SSL Certificates in the Oracle Database Without Surprises

Total Page:16

File Type:pdf, Size:1020Kb

SSL Certificates in the Oracle Database Without Surprises SSL certificates in the Oracle Database without surprises Nelson Calero HrOUG - Croatia Oracle UG October 18th, 2019 Today’s topics • Security basis • Use cases in the Oracle Database 1. SSL for database connections 2. Email from PL/SQL 3. Oracle Enterprise Manager • Management • Troubleshooting Intended audience: DBAs and Developers 2 © 2019 Pythian Services Inc. About me • Principal Consultant at Pythian – several roles since 2014 • Working with Oracle tools and Linux environments since 1996 • DBA Oracle (2001) & MySQL (2005) • Co-founder and President of the Oracle user Group of Uruguay (2009) • LAOUC Director of events (2013) • Computer Engineer (1998) • Oracle ACE (2014), Oracle ACE Director (2017) • Oracle Certified Professional 10g/11g/12c, OCE, Cloud DB & Infra • Amazon Solutions Architect – Associate (2016) • Google Cloud Architect (2017), Google Cloud Data Engineer (2017) • Oracle University Instructor (2011) • Blogger and speaker: Oracle Open World, Collaborate, OTN Tour, Regional conferences http://www.linkedin.com/in/ncalero @ncalerouy 4 © 2019 Pythian Services Inc. Analytics & Cloud Data Solutions Database Strategy & Estate Planning Consulting - Strategy & Data Management Database Migration Plan Data Lakes / Platforms / DataOps Deploy Database Mgt Manage Data Warehouse Migration/Modernization Database Troubleshooting BI - Analytics - Visualizations Operational Data & Cloud Infrastructure Cloud Automation/DevOps Machine Learning and MLOps 500+ Technical Experts Helping Peers Globally 3 Membership Tiers Connect: • Oracle ACE Director bit.ly/OracleACEProgram [email protected] • Oracle ACE • Oracle ACE Associate Facebook.com/oracleaces @oracleace Nominate yourself or someone you know: acenomination.oracle.com Security Basis • SSL • Signatures • Public/private keys • Certificate chain • PKI • Certificate hierarchy • Certificates • Wallets • CA • Handshake • Publicly trusted CA • Protocols in Oracle versions 7 © 2019 Pythian Services Inc. Basis – Secure Sockets Layer • SSL is the standard security technology for establishing an encrypted link between a server and a client • Provides network-level authentication, data encryption, and data integrity, ensuring that all data passed between them remain private and integral • Examples: – webserver and browser – mail server and mail client • Based on Public Key Cryptography using Public Key Infrastructure (PKI) 8 © 2019 Pythian Services Inc. SSL with the Oracle database • Since 10gR2 SSL/TLS are no longer part of the Advanced Security Option • Since 12c SSL/TLS is available in Oracle Standard Edition • Enabled by default in Oracle Cloud Database services 9 © 2019 Pythian Services Inc. Basis – SSL History Protocol Year SSL 1.0 No • SSL - Secure Socket Layers Protocol SSL 2.0 1995 – Developed by Netscape SSL 3.0 1996 • TLS - Transport Layer Security Protocol TLS 1.0 1999 – new version of SSL, based on SSL 3.0 TLS 1.1 2006 – SSL 2.0 and 3.0 deprecated in 2011 and 2015 TLS 1.2 2008 • SSL and TLS protocols do not interoperate TLS 1.3 2018 • SSL Certificates do not depend on protocol • Several algorithms to use in signing stages 10 © 2019 Pythian Services Inc. Basis – SSL History Protocol Year Oracle SSL 1.0 No • SSL - Secure Socket Layers Protocol SSL 2.0 1995 – Developed by Netscape SSL 3.0 1996 • TLS - Transport Layer Security Protocol TLS 1.0 1999 11.1 (2007) – new version of SSL, based on SSL 3.0 TLS 1.1 2006 – SSL 2.0 and 3.0 deprecated in 2011 and 2015 TLS 1.2 2008 12.1 (2013) • SSL and TLS protocols do not interoperate TLS 1.3 2018 • SSL Certificates do not depend on protocol • Several algorithms to use in signing stages 11 © 2019 Pythian Services Inc. Basis – Public and private key encryption Sender Receiver Public key Encrypted Encrypted Message Message Message Message Private key Sender Public key • Also known as asymmetric encryption • Requires more computational power than symmetric encryption • Vulnerabilities: – Brute force: reduced by using larger keys – Man in the middle: resolved using signatures and Certificate Authorities (CA) 12 © 2019 Pythian Services Inc. Basis – Public Key Infrastructure (PKI) • Framework using public and privates key, certificates and method for key distribution • SSL/TLS uses a key-exchange