Rational Points on Varieties

Total Page:16

File Type:pdf, Size:1020Kb

Rational Points on Varieties GRADUATE STUDIES IN MATHEMATICS 186 Rational Points on Varieties Bjorn Poonen American Mathematical Society 10.1090/gsm/186 Rational Points on Varieties GRADUATE STUDIES IN MATHEMATICS 186 Rational Points on Varieties Bjorn Poonen American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dan Abramovich Daniel S. Freed (Chair) Gigliola Staffilani Jeff A. Viaclovsky 2010 Mathematics Subject Classification. Primary 14G05; Secondary 11G35. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-186 Library of Congress Cataloging-in-Publication Data Names:Poonen,Bjorn,author. Title: Rational points on varieties / Bjorn Poonen. Description: Providence, Rhode Island : American Mathematical Society, [2017] | Series: Gradu- ate studies in mathematics ; volume 186 | Includes bibliographical references and index. Identifiers: LCCN 2017022803 | ISBN 9781470437732 (alk. paper) Subjects: LCSH: Rational points (Geometry) | Algebraic varieties. | AMS: Algebraic geometry – Arithmetic problems. Diophantine geometry – Rational points. msc | Number theory – Arithmetic algebraic geometry (Diophantine geometry) – Varieties over global fields. msc Classification: LCC QA564 .P65 2017 | DDC 516.3/5–dc23 LC record available at https://lccn.loc.gov/2017022803 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes. c 2017 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 222120191817 Contents Preface ix §0.1. Prerequisites ix §0.2. What kind of book this is ix §0.3. The nominal goal x §0.4. The true goal x §0.5. The content x §0.6. Anything new in this book? xii §0.7. Standard notation xiii §0.8. Acknowledgments xiv Chapter 1. Fields 1 §1.1. Some fields arising in classical number theory 1 §1.2. Cr fields 3 §1.3. Galois theory 8 §1.4. Cohomological dimension 12 §1.5. Brauer groups of fields 16 Exercises 27 Chapter 2. Varieties over arbitrary fields 31 §2.1. Varieties 32 §2.2. Base extension 32 §2.3. Scheme-valued points 37 §2.4. Closed points 45 §2.5. Curves 47 v vi Contents §2.6. Rational points over special fields 49 Exercises 53 Chapter 3. Properties of morphisms 57 §3.1. Finiteness conditions 57 §3.2. Spreading out 60 §3.3. Flat morphisms 66 §3.4. Fppf and fpqc morphisms 68 §3.5. Smooth and étale morphisms 69 §3.6. Rational maps 92 §3.7. Frobenius morphisms 95 §3.8. Comparisons 97 Exercises 97 Chapter 4. Faithfully flat descent 101 §4.1. Motivation: Gluing sheaves 101 §4.2. Faithfully flat descent for quasi-coherent sheaves 103 §4.3. Faithfully flat descent for schemes 104 §4.4. Galois descent 106 §4.5. Twists 109 §4.6. Restriction of scalars 114 Exercises 116 Chapter 5. Algebraic groups 119 §5.1. Group schemes 119 §5.2. Fppf group schemes over a field 125 §5.3. Affine algebraic groups 130 §5.4. Unipotent groups 131 §5.5. Tori 134 §5.6. Semisimple and reductive algebraic groups 136 §5.7. Abelian varieties 142 §5.8. Finite étale group schemes 150 §5.9. Classification of smooth algebraic groups 151 §5.10. Approximation theorems 154 §5.11. Inner twists 155 §5.12. Torsors 156 Exercises 164 Contents vii Chapter 6. Étale and fppf cohomology 169 §6.1. The reasons for étale cohomology 169 §6.2. Grothendieck topologies 171 §6.3. Presheaves and sheaves 173 §6.4. Cohomology 178 §6.5. Torsors over an arbitrary base 182 §6.6. Brauer groups 190 §6.7. Spectral sequences 196 §6.8. Residue homomorphisms 200 §6.9. Examples of Brauer groups 203 Exercises 207 Chapter 7. The Weil conjectures 209 §7.1. Statements 209 §7.2. The case of curves 210 §7.3. Zeta functions 211 §7.4. The Weil conjectures in terms of zeta functions 213 §7.5. Cohomological explanation 214 §7.6. Cycle class homomorphism 222 §7.7. Applications to varieties over global fields 226 Exercises 229 Chapter 8. Cohomological obstructions to rational points 231 §8.1. Obstructions from functors 231 §8.2. The Brauer–Manin obstruction 233 §8.3. An example of descent 240 §8.4. Descent 244 §8.5. Comparing the descent and Brauer–Manin obstructions 250 §8.6. Insufficiency of the obstructions 253 Exercises 258 Chapter 9. Surfaces 261 §9.1. Kodaira dimension 261 §9.2. Varieties that are close to being rational 263 §9.3. Classification of