Survey Methods and Practices

Total Page:16

File Type:pdf, Size:1020Kb

Survey Methods and Practices Catalogue no. 12-587-X Survey Methods and Practices How to obtain more information For information about this product or the wide range of services and data available from Statistics Canada, visit our website at www.statcan.gc.ca, e-mail us at [email protected], or telephone us, Monday to Friday from 8:30 a.m. to 4:30 p.m., at the following numbers: Statistics Canada’s National Contact Centre Toll-free telephone (Canada and United States): Inquiries line 1-800-263-1136 National telecommunications device for the hearing impaired 1-800-363-7629 Fax line 1-877-287-4369 Local or international calls: Inquiries line 1-613-951-8116 Fax line 1-613-951-0581 Depository Services Program Inquiries line 1-800-635-7943 Fax line 1-800-565-7757 To access this product This product, Catalogue no. 12-587-X, is available free in electronic format. To obtain a single issue, visit our website at www.statcan.gc.ca and browse by “Key resource” > “Publications.” Standards of service to the public Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner. To this end, Statistics Canada has developed standards of service that its employees observe. To obtain a copy of these service standards, please contact Statistics Canada toll-free at 1-800-263-1136. The service standards are also published on www.statcan.gc.ca under “About us” > “The agency” > “Providing services to Canadians.” Statistics Canada Survey Methods and Practices Published by authority of the Minister responsible for Statistics Canada © Minister of Industry, 2010 All rights reserved. The content of this electronic publication may be reproduced, in whole or in part, and by any means, without further permission from Statistics Canada, subject to the following conditions: that it be done solely for the purposes of private study, research, criticism, review or newspaper summary, and/or for non-commercial purposes; and that Statistics Canada be fully acknowledged as follows: Source (or “Adapted from”, if appropriate): Statistics Canada, year of publication, name of product, catalogue number, volume and issue numbers, reference period and page(s). Otherwise, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, by any means—electronic, mechanical or photocopy—or for any purposes without prior written permission of Licensing Services, Client Services Division, Statistics Canada, Ottawa, Ontario, Canada K1A 0T6. Originally published in October 2003 Catalogue no. 12-587-X ISBN 978-1-100-16410-6 Frequency: Occasional Ottawa Cette publication est également disponible en français. Note of appreciation Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued cooperation and goodwill. National Library of Canada Cataloguing in Publication Data Main entry under title: Survey methods and practices Issued also in French under title: Méthodes et pratiques d’enquête. ISBN 0-660-19050-8 CS12-587-XPE 1. Surveys – Methodology. 2. Household Surveys – Methodology. 3. Questionnaires – Design. 4. Sampling (Statistics) – Methodology. I. Statistics Canada. II. Statistics Canada. Social Survey Methods Division. III. Title. HA37.C3 S87 2003 001.4’33 C2003-988000-1 Preface I am very proud of the Statistics Canada publication Survey Methods and Practices. It is a real achievement and marks the culmination of the efforts of a large number of staff at Statistics Canada, particularly in the Survey Methodology Divisions, and I should like to express my sincere thanks and appreciation to them all. This publication has benefited from courses given to Statistics Canada staff, workshops given to clients and courses given on censuses and surveys to African and Latin American statisticians. Of particular note is Statistics Canada’s unique and innovative Survey Skills Development Course, which has been given on more than 80 occasions to over 2,000 staff at Statistics Canada, as well as to staff from other national statistical agencies. It was given particular impetus by the production of the Survey Skills Development Manual for the National Bureau of Statistics of China under the auspices of the Canada – China Statistical Co-operation Program. The main use of this publication will be in support of the Survey Skills Development Course and I feel that it will become required reading and a reference for all employees at Statistics Canada involved in survey-related work. I hope it will also be useful to statisticians in other agencies, as well as to students of survey design and methods courses for whom it could serve as a source of insights into survey practices. Ottawa Dr. Ivan P. Fellegi October 2003 Chief Statistician