algorithm to allow symmetric keys (hybrid cryptosystem), less computationally intensive than using asymmetric keys • Components: – Certificate Authority (CA): a trusted third party that certifies the identity of entities, such as users, databases, administrators, clients, and servers. – Certificates: created when an entity's public key is signed by a trusted certificate authority (CA). – Wallet: a container that stores authentication and signing credentials, including private keys, certificates, and trusted certificates SSL – Certificates revocation lists: validity of CA signed certificates 13 © 2019 Pythian Services Inc. Basis – Certificates • Used for authentication • Follows X.509 specification • Associates public key with an organization’s details (AKA DN): – A domain name, server name or hostname – An organizational identity (i.e. company name) and location • It also includes – CA name, the CA signature, and the certificate effective dates – Digital signature (explained later) • They can be self-signed - for use in test environments 14 © 2019 Pythian Services Inc. Basis – Certificate Authority (CA) • A third party trusted by both of the communicating parties (e.g. Verisign) • Validates, identities and issue/revoke certificates • The CA uses its private key to encrypt a message • The CA public key is well known and does not have to be authenticated each time it is accessed (browsers, wallets, etc.) • Organization can use in-house CA (e.g. MS Certificate services) 15 © 2019 Pythian Services Inc. Basis – Signature • One-way hash of the data (certificate) encrypted with signer’s private key – it cannot be reversed • Receiver validates the integrity of the data: – Receiver gets the data and signature – Data is decrypted using sender’s public key – Signature is decrypted using sender’s public key – New signature is created using same algorithm – Both new and received signature should match if data was not tampered 16 © 2019 Pythian Services Inc. Basis – Publicly Trusted CAs • A trusted third party (TTP) used as CA for the certificates • Commercial – Verisign, Digicert, GoDaddy • Web browsers includes by default public keys of TTPs CA • De-facto standard for websites, as certificates from non trusted CAs are reported by default as dangerous 17 © 2019 Pythian Services Inc. Basis – Certificate hierarchy and chain 18 https://docs.oracle.com/cd/E19424-01/820-4811/gdzen/index.html Basis – Wallet • A file storing authentication and signing credentials, including private keys, certificates, and trusted certificates SSL needs. • Oracle server and client using SSL needs a wallet file – configured in sqlnet.ora, listener.ora, optional in tnsnames.ora (instead of sqlnet) – Must be auto-login • Managed with Oracle Wallet Manager and orapki tool • Creation process for an SSL wallet: – Generate a public-private pair – Create a certificate request – Submit the certificate request to the CA – Import the signed server certificate into the wallet – Install the wallet into the server – Distribute server certificate to clients (exchange w/client) 19 © 2019 Pythian Services Inc. Basis – SSL handshake in Oracle 1) The client and server establish which cipher suites to use. This includes which encryption algorithms are used for data transfers. 2) The server sends its certificate to the client, and the client verifies that the server's certificate was signed by a trusted CA. This step verifies the identity of the server. 3) Similarly, if client authentication is required, the client sends its own certificate to the server, and the server verifies that the client's certificate was signed by a trusted CA. 4) The client and server exchange key information using public key cryptography. Based on this information, each generates a session key. All subsequent communications between the client and the server is encrypted and decrypted by using this session key and the negotiated cipher suite. 