the manual steps of a solution of biotinylated protein A/G, which becomes firmly immo- conventional ChIP-seq workflow on robotic liquid handling sys- bilized by the unsaturated binding sites of the neutravidin layer. tems. However, in these examples, automation was balanced Protein A/G is a recombinant protein used in a variety of immu- with sensitivity, since these workflows still require tens of mil- noassays due to its ability to strongly bind to a large number of lions of cells per experiment. Van Galen et al. (21) and Chabbert different antibodies. This ability is retained by FloChIP’ssurface et al. (22) addressed the issue of throughput by barcoding and functionalization, which thus constitutes a general substrate for pooling chromatin samples before IP. Although van Galen et al. antibody pull-down. proved that their approach led to higher sensitivity (500 cells per Another critical feature of FloChIP’s workflow is the microfluidic ChIP), neither approach is automated, and both are, so far, tagmentation of immunoprecipitated chromatin. In a previous limited to the detection of histone marks. Ma et al. (23) and study, tagmentation of bead-bound chromatin (ChIPmentation) Rotem et al. (24) addressed the limitation of sensitivity with two was shown to generally increase cost-effectiveness and sensitivity of different microfluidic-based strategies. Ma et al. focused on the ChIP-seq workflow (25). Here, we built upon this concept and improving the efficiency of the IP step by confining it within adaptedittoobtainanexampleofChIPmentationperformeddi- microfluidic channels. Although they showed good IP efficiency rectly on chromatin bound to the inner walls of a microfluidic de- down to as few as 30 cells, their approach requires impractical vice (Fig. 1A, indexing and elution). Briefly, this is achieved by antibody−oligo conjugates, is not automated, and was
Recommended publications
  • Core Transcriptional Regulatory Circuitries in Cancer
    Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage.
    [Show full text]
  • Mutant P53 Protects Cells from 12-O-Tetradecanoylphorbol-13- Acetate–Induced Death by Attenuatingactivating Transcription Factor 3 Induction
    Research Article Mutant p53 Protects Cells from 12-O-Tetradecanoylphorbol-13- Acetate–Induced Death by AttenuatingActivating Transcription Factor 3 Induction Yosef Buganim,1 Eyal Kalo,1 Ran Brosh,1 Hila Besserglick,1 Ido Nachmany,3 Yoach Rais,2 Perry Stambolsky,1 Xiaohu Tang,1 Michael Milyavsky,1 Igor Shats,1 Marina Kalis,1 Naomi Goldfinger,1 and Varda Rotter1 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; 2Department of Life Science, Bar-Ilan University, Ramat Gan, Israel; and 3Department of General Surgery B, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel Abstract mutated. Notably, the predominant mode of p53 inactivation is by Mutations in p53 are ubiquitous in human tumors. Some p53 point mutation rather than by deletion or truncation. These data mutations not only result in loss of wild-type (WT) activity but coupled with the observation that mutant p53 is generally highly also grant additional functions, termed ‘‘gain of function.’’ overexpressed in tumors have led to the hypothesis that mutant In this study, we explore how the status of p53 affects the p53 possesses gain-of-function activities. This hypothesis is immediate response gene activating transcription factor 3 supported by the results of in vivo and in vitro studies. For (ATF3) in the 12-O-tetradecanoylphorbol-13-acetate (TPA)- example, mice harboring mutant p53 display allele-specific tumor protein kinase C (PKC) pathway. We show that high doses of spectra, higher metastatic frequency, enhanced cell proliferation, TPA induce ATF3 in a WT p53-independent manner correlat- and higher transformation potential compared with their p53-null ingwith PKCs depletion and cell death.
    [Show full text]
  • Action on Muscle Metabolism and Insulin Sensitivity E Strong Enough for a Man, Made for a Woman
    Review The impact of ERa action on muscle metabolism and insulin sensitivity e Strong enough for a man, made for a woman Andrea L. Hevener*, Zhenqi Zhou, Timothy M. Moore, Brian G. Drew, Vicent Ribas ABSTRACT Background: The incidence of chronic disease is elevated in women after menopause. Natural variation in muscle expression of the estrogen receptor (ER)a is inversely associated with plasma insulin and adiposity. Moreover, reduced muscle ERa expression levels are observed in women and animals presenting clinical features of the metabolic syndrome (MetSyn). Considering that metabolic dysfunction impacts nearly a quarter of the U.S. adult population and elevates chronic disease risk including type 2 diabetes, heart disease, and certain cancers, treatment strategies to combat metabolic dysfunction and associated pathologies are desperately needed. Scope of the review: This review will provide evidence supporting a critical and protective role for skeletal muscle ERa in the regulation of metabolic homeostasis and insulin sensitivity, and propose novel ERa targets involved in the maintenance of metabolic health. Major conclusions: Studies identifying ERa-regulated pathways essential for disease prevention will lay the important foundation for the rational design of novel therapeutics to improve the metabolic health of women while limiting secondary complications that have plagued traditional hormone replacement interventions. Ó 2018 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Keywords Estrogen action; Estrogen receptors; Insulin sensitivity; Metabolic homeostasis 1. INTRODUCTION new-onset T2DM in postmenopausal women following HRT compared with placebo [7]. The mechanism by which HRT reduces T2D incidence For over two decades researchers have shown strong relationships in postmenopausal women is not yet known however molecular between estrogen action and metabolic health in women.