surfaces 271 §9.4. Del Pezzo surfaces 279 §9.5. Rational points on varieties of general type 290 viii Contents Exercises 293 Appendix A. Universes 295 §A.1. Definition of universe 295 §A.2. The universe axiom 296 §A.3. Strongly inaccessible cardinals 296 §A.4. Universes and categories 297 §A.5. Avoiding universes 297 Exercises 298 Appendix B. Other kinds of fields 299 §B.1. Higher-dimensional local fields 299 §B.2. Formally real and real closed fields 299 §B.3. Henselian fields 300 §B.4. Hilbertian fields 301 §B.5. Pseudo-algebraically closed fields 302 Exercises 302 Appendix C. Properties under base extension 303 §C.1. Morphisms 303 §C.2. Varieties 308 §C.3. Algebraic groups 308 Bibliography 311 Index 331 Preface 0.1. Prerequisites A person interested in reading this book should have the following back- ground: • Algebraic geometry (e.g., [Har77]: up to Chapter II, §8 as a mini- mum, but familiarity with later chapters is also needed at times)— this is not needed so much in our Chapter 1. • Algebraic number theory (e.g., [Cas67, Frö67]or[Lan94,Part One] or [Neu99, Chapters I and II]). • Some group cohomology (e.g., [AW67]or[Mil13, Chapter 2]). 0.2. What kind of book this is The literature on rational points is vast. To write a book on the subject, an author must 1. write thousands of pages to cover all the topics comprehensively, or 2. focus on one aspect of the subject, or 3. write an extended survey serving as an introduction to many topics, with pointers to the literature for those who want to learn more about any particular one. Our approach is closest to 3, so as to bring newcomers quickly up to speed while also providing more experienced researchers with directions for further exploration. This book originated as the lecture notes for a semester-long course, taught during spring 2003 at the University of California, Berkeley, and fall ix x Preface 2008 and fall 2013 at the Massachusetts Institute of Technology. But it has grown since then; probably now it is about 50% too large for a single semester, unless students are willing to read much of it outside of class. 0.3. The nominal goal Many techniques have been used to decide whether a variety over a number field has a rational point. Some generalize Fermat’s method of infinite de- scent, some use quadratic reciprocity, and others appear at first sight to be ad hoc. But over the past few decades, it was discovered that nearly all of these techniques could be understood as applications of just two cohomolog- ical obstructions, the étale-Brauer obstruction and the descent obstruction. Moreover, while this book was being written, it was proved that the étale- Brauer obstruction and the descent obstruction are equivalent! The topics in this book build up to an explanation of this “grand unified theory” of obstructions. 0.4. The true goal Our ulterior motive, however, is to introduce readers to techniques that they are likely to need while researching arithmetic geometry more broadly. Along the way, we mention open problems and applications that are interesting in their own right. 0.5. The content Chapter 1 introduces fields of special interest to arithmetic geometers, and it discusses properties and invariants (the Cr property, cohomological dimen- sion, and the Brauer group) that control the answers to some arithmetic questions about fields in general. Not all of Chapter 1 is needed in future chapters, but the Brauer group plays a key role later on (in Chapters 6 and 8). Chapter 2 discusses aspects of varieties with particular attention to the case of ground fields that are not algebraically closed. Ultimately, we aim to treat global fields of positive characteristic as well as number fields, so we do not require our ground field to be perfect. Among other topics, this chapter discusses properties of varieties under base extension (e.g., irreducible vs. geometrically irreducible), the functor of points of a scheme, closed points and their relation to field-valued points, and genus change of curves under field extension. A final section introduces the main questions about rational points that motivate the subject, such as the questions of whether the local- global principle and weak approximation hold.