20 © 2019 Pythian Services Inc. Basis – SSL handshake in Oracle Authentication: • On a client, the user initiates an Oracle Net connection to the server by using SSL • SSL performs the handshake between the client and the server • If the handshake is successful, then the server verifies that the user has the appropriate authorization to access the database Possible configurations: - Only the server authenticates itself to the client - Both client and server authenticate themselves to each other - Neither the client nor the server authenticates itself to the other, thus using the SSL encryption feature by itself 21 © 2019 Pythian Services Inc. Basis – handshake changes in TLS v1.3 22 https://blog.cloudflare.com/introducing-tls-1-3/ Today’s topics • Security basis • Use cases in the Oracle Database 1. SSL for database connections 2. Email from PL/SQL 3. Oracle Enterprise Manager • Management • Troubleshooting 23 © 2019 Pythian Services Inc. Basis - Oracle components • Wallets – Create, import certificates, distribute to clients each time certificates change • SQL*Net configuration – $ORACLE_HOME/network/admin/${sqlnet.ora | listener.ora} – Points to wallet file (WALLET_LOCATION keyword) – Restricts protocol versions and cipher suites • Oracle home binaries (client/server) – Version and patchlevel defines protocol versions and cipher algorithms supported 24 © 2019 Pythian Services Inc. Basis – Protocols in Oracle versions Default TLS
Recommended publications
  • Installing Fake Root Keys in a PC
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Royal Holloway - Pure Installing Fake Root Keys in a PC Adil Alsaid and Chris J. Mitchell Information Security Group Royal Holloway, University of London Egham, Surrey TW20 0EX fA.Alsaid, [email protected] Abstract. If a malicious party can insert a self-issued CA public key into the list of root public keys stored in a PC, then this party could potentially do considerable harm to that PC. In this paper, we present a way to achieve such an attack for the Internet Explorer web browser root key store, which avoids attracting the user's attention. A realisation of this attack is also described. Finally, countermeasures that can be deployed to prevent such an attack are outlined. 1 Introduction As is widely known [10], most web browsers (e.g. Microsoft Internet Explorer or Netscape) have a repository of root public keys designed for use in verify- ing digitally signed public key certi¯cates. These public keys are bundled with distributions of the web browser, and are used to verify certi¯cates for applet providers [13]. Speci¯cally, web-sites may download applets to a user PC without the PC user knowing it. Depending on the security settings selected by the PC user, these applets may be executed with or without further checks. Typically, the browser will only execute the applet if the following conditions are satis¯ed. 1. The applet must be digitally signed, and the signature must verify correctly. 2.
    [Show full text]
  • Analysis of SSL Certificate Reissues and Revocations in the Wake
    Analysis of SSL Certificate Reissues and Revocations in the Wake of Heartbleed Liang Zhang David Choffnes Dave Levin Tudor Dumitra¸s Northeastern University Northeastern University University of Maryland University of Maryland [email protected] [email protected] [email protected] [email protected] Alan Mislove Aaron Schulman Christo Wilson Northeastern University Stanford University Northeastern University [email protected] [email protected] [email protected] ABSTRACT Categories and Subject Descriptors Central to the secure operation of a public key infrastruc- C.2.2 [Computer-Communication Networks]: Net- ture (PKI) is the ability to revoke certificates. While much work Protocols; C.2.3 [Computer-Communication Net- of users' security rests on this process taking place quickly, works]: Network Operations; E.3 [Data Encryption]: in practice, revocation typically requires a human to decide Public Key Cryptosystems, Standards to reissue a new certificate and revoke the old one. Thus, having a proper understanding of how often systems admin- istrators reissue and revoke certificates is crucial to under- Keywords standing the integrity of a PKI. Unfortunately, this is typi- Heartbleed; SSL; TLS; HTTPS; X.509; Certificates; Reissue; cally difficult to measure: while it is relatively easy to deter- Revocation; Extended validation mine when a certificate is revoked, it is difficult to determine whether and when an administrator should have revoked. In this paper, we use a recent widespread security vul- 1. INTRODUCTION nerability as a natural experiment. Publicly announced in Secure Sockets Layer (SSL) and Transport Layer Secu- April 2014, the Heartbleed OpenSSL bug, potentially (and rity (TLS)1 are the de-facto standards for securing Internet undetectably) revealed servers' private keys.