of Canada Foreword This manual is primarily a practical guide to survey planning, design and implementation. It covers many of the issues related to survey taking and many of the basic methods that can be usefully incorporated into the design and implementation of a survey. The manual does not replace informed expertise and sound judgement, but rather is intended to help build these by providing insight on what is required to build efficient and high quality surveys, and on the effective and appropriate use of survey data in analysis. It originated as part of the Canada – China Statistical Co-operation Program, funded by the Canadian International Development Agency. The manual developed for that program was designed to assist the National Bureau of Statistics of China as part of its national statistical training program. It was accompanied by a Case Study that covered the main points of the manual through the use of a hypothetical survey. The China manual and Case Study were revised and modified to yield this manual for use at Statistics Canada, particularly as a companion reference and tool for the Statistics Canada Survey Skills Development Course. Although the main focus of the manual is the basic survey concepts useful to all readers, some chapters are more technical than others. The general reader may selectively study the sections of these technical chapters by choosing to skip the more advanced material noted below. The first five chapters cover the general aspects of survey design including: - an introduction to survey concepts and the planning of a survey (Chapter 1); - how to formulate the survey objectives (Chapter 2); - general considerations in the survey design (Chapter 3), such as: - whether to conduct a sample survey or a census; - how to define the population to be surveyed; - different types of survey frames; - sources of error in a survey; - methods of collecting survey data (Chapter 4), such as: - self-enumeration, personal interview or telephone interview; - computer-assisted versus paper based questionnaires; and - how to design a questionnaire (Chapter 5). Chapters 6, 7 and 8 cover more technical aspects of the design of a sample survey: - how to select a sample (Chapter 6); - how to estimate characteristics of the population (Chapter 7); - how to determine the sample size and allocate the sample across strata (Chapter 8). In Chapter 7, the more advanced technical material begins with section 7.3 Estimating the Sampling Error of Survey Estimates. In Chapter 8, the formulas used to determine sample size, requiring more technical understanding, begin with section 8.1.3 Sample Size Formulas. Chapter 9 covers the main operations involved in data collection and how data collection operations can be organised. Chapter 10 discusses how responses to a questionnaire are processed to obtain a complete survey data file. The more technically advanced material begins with section 10.4.1 Methods of Imputation. Chapter 11 covers data analysis. The more technically advanced material in this chapter is covered in section 11.4 Testing Hypotheses About a Population: Continuous Variables. Chapter 12 deals with how data are disseminated to users and avoiding disclosure of individual data or data for a particular group of individuals. Chapter 13 treats the issues involved in planning and managing a survey. This chapter is a non- technical chapter, aimed at potential survey managers or those who would be interested in or who are involved in planning and managing a survey. In addition to these 13 chapters, there are two appendices. Appendix A addresses the use of administrative data – data that have been collected by government agencies, hospitals, schools, etc., for administrative rather than statistical purposes. Appendix B covers quality control and quality assurance, two methods that can be applied to various survey steps in order to minimise and control errors. Acknowledgements Thanks are due to the many Statistics Canada employees who contributed to the preparation of Survey Methods and Practices, in particular: Editors: Sarah Franklin and Charlene Walker. Reviewers: Jean-René Boudreau, Richard Burgess, David Dolson, Jean Dumais, Allen Gower, Michel Hidiroglou, Claude Julien, Frances Laffey, Pierre Lavallée, Andrew Maw, Jean-Pierre Morin, Walter Mudryk, Christian Nadeau, Steven Rathwell, Georgia Roberts, Linda Standish, Jean-Louis Tambay. Reviewer of the French translation: Jean Dumais. Thanks are also due to everyone who contributed to the preparation of the original China Survey Skills Manual, in particular: Project Team: Richard Burgess, Jean Dumais, Sarah Franklin, Hew Gough, Charlene Walker.