    [Show full text]
  • Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin
    cells Review Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin Agnieszka Bochy ´nska,Juliane Lüscher-Firzlaff and Bernhard Lüscher * ID Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany; [email protected] (A.B.); jluescher-fi[email protected] (J.L.-F.) * Correspondence: [email protected]; Tel.: +49-241-8088850; Fax: +49-241-8082427 Received: 18 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • An Autoregulatory Loop Controls Peroxisome Proliferator-Activated Receptor Γ Coactivator 1Α Expression in Muscle
    Institutional Repository of the University of Basel University Library Schoenbeinstrasse 18-20 CH-4056 Basel, Switzerland http://edoc.unibas.ch/ Year: 2003 An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle Handschin, C. and Rhee, J. and Lin, J. and Tarr, P. T. and Spiegelman, B. M. Posted at edoc, University of Basel Official URL: http://edoc.unibas.ch/dok/A5258732 Originally published as: Handschin, C. and Rhee, J. and Lin, J. and Tarr, P. T. and Spiegelman, B. M.. (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle. Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, H. 12. S. 7111-7116. An Autoregulatory Loop Controls PGC-1 Expression in Muscle Christoph Handschin, James Rhee, Jiandie Lin, Paul T. Tarr, and Bruce M. Spiegelman* Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 Published in Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7111-6. PMID: 12764228. doi: 10.1073/pnas.1232352100 Copyright © National Academy of Sciences; Proceedings of the National Academy of Sciences USA Page 1 of 24 Classification: Biological Sciences, Cell Biology An Autoregulatory Loop Controls PGC-1 Expression in Muscle Christoph Handschin, James Rhee, Jiandie Lin, Paul T. Tarr, and Bruce M. Spiegelman* Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 * To whom
    [Show full text]
  • Dephosphorylation of HDAC4 by PP2A-Bδ Unravels a New Role For
    Veloso et et al. al.CellCell Death Death and and Disease Disease (2019) 10:512 (2019) 10:512 Page 1 of 16 https://doi.org/10.1038/s41419-019-1743-6 Cell Death & Disease ARTICLE Open Access Dephosphorylation of HDAC4 by PP2A-Bδ unravels a new role for the HDAC4/MEF2 axis in myoblast fusion Alexandra Veloso1,2, Maud Martin1,2,3, Jonathan Bruyr1,2,TinaO’Grady1,2, Christophe Deroanne1,4, Denis Mottet1,2, Jean-Claude Twizere1,2, Thomas Cherrier1,2,5 and Franck Dequiedt1,2 Abstract Muscle formation is controlled by a number of key myogenic transcriptional regulators that govern stage-specific gene expression programs and act as terminal effectors of intracellular signaling pathways. To date, the role of phosphatases in the signaling cascades instructing muscle development remains poorly understood. Here, we show that a specific PP2A-B55δ holoenzyme is necessary for skeletal myogenesis. The primary role of PP2A-B55δ is to dephosphorylate histone deacetylase 4 (HDAC4) following myocyte differentiation and ensure repression of Myocyte enhancer factor 2D (MEF2D)-dependent gene expression programs during myogenic fusion. As a crucial HDAC4/MEF2D target gene that governs myocyte fusion, we identify ArgBP2, an upstream inhibitor of Abl, which itself is a repressor of CrkII signaling. Consequently, cells lacking PP2A-B55δ show upregulation of ArgBP2 and hyperactivation of CrkII downstream effectors, including Rac1 and FAK, precluding cytoskeletal and membrane rearrangements associated with myoblast fusion. Both in vitro and in zebrafish, loss-of-function of PP2A-B55δ severely impairs fusion of myocytes and formation of multinucleated muscle fibers, without affecting myoblast differentiation. Taken together, our results establish PP2A-B55δ as the first protein phosphatase to be involved in myoblast fusion and suggest that reversible phosphorylation of HDAC4 may coordinate differentiation and fusion events during myogenesis.