    [Show full text]
  • Trust Me, I'm a Root CA! Analyzing SSL Root Cas in Modern Browsers
    Trust me, I’m a Root CA! Analyzing SSL Root CAs in modern Browsers and Operating Systems Tariq Fadai, Sebastian Schrittwieser Peter Kieseberg, Martin Mulazzani Josef Ressel Center for Unified Threat Intelligence SBA Research, on Targeted Attacks, Austria St. Poelten University of Applied Sciences, Austria Email: [pkieseberg,mmulazzani]@sba-research.org Email: [is101005,sebastian.schrittwieser]@fhstp.ac.at Abstract—The security and privacy of our online communi- tected communications is dependent on the trustworthiness cations heavily relies on the entity authentication mechanisms of various companies and governments. It is therefore of provided by SSL. Those mechanisms in turn heavily depend interest to find out which companies we implicitly trust just on the trustworthiness of a large number of companies and governmental institutions for attestation of the identity of SSL by using different operating system platforms or browsers. services providers. In order to offer a wide and unobstructed In this paper an analysis of the root certificates included in availability of SSL-enabled services and to remove the need various browsers and operating systems is introduced. Our to make a large amount of trust decisions from their users, main contributions are: operating systems and browser manufactures include lists of certification authorities which are trusted for SSL entity • We performed an in-depth analysis of Root Certifi- authentication by their products. This has the problematic cate Authorities in modern operating systems and web effect that users of such browsers and operating systems browsers implicitly trust those certification authorities with the privacy • We correlated them against a variety of trust indexes of their communications while they might not even realize it.
    [Show full text]
  • The Trip to TLS Land Using the WSA Tobias Mayer, Consulting Systems Engineer BRKSEC-3006 Me…
    The Trip to TLS Land using the WSA Tobias Mayer, Consulting Systems Engineer BRKSEC-3006 Me… CCIE Security #14390, CISSP & Motorboat driving license… Working in Content Security & IPv6 Security tmayer{at}cisco.com Writing stuff at “blogs.cisco.com” Agenda • Introduction • Understanding TLS • Configuring Decryption on the WSA • Troubleshooting TLS • Thoughts about the Future • Conclusion For Your Reference • There are (many...) slides in your print-outs that will not be presented. • They are there “For your Reference” For Your Reference Microsoft and Google pushing encryption • Microsoft pushing TLS with PFS • Google, FB, Twitter encrypting all traffic • HTTPS usage influencing page ranking on google • Deprecate SHA1, only SHA2+ • Browser Vendors aggressively pushing https • Problems with older TLS versions leading to upgrade of servers to newer protocols and ciphers • Poodle, Freak, Beast, …. Google Search Engine • Google ranking influenced by using HTTPS • http://blog.searchmetrics.com/us/2015 /03/03/https-vs-http-website-ssl-tls- encryption-ranking-seo-secure- connection/ Understanding TLS TLS Versions • SSLv3, 1996 • TLS 1.0, 1999, RFC2246 • TLS 1.1, 2006, RFC4346 • Improved security • TLS 1.2, 2008, RFC5246 • Removed IDEA and DES ciphers • Stronger hashes • Supports authenticated encryption ciphers (AES-GCM) • TLS 1.3, currently Internet Draft Attacks… • POODLE • SSLv3 Problems with Padding, turn of SSLv3 • BEAST • Know issues in CBC mode, use TLS 1.1/1.2 with non-CBC mode ciphers (GCM) • CRIME/BREACH • Compression Data Leak, disable
    [Show full text]
  • SSL Insight Certificate Installation Guide Deployment Guide | SSL Insight Certificate Installation Guide