Recommended publications
  • E-Survey Methodology
    Chapter I E-Survey Methodology Karen J. Jansen The Pennsylvania State University, USA Kevin G. Corley Arizona State University, USA Bernard J. Jansen The Pennsylvania State University, USA ABSTRACT With computer network access nearly ubiquitous in much of the world, alternative means of data col- lection are being made available to researchers. Recent studies have explored various computer-based techniques (e.g., electronic mail and Internet surveys). However, exploitation of these techniques requires careful consideration of conceptual and methodological issues associated with their use. We identify and explore these issues by defining and developing a typology of “e-survey” techniques in organiza- tional research. We examine the strengths, weaknesses, and threats to reliability, validity, sampling, and generalizability of these approaches. We conclude with a consideration of emerging issues of security, privacy, and ethics associated with the design and implications of e-survey methodology. INTRODUCTION 1999; Oppermann, 1995; Saris, 1991). Although research over the past 15 years has been mixed on For the researcher considering the use of elec- the realization of these benefits (Kiesler & Sproull, tronic surveys, there is a rapidly growing body of 1986; Mehta & Sivadas, 1995; Sproull, 1986; Tse, literature addressing design issues and providing Tse, Yin, Ting, Yi, Yee, & Hong, 1995), for the laundry lists of costs and benefits associated with most part, researchers agree that faster response electronic survey techniques (c.f., Lazar & Preece, times and decreased costs are attainable benefits, 1999; Schmidt, 1997; Stanton, 1998). Perhaps the while response rates differ based on variables three most common reasons for choosing an e-sur- beyond administration mode alone.
    [Show full text]
  • Introduction to Social Statistics
    SOCY 3400: INTRODUCTION TO SOCIAL STATISTICS MWF 11-12:00; Lab PGH 492 (sec. 13748) M 2-4 or (sec. 13749)W 2-4 Professor: Jarron M. Saint Onge, Ph.D. Office: PGH 489 Phone: (713) 743-3962 Email: [email protected] Office Hours: MW 10-11 (Please email) or by appointment Teaching Assistant: TA Email: Office Hours: TTh 10-12 or by appointment Required Text: McLendon, M. K. 2004. Statistical Analysis in the Social Sciences. Additional materials will be distributed through WebCT COURSE DESCRIPTION: Sociological research relies on experience with both qualitative (e.g. interviews, participant observation) and quantitative methods (e.g., statistical analyses) to investigate social phenomena. This class focuses on learning quantitative methods for furthering our knowledge about the world around us. This class will help students in the social sciences to gain a basic understanding of statistics, whether to understand, critique, or conduct social research. The course is divided into three main sections: (1) Descriptive Statistics; (2) Inferential Statistics; and (3) Applied Techniques. Descriptive statistics will allow you to summarize and describe data. Inferential Statistics will allow you to make estimates about a population (e.g., this entire class) based on a sample (e.g., 10 or 12 students in the class). The third section of the course will help you understand and interpret commonly used social science techniques that will help you to understand sociological research. In this class, you will learn concepts associated with social statistics. You will learn to understand and grasp the concepts, rather than only focusing on getting the correct answers.
    [Show full text]
  • THE HISTORY and DEVELOPMENT of STATISTICS in BELGIUM by Dr
    THE HISTORY AND DEVELOPMENT OF STATISTICS IN BELGIUM By Dr. Armand Julin Director-General of the Belgian Labor Bureau, Member of the International Statistical Institute Chapter I. Historical Survey A vigorous interest in statistical researches has been both created and facilitated in Belgium by her restricted terri- tory, very dense population, prosperous agriculture, and the variety and vitality of her manufacturing interests. Nor need it surprise us that the successive governments of Bel- gium have given statistics a prominent place in their affairs. Baron de Reiffenberg, who published a bibliography of the ancient statistics of Belgium,* has given a long list of docu- ments relating to the population, agriculture, industry, commerce, transportation facilities, finance, army, etc. It was, however, chiefly the Austrian government which in- creased the number of such investigations and reports. The royal archives are filled to overflowing with documents from that period of our history and their very over-abun- dance forms even for the historian a most diflScult task.f With the French domination (1794-1814), the interest for statistics did not diminish. Lucien Bonaparte, Minister of the Interior from 1799-1800, organized in France the first Bureau of Statistics, while his successor, Chaptal, undertook to compile the statistics of the departments. As far as Belgium is concerned, there were published in Paris seven statistical memoirs prepared under the direction of the prefects. An eighth issue was not finished and a ninth one * Nouveaux mimoires de I'Acadimie royale des sciences et belles lettres de Bruxelles, t. VII. t The Archives of the kingdom and the catalogue of the van Hulthem library, preserved in the Biblioth^que Royale at Brussells, offer valuable information on this head.
