GAMES and SUPERTASKS Copia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Set Theory of Infinite Imperfect Information Games
SET THEORY OF INFINITE IMPERFECT INFORMATION GAMES BENEDIKT LOWEÄ Abstract. We survey the recent developments in the investigation of Blackwell determinacy axioms. It is generally believed that ordi- nary (Gale-Stewart) determinacy and Blackwell determinacy for in¯nite games are equivalent in a strong sense, but this conjecture (of Tony Mar- tin's) has not yet been proved. The paper is a snapshot of the current state-of-the-art knowledge in this area. 1. Introduction For most mathematicians, the term \game theory" evokes associations of applications in Economics and Computer Science: it is often associated with the Prisoner's Dilemma or other applications in the social sciences. Game theory is not perceived as an area of mathematics but rather as an area in which mathematics is applicable. In addition to this famous area of game theory that has been repeatedly honoured by the Nobel Prize for Economics, games also play an important r^ole in mathematics and computer science, often connected with logic. We use the name Logic & Games for the research ¯eld that connects techniques from logic in order to investigate games, or game theoretic methods in order to prove theorems of logic. This ¯eld itself is broad and has many sub¯elds that are as diverse as logic itself. One of its sub¯elds is the set theoretic study of in¯nite games. It was the Polish school of topologists and measure theorists that con- nected game theory to set theory. According to Steinhaus [St165, p. 464], Banach and Mazur knew in the 1930s that there is a non-determined in¯- nite game (constructed by a use of the axiom of choice) and that there is a connection between games and the Baire property. -
Dissertation.Pdf
Limited Information Strategies for Topological Games by Steven Clontz A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 9, 2015 Keywords: topology, uniform spaces, infinite games, limited information strategies Copyright 2015 by Steven Clontz Approved by Gary Gruenhage, Chair, Professor Emeritus of Mathematics and Statistics Stewart Baldwin, Professor of Mathematics and Statistics Chris Rodger, Professor of Mathematics and Statistics Michel Smith, Professor of Mathematics and Statistics George Flowers, Dean of the Graduate School Abstract A topological game G(X) is a two-player game which characterizes properties of a topo- logical space X based upon the existence of winning perfect-information strategies for players in the game. If the property P is characterized by a player having a winning perfect infor- mation strategy, then a property stronger than P is characterized by that player having a winning limited information strategy. This paper investigates the existence of limited infor- mation strategies for four types of topological games from the literature, and the topological properties characterized by those strategies. ii Acknowledgments I'm very grateful for the support of all my friends and family during the completion of this manuscript, particularly for all the faculty members and graduate student colleagues I've worked with over the years at Auburn. I'd like especially to thank my adviser Gary Gru- enhage for all his support and insight on writing this paper and beginning my mathematical career. This dissertation is dedicated to my wife Jessica, for her love and encouragement. -
Domain Representability and Topological Completeness
University of Dayton eCommons Honors Theses University Honors Program Spring 4-2016 Domain Representability and Topological Completeness Matthew D. DeVilbiss University of Dayton Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses Part of the Geometry and Topology Commons eCommons Citation DeVilbiss, Matthew D., "Domain Representability and Topological Completeness" (2016). Honors Theses. 84. https://ecommons.udayton.edu/uhp_theses/84 This Honors Thesis is brought to you for free and open access by the University Honors Program at eCommons. It has been accepted for inclusion in Honors Theses by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Domain Representability and Topological Completeness Honors Thesis Matthew D. DeVilbiss Department: Mathematics Advisor: Lynne Yengulalp, Ph.D. April 2016 Domain Representability and Topological Completeness Honors Thesis Matthew D. DeVilbiss Department: Mathematics Advisor: Lynne Yengulalp, Ph.D. April 2016 Abstract Topological completeness properties seek to generalize the definition of complete metric space to the context of topologies. Chapter 1 gives an overview of some of these properties. Chapter 2 introduces domain theory, a field originally intended for use in theoretical computer science. Finally, Chapter 3 examines how this computer-scientific notion can be employed in the study of topological completeness in the form of domain representability. The connections between domain representability -
Generalized Polish Spaces at Regular Uncountable Cardinals 3
GENERALIZED POLISH SPACES AT REGULAR UNCOUNTABLE CARDINALS CLAUDIO AGOSTINI, LUCA MOTTO ROS, AND PHILIPP SCHLICHT Abstract. In the context of generalized descriptive set theory, we systemat- ically compare and analyze various notions of Polish-like spaces and standard κ-Borel spaces for κ an uncountable (regular) cardinal satisfying κ<κ = κ. As a result, we obtain a solid framework where one can develop the theory in full generality. We also provide natural characterizations of the generalized Cantor and Baire spaces. Some of the results obtained considerably extend previous work from [CS16, Gal19, LS15], and answer some questions contained therein. Contents 1. Introduction 1 2. Polish-like spaces 3 2.1. Definitions... 3 2.2. ...and their relationships 7 3. Characterizations of κκ andκ 2 22 4. Standard κ-Borel spaces 30 5. Final remarks and open questions 35 References 41 1. Introduction Generalized descriptive set theory is a very active field of research which in recent years received a lot of attention because of its deep connections with other areas such as model theory, determinacy and higher pointclasses from classical descriptive set theory, combinatorial set theory, classification of uncountable structures and non- arXiv:2107.02587v1 [math.LO] 6 Jul 2021 separable spaces, and so on. Basically, the idea is to replace ω with an uncountable cardinal in the definitions of the Baire space ωω and Cantor spaceω 2, as well as in all other topologically-related notions. For example, one considers κ-Borel sets (i.e. sets in the smallest κ+-algebra generated by the topology) instead of Borel sets, κ-Lindel¨of spaces (i.e. -
Universid Ade De Sã O Pa
Topological games and selection principles Matheus Duzi Ferreira Costa Dissertação de Mestrado do Programa de Pós-Graduação em Matemática (PPG-Mat) UNIVERSIDADE DE SÃO PAULO DE SÃO UNIVERSIDADE Instituto de Ciências Matemáticas e de Computação Instituto Matemáticas de Ciências SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP Data de Depósito: Assinatura: ______________________ Matheus Duzi Ferreira Costa Topological games and selection principles Dissertation submitted to the Institute of Mathematics and Computer Sciences – ICMC-USP – in accordance with the requirements of the Mathematics Graduate Program, for the degree of Master in Science. EXAMINATION BOARD PRESENTATION COPY Concentration Area: Mathematics Advisor: Prof. Dr. Leandro Fiorini Aurichi USP – São Carlos September 2019 Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi e Seção Técnica de Informática, ICMC/USP, com os dados inseridos pelo(a) autor(a) Duzi, Matheus D812t Topological games and selection principles / Matheus Duzi; orientador Leandro Fiorini Aurichi. - - São Carlos, 2019. 166 p. Dissertação (Mestrado - Programa de Pós-Graduação em Matemática) -- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 2019. 1. Topological games. 2. Selection principles. 3. Covering properties. 4. Tightness properties. 5. Baire spaces. I. Fiorini Aurichi, Leandro , orient. II. Título. Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2: Gláucia Maria Saia Cristianini - CRB - 8/4938 Juliana de Souza Moraes - CRB - 8/6176 Matheus Duzi Ferreira Costa Jogos topológicos e princípios seletivos Dissertação apresentada ao Instituto de Ciências Matemáticas e de Computação – ICMC-USP, como parte dos requisitos para obtenção do título de Mestre em Ciências – Matemática. EXEMPLAR DE DEFESA Área de Concentração: Matemática Orientador: Prof.