    DEPLOYMENT GUIDE SSL Insight Certificate Installation Guide Deployment Guide | SSL Insight Certificate Installation Guide Table of Contents Introduction ....................................................................................................................................................................................................................................3 Generating CA Certificates for SSL Insight ...................................................................................................................................................................3 Importing a CA Certificate and Certificate Chain onto the A10 Thunder SSLi Device .....................................................................5 Installing a Certificate in Microsoft Windows 7 for Internet Explorer..........................................................................................................6 Installing a Certificate in Google Chrome ................................................................................................................................................................10 Installing a Certificate in Mozilla Firefox .....................................................................................................................................................................13 About A10 Networks ..............................................................................................................................................................................................................15
    [Show full text]
  • Certificate Authority Trust List
    Certificate Authority Trust List First Published: January 31, 2020 Certificate Authority Trust List The following is the list of trusted Certificate Authorities embedded in the following devices: Cisco IP Phone 7800 Series, as of release 12.7 Cisco IP Phone 8800 Series, as of release 12.7 For Mobile and Remote Access through Expressway, the Expressway server must be signed against one of these Certificate Authorities. Fingerprint Subject 342cd9d3062da48c346965297f081ebc2ef68fdc C=AT, L=Vienna, ST=Austria, O=ARGE DATEN - Austrian Society for Data Protection, OU=GLOBALTRUST Certification Service, CN=GLOBALTRUST, [email protected] 4caee38931d19ae73b31aa75ca33d621290fa75e C=AT, O=A-Trust Ges. f. Sicherheitssysteme im elektr. Datenverkehr GmbH, OU=A-Trust-nQual-03, CN=A- Trust-nQual-03 cd787a3d5cba8207082848365e9acde9683364d8 C=AT, O=A-Trust Ges. f. Sicherheitssysteme im elektr. Datenverkehr GmbH, OU=A-Trust-Qual-02, CN=A- Trust-Qual-02 2e66c9841181c08fb1dfabd4ff8d5cc72be08f02 C=AT, O=A-Trust Ges. f. Sicherheitssysteme im elektr. Datenverkehr GmbH, OU=A-Trust-Root-05, CN=A- Trust-Root-05 84429d9fe2e73a0dc8aa0ae0a902f2749933fe02 C=AU, O=GOV, OU=DoD, OU=PKI, OU=CAs, CN=ADOCA02 51cca0710af7733d34acdc1945099f435c7fc59f C=BE, CN=Belgium Root CA2 a59c9b10ec7357515abb660c4d94f73b9e6e9272 C=BE, O=Certipost s.a., n.v., CN=Certipost E-Trust Primary Normalised CA 742cdf1594049cbf17a2046cc639bb3888e02e33 C=BE, O=Certipost s.a., n.v., CN=Certipost E-Trust Primary Qualified CA Cisco Systems, Inc. www.cisco.com 1 Certificate Authority
    [Show full text]
  • Practical Issues with TLS Client Certificate Authentication
    Practical Issues with TLS Client Certificate Authentication Arnis Parsovs Software Technology and Applications Competence Center, Estonia University of Tartu, Estonia [email protected] Abstract—The most widely used secure Internet communication Active security research is being conducted to improve standard TLS (Transport Layer Security) has an optional client password security, educate users on how to resist phishing certificate authentication feature that in theory has significant attacks, and to fix CA trust issues [1], [2]. However, the attacks security advantages over HTML form-based password authenti- mentioned above can be prevented or their impact can be cation. In this paper we discuss practical security and usability greatly reduced by using TLS client certificate authentication issues related to TLS client certificate authentication stemming (CCA), since the TLS CCA on the TLS protocol level protects from the server-side and browser implementations. In particular, we analyze Apache’s mod_ssl implementation on the server the client’s account on a legitimate server from a MITM side and the most popular browsers – Mozilla Firefox, Google attacker even in the case of a very powerful attacker who has Chrome and Microsoft Internet Explorer on the client side. We obtained a valid certificate signed by a trusted CA and who complement our paper with a measurement study performed in thus is able to impersonate the legitimate server. We believe Estonia where TLS client certificate authentication is widely used. that TLS CCA has great potential for improving Internet We present our recommendations to improve the security and security, and therefore in this paper we discuss current issues usability of TLS client certificate authentication.