    [Show full text]
  • Global Mef2 Target Gene Analysis in Skeletal and Cardiac Muscle
    GLOBAL MEF2 TARGET GENE ANALYSIS IN SKELETAL AND CARDIAC MUSCLE STEPHANIE ELIZABETH WALES A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGY YORK UNIVERSITY TORONTO, ONTARIO FEBRUARY 2016 © Stephanie Wales 2016 ABSTRACT A loss of muscle mass or function occurs in many genetic and acquired pathologies such as heart disease, sarcopenia and cachexia which are predominantly found among the rapidly increasing elderly population. Developing effective treatments relies on understanding the genetic networks that control these disease pathways. Transcription factors occupy an essential position as regulators of gene expression. Myocyte enhancer factor 2 (MEF2) is an important transcription factor in striated muscle development in the embryo, skeletal muscle maintenance in the adult and cardiomyocyte survival and hypertrophy in the progression to heart failure. We sought to identify common MEF2 target genes in these two types of striated muscles using chromatin immunoprecipitation and next generation sequencing (ChIP-seq) and transcriptome profiling (RNA-seq). Using a cell culture model of skeletal muscle (C2C12) and primary cardiomyocytes we found 294 common MEF2A binding sites within both cell types. Individually MEF2A was recruited to approximately 2700 and 1600 DNA sequences in skeletal and cardiac muscle, respectively. Two genes were chosen for further study: DUSP6 and Hspb7. DUSP6, an ERK1/2 specific phosphatase, was negatively regulated by MEF2 in a p38MAPK dependent manner in striated muscle. Furthermore siRNA mediated gene silencing showed that MEF2D in particular was responsible for repressing DUSP6 during C2C12 myoblast differentiation. Using a p38 pharmacological inhibitor (SB 203580) we observed that MEF2D must be phosphorylated by p38 to repress DUSP6.
    [Show full text]
  • The Impact of Skeletal Muscle Erα on Mitochondrial Function And
    Copyedited by: oup MINI REVIEW The Impact of Skeletal Muscle ERα on Mitochondrial Function and Metabolic Health Downloaded from https://academic.oup.com/endo/article-abstract/161/2/bqz017/5735479 by University of Southern California user on 19 February 2020 Andrea L. Hevener1,2, Vicent Ribas1, Timothy M. Moore1, and Zhenqi Zhou1 1David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, California 90095; and 2Iris Cantor-UCLA Women’s Health Research Center, University of California, Los Angeles, California 90095 ORCiD numbers: 0000-0003-1508-4377 (A. L. Hevener). The incidence of chronic disease is elevated in women after menopause. Increased expression of ESR1 (the gene that encodes the estrogen receptor alpha, ERα) in muscle is highly associated with metabolic health and insulin sensitivity. Moreover, reduced muscle expression levels of ESR1 are observed in women, men, and animals presenting clinical features of the metabolic syndrome (MetSyn). Considering that metabolic dysfunction elevates chronic disease risk, including type 2 diabetes, heart disease, and certain cancers, treatment strategies to combat metabolic dysfunction and associated pathologies are desperately needed. This review will provide published work supporting a critical and protective role for skeletal muscle ERα in the regulation of mitochondrial function, metabolic homeostasis, and insulin action. We will provide evidence that muscle-selective targeting of ERα may be effective for the preservation of mitochondrial and metabolic health. Collectively published findings support a compelling role for ERα in the control of muscle metabolism via its regulation of mitochondrial function and quality control. Studies identifying ERα-regulated pathways essential for disease prevention will lay the important foundation for the design of novel therapeutics to improve metabolic health of women while limiting secondary complications that have historically plagued traditional hormone replacement interventions.
    [Show full text]
  • The Repression of MEF2 Transcription Factors Exerted by Class Iia Hdacs
    81,9(56,7<2)8',1( BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 3K'Course in Biomedical Sciences and Biotechnology ;;9,,&<&/( THE REPRESSION OF MEF2 TRANSCRIPTION FACTORS EXERTED BY CLASS IIA HDACS AND THEIR DEGRADATION STIMULATED BY CDK4 DETERMINE THE ACQUISITION OF HALLMARKS OF TRANSFORMATION IN FIBROBLASTS. 3K'6WXGHQW'L*LRUJLR(URV 7XWRUSURI&ODXGLR%UDQFROLQL (URV'L*LRUJLR To my family, Sara and those who believe in the research against cancer ABSTRACT 1 RIASSUNTO 2 INTRODUCTION 3 1. The HDACs world 3 2. Class IIa HDACs: similarities and differences between class IIa and class I HDACs 4 3. Class IIa HDACs: HDACs with orphan substrates or missed during evolution? 7 4. Pathways of regulation 10 a) regulation of class IIa HDACs transcription and modulation of the stability of the messengers (RNAi) 10 b) sub-cellular localization 11 5. Partners and biological functions 20 6. Class IIa HDACs as regulators of proliferation and cancer 28 7. MEF2 family of transcription factors 37 8. On the molecular basis of the MEF2-Class IIa HDACs axis: structure of MEF2/DNA, MEF2/Cabin1/DNA, MEF2/HDAC9/DNA and MEF2/DNA/p300 complexes. 38 9. Pathways of regulation 40 a) binding to repressors and co-activators 41 b) post-translational modifications 42 c) regulation of MEF2s transcription and modulation of the stability of the messengers (RNAi) 49 d) regulation of protein stability 51 10. Main functional roles 53 11. MEF2 as a regulator of differentiation programs 54 12. A lesson from the study of the knock-outs. 56 The role of MEF2s and of the MEF2-class IIa HDACs axis in myogenesis 57 The role of MEF2 TFs in cardiomyogenesis 59 The role of MEF2 TFs and of the MEF2-class IIa HDACs axis in endochondral bone ossification 59 The role of MEF2s and of the MEF2-class IIa HDACs axis in vasculogenesis and differentiation of vascular smooth muscle cells 60 The role of MEF2 TFs in neuronal development 60 The role of MEF2s in hematopoiesis and T cell development 61 The role of MEF2s in melanogenesis 62 The role of MEF2s in neural crest development 62 1.