    [Show full text]
  • Precept 8: Some Review, Heteroskedasticity, and Causal Inference Soc 500: Applied Social Statistics
    Precept 8: Some review, heteroskedasticity, and causal inference Soc 500: Applied Social Statistics Alex Kindel Princeton University November 15, 2018 Alex Kindel (Princeton) Precept 8 November 15, 2018 1 / 27 Learning Objectives 1 Review 1 Calculating error variance 2 Interaction terms (common support, main effects) 3 Model interpretation ("increase", "intuitively") 4 Heteroskedasticity 2 Causal inference with potential outcomes 0Thanks to Ian Lundberg and Xinyi Duan for material and ideas. Alex Kindel (Princeton) Precept 8 November 15, 2018 2 / 27 Calculating error variance We have some data: Y, X, Z. We think the correct model is Y = X + Z + u. We estimate this conditional expectation using OLS: Y = β0 + β1X + β2Z We want to know the standard error of β1. Standard error of β1 r ^2 ^ 1 σu 2 2 SE(βj ) = 2 Pn 2 , where Rj is the R of a regression of 1−Rj i=1(xij −x¯j ) variable j on all others. ^2 Question: What is σu? Alex Kindel (Princeton) Precept 8 November 15, 2018 3 / 27 Calculating error variance P 2 ^2 i u^i σu = DFresid You can adjust this in finite samples by u¯^ (why?) Alex Kindel (Princeton) Precept 8 November 15, 2018 4 / 27 Interaction terms Y = β0 + β1X + β2Z + β3XZ Assume X ∼ N (?; ?) and Z 2 f0; 1g Alex Kindel (Princeton) Precept 8 November 15, 2018 5 / 27 Interaction terms Y = β0 + β1X + β2Z + β3XZ Scenario 1 When Z = 0, X ∼ N (3; 4) When Z = 1, X ∼ N (−3; 2) Do you think an interaction term is justified here? Alex Kindel (Princeton) Precept 8 November 15, 2018 6 / 27 Interaction terms Y = β0 + β1X + β2Z + β3XZ Scenario
    [Show full text]
  • A Meta-Analysis Examining the Impact of Computer-Assisted Instruction on Postsecondary Statistics Education: 40 Years of Research JRTE | Vol
    A Meta-Analysis Examining the Impact of Computer-Assisted Instruction on Postsecondary Statistics Education: 40 Years of Research JRTE | Vol. 43, No. 3, pp. 253–278 | ©2011 ISTE | iste.org A Meta-Analysis Examining the Impact of Computer-Assisted Instruction on Postsecondary Statistics Education: 40 Years of Research Karen Larwin Youngstown State University David Larwin Kent State University at Salem Abstract The present meta-analysis is a comprehensive investigation of the effectiveness of computer-assisted instruction (CAI) on student achievement in postsec- ondary statistics education across a forty year period of time. The researchers calculated an overall effect size of 0.566 from 70 studies, for a total of 219 effect-size measures from a sample of n = 40,125 participants. These results suggest that the typical student moved from the 50th percentile to the 73rd percentile when technology was used as part of the curriculum. This study demonstrates that subcategories can further the understanding of how the use of CAI in statistics education might be maximized. The study discusses im- plications and limitations. (Keywords: statistics education, computer-assisted instruction, meta-analysis) iscovering how students learn most effectively is one of the major goals of research in education. During the last 30 years, many re- Dsearchers and educators have called for reform in the area of statistics education in an effort to more successfully reach the growing population of students, across an expansive variety of disciplines, who are required to complete coursework in statistics (e.g., Cobb, 1993, 2007; Garfield, 1993, 1995, 2002; Giraud, 1997; Hogg, 1991; Lindsay, Kettering, & Siegmund, 2004; Moore, 1997; Roiter, & Petocz, 1996; Snee, 1993;Yilmaz, 1996).