Recommended publications
  • 2006 Annual Report
    Contents Clay Mathematics Institute 2006 James A. Carlson Letter from the President 2 Recognizing Achievement Fields Medal Winner Terence Tao 3 Persi Diaconis Mathematics & Magic Tricks 4 Annual Meeting Clay Lectures at Cambridge University 6 Researchers, Workshops & Conferences Summary of 2006 Research Activities 8 Profile Interview with Research Fellow Ben Green 10 Davar Khoshnevisan Normal Numbers are Normal 15 Feature Article CMI—Göttingen Library Project: 16 Eugene Chislenko The Felix Klein Protocols Digitized The Klein Protokolle 18 Summer School Arithmetic Geometry at the Mathematisches Institut, Göttingen, Germany 22 Program Overview The Ross Program at Ohio State University 24 PROMYS at Boston University Institute News Awards & Honors 26 Deadlines Nominations, Proposals and Applications 32 Publications Selected Articles by Research Fellows 33 Books & Videos Activities 2007 Institute Calendar 36 2006 Another major change this year concerns the editorial board for the Clay Mathematics Institute Monograph Series, published jointly with the American Mathematical Society. Simon Donaldson and Andrew Wiles will serve as editors-in-chief, while I will serve as managing editor. Associate editors are Brian Conrad, Ingrid Daubechies, Charles Fefferman, János Kollár, Andrei Okounkov, David Morrison, Cliff Taubes, Peter Ozsváth, and Karen Smith. The Monograph Series publishes Letter from the president selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. The next volume in the series will be Ricci Flow and the Poincaré Conjecture, by John Morgan and Gang Tian. Their book will appear in the summer of 2007. In related publishing news, the Institute has had the complete record of the Göttingen seminars of Felix Klein, 1872–1912, digitized and made available on James Carlson.
    [Show full text]
  • Patching and Galois Theory David Harbater∗ Dept. of Mathematics
    Patching and Galois theory David Harbater∗ Dept. of Mathematics, University of Pennsylvania Abstract: Galois theory over (x) is well-understood as a consequence of Riemann's Existence Theorem, which classifies the algebraic branched covers of the complex projective line. The proof of that theorem uses analytic and topological methods, including the ability to construct covers locally and to patch them together on the overlaps. To study the Galois extensions of k(x) for other fields k, one would like to have an analog of Riemann's Existence Theorem for curves over k. Such a result remains out of reach, but partial results in this direction can be proven using patching methods that are analogous to complex patching, and which apply in more general contexts. One such method is formal patching, in which formal completions of schemes play the role of small open sets. Another such method is rigid patching, in which non-archimedean discs are used. Both methods yield the realization of arbitrary finite groups as Galois groups over k(x) for various classes of fields k, as well as more precise results concerning embedding problems and fundamental groups. This manuscript describes such patching methods and their relationships to the classical approach over , and shows how these methods provide results about Galois groups and fundamental groups. ∗ Supported in part by NSF Grants DMS9970481 and DMS0200045. (Version 3.5, Aug. 30, 2002.) 2000 Mathematics Subject Classification. Primary 14H30, 12F12, 14D15; Secondary 13B05, 13J05, 12E30. Key words and phrases: fundamental group, Galois covers, patching, formal scheme, rigid analytic space, affine curves, deformations, embedding problems.
    [Show full text]
  • Alexandre Grothendieck Eléments De Biographie
    Alexandre Grothendieck Eléments de biographie « Ce qui vient au monde pour ne rien troubler ne mérite ni égards ni patience ». René Char, Fureur et mystère Le 14 novembre 2014, les journaux, les radios, les télévisions du monde entier ont annoncé la mort, à Saint-Girons, en Ariège, d’un mathématicien âgé de 86 ans, au nom imprononçable. Des millions de personnes ont ainsi appris l’existence de cet inconnu au lendemain même de sa disparition. Quant à la communauté mathématique, elle a appris la nouvelle avec émotion, une émotion que Cédric Villani résume par ces mots : « Aucun mathématicien vivant n’était plus révéré de ses pairs que lui. » Pendant trente-cinq ans, tous les ans ou presque, en début d’année, j’ai tenu à dire à mes élèves quelques mots sur ce mathématicien, que je croyais retiré dans une bergerie de l’Hérault. C’est de lui que je vais vous parler, ce soir 1. Alexandre Grothendieck fut l’un des plus grands mathématiciens du 20 e siècle. L’irruption de cet autodidacte dans le monde mathématique, en 1949, ses contributions décisives en analyse fonctionnelle et en géométrie algébrique au cours de vingt années de création ininterrompue, sa rupture spectaculaire avec le monde mathématique, en 1970, et sa longue retraite, ont fait de lui un personnage mythique : Grothendieck fut un génie solitaire au destin romanesque, comme la science pure aime à en produire, de temps en temps, depuis trois millénaires : Evariste Galois, Albert Einstein, Srinivasa Ramanujan, Ettore Majorana, Alan Turing, Stephen Hawking, Grigori Perelman… Solitaire,