    [Show full text]
  • Create Decryption Policies to Control HTTPS Traffic in Asyncos 10.0 for Cisco Web Security Appliance
    Cisco Web Security Appliance How-To Guide Create Decryption Policies to Control HTTPS Traffic Cisco Public Create Decryption Policies to Control HTTPS Traffic in AsyncOS 10.0 for Cisco Web Security Appliance ©1 2017© 2017 Cisco Cisco and/or and/or its affiliates. its affiliates. All rights All rights reserved. reserved. Cisco Web Security Appliance How-To Guide Create Decryption Policies to Control HTTPS Traffic Cisco Public Contents About This Document 3 Introduction to HTTPS Decryption 3 Enabling HTTPS Detection on the WSA 3 HTTPS Detection on the WSA in Action 4 WSA Certificate Use for HTTPS Decryption 5 Introduction 5 Certificate Overview 5 Root Certificates 6 Server Certificates 6 2 © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Web Security Appliance How-To Guide Create Decryption Policies to Control HTTPS Traffic Cisco Public About This Document Decryption policies can handle HTTPS traffic in the following ways. This document is for Cisco engineers and customers who will deploy They can: HTTPS decryption on the Cisco® Web Security Appliance (WSA) using • Pass through encrypted traffic AsyncOS® 10.0. • Decrypt traffic and apply content-based access policies defined for This document covers: HTTP traffic. This process also makes malware scanning possible • Introduction to HTTPS decryption • Drop the HTTPS connection • Enabling HTTPS detection on the Web Security Appliance • Monitor the request (taking no final action) as the web proxy continues to evaluate the request against policies that may lead to a • HTTPS detection on the Web Security Appliance in action final drop, pass through, or decryption • Web Security Appliance certificate use for HTTPS decryption Enabling HTTPS Detection on the WSA Introduction to HTTPS Decryption Step 1.
    [Show full text]
  • Create and Manage Certificates
    Create and Manage Certificates For Releases 16.1R2 and later, except as noted in the “Software Release Information” section. You create and manage certificates for the FlexVNF devices in network on SteelConnect EX Director When you first install the Director software, it includes a complete set of self-signed trusted certificates and a certificate repository that enable secure data transfer between the SteelConnect EX Director server and the client using secure socket layer (SSL) encryption. The self-signed certificates contain the common name (CN), which is the fully qualified domain name (FQDN) of the host. The certificates aid in authenticating Director servers and clients before they connect with each other. They also contain keys to establish encrypted and secure connection. It is recommended that you use a self-signed certificate for proof-of-concept (POC) and lab testing. For production environments, you can import an existing private key and a certificate signed by an external Certification Authority (CA). Alternatively, you can generate certificates and a certificate repository using a different CN or domain. For self-signed certificates, the private key is 2048 bits and the hashing algorithm is SHA-256. Director nodes support X.509 certificates in the following formats: • PEM-encoded certificate—PEM encoding uses Base64-encoded ASCII files. It does not store the certification path or private key information. The Director server uses the versa_director_web_client.crt certificate based on PEM encoding. • DER-encoded certificate—DER encoding is the binary form of the certificate. This format supports encoding of private keys. Because the files are in binary format, you cannot view the certificate using a text editor.