    [Show full text]
  • Report on Exact and Statistical Matching Techniques
    Statistical Policy Working Papers are a series of technical documents prepared under the auspices of the Office of Federal Statistical Policy and Standards. These documents are the product of working groups or task forces, as noted in the Preface to each report. These Statistical Policy Working Papers are published for the purpose of encouraging further discussion of the technical issues and to stimulate policy actions which flow from the technical findings and recommendations. Readers of Statistical Policy Working Papers are encouraged to communicate directly with the Office of Federal Statistical Policy and Standards with additional views, suggestions, or technical concerns. Office of Joseph W. Duncan Federal Statistical Director Policy Standards For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Statistical Policy Working Paper 5 Report on Exact and Statistical Matching Techniques Prepared by Subcommittee on Matching Techniques Federal Committee on Statistical Methodology DEPARTMENT OF COMMERCE UNITED STATES OF AMERICA U.S. DEPARTMENT OF COMMERCE Philip M. Klutznick Courtenay M. Slater, Chief Economist Office of Federal Statistical Policy and Standards Joseph W. Duncan, Director Issued: June 1980 Office of Federal Statistical Policy and Standards Joseph W. Duncan, Director Katherine K. Wallman, Deputy Director, Social Statistics Gaylord E. Worden, Deputy Director, Economic Statistics Maria E. Gonzalez, Chairperson, Federal Committee on Statistical Methodology Preface This working paper was prepared by the Subcommittee on Matching Techniques, Federal Committee on Statistical Methodology. The Subcommittee was chaired by Daniel B. Radner, Office of Research and Statistics, Social Security Administration, Department of Health and Human Services. Members of the Subcommittee include Rich Allen, Economics, Statistics, and Cooperatives Service (USDA); Thomas B.
    [Show full text]
  • Committee on National Statistics
    January 20, 2010 News from the Committee on National Statistics PEOPLE NEWS >We note with great sadness the untimely death on December 17, 2010, from complications of cancer, of Dr. Phyllis Kaniss, executive director of the American Academy of Political and Social Science (AAPSS) and a longtime teaching faculty member at the Annenberg School for Communication at the University of Pennsylvania (see http://www.asc.upenn.edu/News/NewsDetail.aspx?nid=816&ntype=faculty). She was the author of Making Local News (University of Chicago Press, 1991) and The Media and the Mayor’s Race: The Failure of Urban Political Reporting (Indiana University Press, 1995), which won the 1995 Bart Richards Award for media criticism. In 1999, she created the Student Voices Project, a youth civic engagement initiative of the Annenberg Public Policy Center that worked with school systems in cities throughout the country. Dr. Kaniss received a B.A. degree from the University of Pennsylvania and a Ph.D. in regional science from Cornell University. Her connection with CNSTAT is that she worked tirelessly and enthusiastically with our staff and members to organize the very successful joint CNSTAT-AAPSS Symposium on the Federal Statistical System—Recognizing Its Contributions; Moving It Forward that was held at the National Academies on May 8, 2009, and resulted in a special volume of the Annals of the AAPSS, edited by Ken Prewitt, ―The Federal Statistical System: Its Vulnerability Matters More than You Think‖ (http://www.sagepub.com/books/Book235999). We will miss Phyllis’s good cheer and extraordinary skills in furthering the use of social science to address important social problems.