    [Show full text]
  • Tissue-Specific Splicing of a Ubiquitously Expressed Transcription Factor Is Essential for Muscle Differentiation
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation Soji Sebastian,1 Herve´ Faralli,1,4 Zizhen Yao,2,4 Patricia Rakopoulos,1,3 Carmen Palii,1 Yi Cao,2 Kulwant Singh,1 Qi-Cai Liu,1 Alphonse Chu,1 Arif Aziz,1 Marjorie Brand,1,3 Stephen J. Tapscott,2 and F. Jeffrey Dilworth1,3,5 1Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada,; 2Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; 3Department of Cellular and Molecular Medicine, University of Ottawa, Ontario K1H 8L6, Canada Alternate splicing contributes extensively to cellular complexity by generating protein isoforms with divergent functions. However, the role of alternate isoforms in development remains poorly understood. Mef2 transcription factors are essential transducers of cell signaling that modulate differentiation of many cell types. Among Mef2 family members, Mef2D is unique, as it undergoes tissue-specific splicing to generate a muscle-specific isoform. Since the ubiquitously expressed (Mef2Da1) and muscle-specific (Mef2Da2) isoforms of Mef2D are both expressed in muscle, we examined the relative contribution of each Mef2D isoform to differentiation. Using both in vitro and in vivo models, we demonstrate that Mef2D isoforms act antagonistically to modulate differentiation. While chromatin immunoprecipitation (ChIP) sequencing analysis shows that the Mef2D isoforms bind an overlapping set of genes, only Mef2Da2 activates late muscle transcription. Mechanistically, the differential ability of Mef2D isoforms to activate transcription depends on their susceptibility to phosphorylation by protein kinase A (PKA).
    [Show full text]
  • The Function of the MEF2 Family of Transcription Factors in Cardiac Development, Cardiogenomics, and Direct Reprogramming
    Journal of Cardiovascular Development and Disease Review The Function of the MEF2 Family of Transcription Factors in Cardiac Development, Cardiogenomics, and Direct Reprogramming Cody A. Desjardins and Francisco J. Naya * Department of Biology, Program in Cell and Molecular Biology, Boston University, 24 Cummington Mall Boston, Boston, MA 02215, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-617-353-2469; Fax: +1-617-353-6340 Academic Editors: Sean M. Wu and Neil C. Chi Received: 5 June 2016; Accepted: 8 August 2016; Published: 11 August 2016 Abstract: Proper formation of the mammalian heart requires precise spatiotemporal transcriptional regulation of gene programs in cardiomyocytes. Sophisticated regulatory networks have evolved to not only integrate the activities of distinct transcription factors to control tissue-specific gene programs but also, in many instances, to incorporate multiple members within these transcription factor families to ensure accuracy and specificity in the system. Unsurprisingly, perturbations in this elaborate transcriptional circuitry can lead to severe cardiac abnormalities. Myocyte enhancer factor–2 (MEF2) transcription factor belongs to the evolutionarily conserved cardiac gene regulatory network. Given its central role in muscle gene regulation and its evolutionary conservation, MEF2 is considered one of only a few core cardiac transcription factors. In addition to its firmly established role as a differentiation factor, MEF2 regulates wide variety of, sometimes antagonistic, cellular processes such as cell survival and death. Vertebrate genomes encode multiple MEF2 family members thereby expanding the transcriptional potential of this core transcription factor in the heart. This review highlights the requirement of the MEF2 family and their orthologs in cardiac development in diverse animal model systems.
    [Show full text]