    [Show full text]
  • Reflection for Secure IT Client for Windows PKI Tab (Secure Shell Settings)
    User's Guide Reflection for Secure IT Version 7.2 Copyrights and Notices © 2016 Attachmate Corporation, a Micro Focus company. All rights reserved. No part of the documentation materials accompanying this Attachmate software product may be reproduced, transmitted, transcribed, or translated into any language, in any form by any means, without the written permission of Attachmate Corporation. Attachmate, the Attachmate logo, and Reflection are registered trademarks of Attachmate Corporation in the USA. All other trademarks, trade names, or company names referenced in this product are used for identification only and are the property of their respective owners. 1 Introduction 7 2Installation 9 Install Your Attachmate Product on a Workstation . 9 Features Selection Tab . 10 Upgrading from Previous Versions. 10 3 Getting Started 11 Start a New Terminal Session . 11 Display the Configuration Toolbar . 11 Transfer Files Using the FTP Client . 12 Understanding Secure Shell. 13 4 Configuration 15 Settings Files . 15 Secure Shell Client Configuration Files . 15 5 Encryption 17 Supported Cryptographic Algorithms . 17 Federal Information Processing Standard (FIPS). 18 6 Authentication 21 Server Authentication using Public Keys . 21 Server Authentication using Certificates . 22 Client Authentication Methods . 23 Connection Reuse in Secure Shell Sessions. 24 7 Public Key Authentication 27 Managing User Keys . 27 Configure Public Key Authentication . 27 Add Keys to Your User Keys List . 28 Upload Client Public Keys to the Server . 29 Change a User Key Passphrase . 29 Export a User Key . .30 Managing Host Keys . 30 Configure Host Key Checking . 30 Configure the Preferred Host Key Type. 31 The Known Hosts File . 32 Host Key Authenticity Dialog Box .
    [Show full text]
  • Exploring CA Certificate Control
    What’s in a Name? Exploring CA Certificate Control Zane Ma† Joshua Mason† Manos Antonakakis‡ Zakir Durumeric§ Michael Bailey† ‡Georgia Institute of Technology §Stanford University †University of Illinois at Urbana-Champaign Abstract other transgressions, prompted root store operators to begin discussions about removing trust in WoSign certificates. In TLS clients rely on a supporting PKI in which certificate July 2016, a new discovery revealed that StartCom, a seem- authorities (CAs)—trusted organizations—validate and cryp- ingly unaffiliated CA in Israel, was able to issue certificates tographically attest to the identities of web servers. A client’s signed by WoSign (a Chinese company). A deeper investiga- confidence that it is connecting to the right server depends tion of the incident eventually revealed that “the transaction entirely on the set of CAs that it trusts. However, as we demon- which completed the chain to give WoSign 100% ownership strate in this work, the identity specified in CA certificates is of StartCom completed on November 1st 2015” [59]. Further frequently inaccurate due to lax naming requirements, owner- evidence emerged that StartCom’s CA certificates had likely ship changes, and long-lived certificates. This not only mud- been integrated with WoSign operations as early as December dles client selection of trusted CAs, but also prevents PKI 2015 [56], when the removal of WoSign certificates from root operators and researchers from correctly attributing CA cer- stores appeared imminent. WoSign’s stealthy acquisition of tificate issues to CA organizations. To help Web PKI par- StartCom emphasizes the importance of transparency around ticipants understand the organizations that control each CA operational CA control for a secure web.
    [Show full text]
  • Analysis of the HTTPS Certificate Ecosystem
    Analysis of the HTTPS Certificate Ecosystem∗ Zakir Durumeric, James Kasten, Michael Bailey, J. Alex Halderman Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, MI 48109, USA {zakir, jdkasten, mibailey, jhalderm}@umich.edu ABSTRACT supporting public key infrastructure (PKI) composed of thousands We report the results of a large-scale measurement study of the of certificate authorities (CAs)—entities that are trusted by users’ HTTPS certificate ecosystem—the public-key infrastructure that un- browsers to vouch for the identity of web servers. CAs do this by derlies nearly all secure web communications. Using data collected signing digital certificates that associate a site’s public key with its by performing 110 Internet-wide scans over 14 months, we gain domain name. We place our full trust in each of these CAs—in detailed and temporally fine-grained visibility into this otherwise general, every CA has the ability to sign trusted certificates for any opaque area of security-critical infrastructure. We investigate the domain, and so the entire PKI is only as secure as the weakest CA. trust relationships among root authorities, intermediate authorities, Nevertheless, this complex distributed infrastructure is strikingly and the leaf certificates used by web servers, ultimately identify- opaque. There is no published list of signed website certificates ing and classifying more than 1,800 entities that are able to issue or even of the organizations that have trusted signing ability. In certificates vouching for the identity of any website. We uncover this work, we attempt to rectify this and shed light on the HTTPS practices that may put the security of the ecosystem at risk, and we certificate ecosystem.
    [Show full text]