    [Show full text]
  • 2021 RHFS Survey Methodology
    2021 RHFS Survey Methodology Survey Design For purposes of this document, the following definitions are provided: • Building—a separate physical structure identified by the respondent containing one or more units. • Property—one or more buildings owned by a single entity (person, group, leasing company, and so on). For example, an apartment complex may have several buildings but they are owned as one property. Target population: All rental housing properties in the United States, circa 2020. Sampling frame: The RHFS sample frame is a single frame based on a subset of the 2019 American Housing Survey (AHS) sample units. The RHFS frame included all 2019 AHS sample units that were identified as: 1. Rented or occupied without payment of rent. 2. Units that are owner occupied and listed as “for sale or rent”. 3. Vacant units for rent, for rent or sale, or rented but not yet occupied. By design, the RHFS sample frame excluded public housing and transient housing types (i.e. boat, RV, van, other). Public housing units are identified in the AHS through a match with the Department of Housing and Urban Development (HUD) administrative records. The RHFS frame is derived from the AHS sample, which is itself composed of housing units derived from the Census Bureau Master Address File. The AHS sample frame excludes group quarters housing. Group quarters are places where people live or stay in a group living arrangement. Examples include dormitories, residential treatment centers, skilled nursing facilities, correctional facilities, military barracks, group homes, and maritime or military vessels. As such, all of these types of group quarters housing facilities are, by design, excluded from the RHFS.
    [Show full text]
  • A Meta-Analysis of the Effect of Concurrent Web Options on Mail Survey Response Rates
    When More Gets You Less: A Meta-Analysis of the Effect of Concurrent Web Options on Mail Survey Response Rates Jenna Fulton and Rebecca Medway Joint Program in Survey Methodology, University of Maryland May 19, 2012 Background: Mixed-Mode Surveys • Growing use of mixed-mode surveys among practitioners • Potential benefits for cost, coverage, and response rate • One specific mixed-mode design – mail + Web – is often used in an attempt to increase response rates • Advantages: both are self-administered modes, likely have similar measurement error properties • Two strategies for administration: • “Sequential” mixed-mode • One mode in initial contacts, switch to other in later contacts • Benefits response rates relative to a mail survey • “Concurrent” mixed-mode • Both modes simultaneously in all contacts 2 Background: Mixed-Mode Surveys • Growing use of mixed-mode surveys among practitioners • Potential benefits for cost, coverage, and response rate • One specific mixed-mode design – mail + Web – is often used in an attempt to increase response rates • Advantages: both are self-administered modes, likely have similar measurement error properties • Two strategies for administration: • “Sequential” mixed-mode • One mode in initial contacts, switch to other in later contacts • Benefits response rates relative to a mail survey • “Concurrent” mixed-mode • Both modes simultaneously in all contacts 3 • Mixed effects on response rates relative to a mail survey Methods: Meta-Analysis • Given mixed results in literature, we conducted a meta- analysis
    [Show full text]
  • A Computationally Efficient Method for Selecting a Split Questionnaire Design
    Iowa State University Capstones, Theses and Creative Components Dissertations Spring 2019 A Computationally Efficient Method for Selecting a Split Questionnaire Design Matthew Stuart Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Social Statistics Commons Recommended Citation Stuart, Matthew, "A Computationally Efficient Method for Selecting a Split Questionnaire Design" (2019). Creative Components. 252. https://lib.dr.iastate.edu/creativecomponents/252 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A Computationally Efficient Method for Selecting a Split Questionnaire Design Matthew Stuart1, Cindy Yu1,∗ Department of Statistics Iowa State University Ames, IA 50011 Abstract Split questionnaire design (SQD) is a relatively new survey tool to reduce response burden and increase the quality of responses. Among a set of possible SQD choices, a design is considered as the best if it leads to the least amount of information loss quantified by the Kullback-Leibler divergence (KLD) distance. However, the calculation of the KLD distance requires computation of the distribution function for the observed data after integrating out all the missing variables in a particular SQD. For a typical survey questionnaire with a large number of categorical variables, this computation can become practically infeasible. Motivated by the Horvitz-Thompson estima- tor, we propose an approach to approximate the distribution function of the observed in much reduced computation time and lose little valuable information when comparing different choices of SQDs.
    [Show full text]
  • Chi Square Survey Questionnaire
    Chi Square Survey Questionnaire andCoptic polo-neck and monoclonal Guido catholicizes Petey slenderize while unidirectional her bottom tigerishness Guthrie doffs encased her lamplighter and cricks documentarily necromantically. and interlinedMattery disinterestedly,queenly. Garcon offerable enskied andhis balderdashesmanufactural. trivializes mushily or needily after Aamir ethylate and rainproof Chi Square test of any Contingency Table because Excel. Comparing frequencies Chi-Square tests Manny Gimond. Are independent of squared test have two tests are the. The Chi Squared Test is a statistical test that already often carried out connect the start of they intended geographical investigation. OpenStax Statistics CH11THE CHI-SQUARE Top Hat. There are classified according to chi square survey questionnaire. You can only includes a questionnaire can take these. ANOVA Regression and Chi-Square Educational Research. T-Tests & Survey Analysis SurveyMonkey. Aids victims followed the survey analysis has a given by using likert? Square test of questionnaires, surveys frequently scared to watch horror movies too small? In short terms with are regression tests t-test ANOVA chi square and. What you calculate a survey solution is two columns of questionnaires, surveys frequently than to download reports! Using Cross Tabulation and Chi-Square The Survey Says. The Chi-Square Test for Independence Department of. And you'll must plug the research into a chi-square test for independence. Table 4a reports the responses to questions 213 in framework study survey. What output it mean look the chi square beauty is high? Completing the survey and surveys frequently ask them? Chi square test is rejected: the survey in surveys, is the population, explain that minority male and choose your dv the population of.
    [Show full text]
  • Methodology, Survey, Statistics, Demography, Economics, History, Political Science, Sociology, Information and Communication
    EQUIPEX Acronym CALL FOR PROPOSALS DIME-SHS 2010 SCIENTIFIC SUBMISSION FORM B Acronym of the project DIME-SHS Titre du projet en Données, Infrastructure, Méthodes d'Enquêtes en Sciences français humaines et sociales Data, Infrastructure, Methods of investigation in the social sciences Project title in English and humanities Name: Laurent Lesnard Institution: Sciences Po Coordinator of the Laboratory: CDSP – Centre de données socio-politiques / Centre for project socio-political data Unit number: UMS 828 Tranche 1/Phase 1 Tranche 2/Phase 2 Requested funding 16 811 197 € 552 407 € □ health, well-being, nutrition and biotechnologies □ environmental urgency, eco-technologies Disciplinary field □ information, communication and nanotechnologies social sciences and humanities □ other disciplinary area Methodology, survey, statistics, demography, economics, Scientific areas history, political science, sociology, information and communication Organization of the coordinating partner Laboratory/Institution(s) Unit number Research organization CDSP / Sciences Po UMS 828 Sciences Po / CNRS Affiliations des partenaires au projet/Organization of the partner(s) Laboratory/Institution(s) Unit number Research organization GENES SES / Ined Université Paris CERLIS / Université Paris Descartes UMR 8070 Descartes/CNRS/Université Paris 3 Telecom ParisTech UMR 5141 Telecom ParisTech/CNRS CNRS/EHESS/INED/ Université GIS Réseau Quetelet de Caen Company Staff size Economic sector EDF R&D Energy 2000 1/66 EQUIPEX Acronym CALL FOR PROPOSALS DIME-SHS 2010 SCIENTIFIC SUBMISSION FORM B 1. SCIENTIFIC ENVIRONMENT AND POSITIONING OF THE EQUIPMENT PROJECT .......... 5 2. TECHNICAL AND SCIENTIFIC DESCRIPTION OF THE ACTIVITIES ......................... 9 2.1. Originality and innovative features of the equipment project..............................9 2.2. Description of the project....................................................................................11 2.2.1 Scientific programme 11 2.2.2 Structure and building of the equipment 16 2.2.3 Technical environment 18 3.
    [Show full text]