    [Show full text]
  • Algebra & Number Theory Vol. 7 (2013)
    Algebra & Number Theory Volume 7 2013 No. 3 msp Algebra & Number Theory msp.org/ant EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Raman Parimala Emory University, USA John H. Coates University of Cambridge, UK Jonathan Pila University of Oxford, UK J-L. Colliot-Thélène CNRS, Université Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hélène Esnault Freie Universität Berlin, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universität, Germany Joseph H. Silverman Brown University, USA Edward Frenkel University of California, Berkeley, USA Michael Singer North Carolina State University, USA Andrew Granville Université de Montréal, Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Virginia, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale University, USA Ravi Vakil Stanford University,
    [Show full text]
  • Arxiv:1402.0409V1 [Math.HO]
    THE PICARD SCHEME STEVEN L. KLEIMAN Abstract. This article introduces, informally, the substance and the spirit of Grothendieck’s theory of the Picard scheme, highlighting its elegant simplicity, natural generality, and ingenious originality against the larger historical record. 1. Introduction A scientific biography should be written in which we indicate the “flow” of mathematics ... discussing a certain aspect of Grothendieck’s work, indicating possible roots, then describing the leap Grothendieck made from those roots to general ideas, and finally setting forth the impact of those ideas. Frans Oort [60, p. 2] Alexander Grothendieck sketched his proof of the existence of the Picard scheme in his February 1962 Bourbaki talk. Then, in his May 1962 Bourbaki talk, he sketched his proofs of various general properties of the scheme. Shortly afterwards, these two talks were reprinted in [31], commonly known as FGA, along with his commentaries, which included statements of nine finiteness theorems that refine the single finiteness theorem in his May talk and answer several related questions. However, Grothendieck had already defined the Picard scheme, via the functor it represents, on pp.195-15,16 of his February 1960 Bourbaki talk. Furthermore, on p.212-01 of his February 1961 Bourbaki talk, he had announced that the scheme can be constructed by combining results on quotients sketched in that talk along with results on the Hilbert scheme to be sketched in his forthcoming May 1961 Bourbaki talk. Those three talks plus three earlier talks, which prepare the way, were also reprinted in [31]. arXiv:1402.0409v1 [math.HO] 3 Feb 2014 Moreover, Grothendieck noted in [31, p.
    [Show full text]
  • IMU Secretary An: [email protected]; CC: Betreff: IMU EC CL 05/07: Vote on ICMI Terms of Reference Change Datum: Mittwoch, 24
    Appendix 10.1.1 Von: IMU Secretary An: [email protected]; CC: Betreff: IMU EC CL 05/07: vote on ICMI terms of reference change Datum: Mittwoch, 24. Januar 2007 11:42:40 Anlagen: To the IMU 2007-2010 Executive Committee Dear colleagues, We are currently experimenting with a groupware system that may help us organize the files that every EC member should know and improve the voting processes. Wolfgang Dalitz has checked the open source groupware systems and selected one that we want to try. It is more complicated than we thought and does have some deficiencies, but we see no freeware that is better. Here is our test run with a vote on a change of the ICMI terms of reference. To get to our voting system click on http://www.mathunion.org/ec-only/ To log in, you have to type your last name in the following version: ball, baouendi, deleon, groetschel, lovasz, ma, piene, procesi, vassiliev, viana Right now, everybody has the same password: pw123 You will immediately get to the summary page which contains an item "New Polls". The question to vote on is: Vote-070124: Change of ICMI terms of reference, #3, see Files->Voting->Vote- 070124 for full information and you are supposed to agree, disagree or abstain by clicking on the corresponding button. Full information about the contents of the vote is documented in the directory Voting (click on the +) where you will find a file Vote-070124.txt (click on the "txt icon" to see the contents of the file). The file is also enclosed below for your information.
    [Show full text]
  • Arxiv:2101.10222V2 [Math.AG] 13 May 2021
    THE CONJECTURES OF ARTIN-TATE AND BIRCH-SWINNERTON-DYER STEPHEN LICHTENBAUM, NIRANJAN RAMACHANDRAN, AND TAKASHI SUZUKI ABSTRACT. We provide two proofs that the conjecture of Artin-Tate for a fibered surface is equivalent to the conjecture of Birch-Swinnerton-Dyer for the Jacobian of the generic fibre. As a byproduct, we obtain a new proof of a theorem of Geisser relating the orders of the Brauer group and the Tate-Shafarevich group. 1. INTRODUCTION AND STATEMENT OF RESULTS Let S be a smooth projective (geometrically connected) curve over T = Spec Fq and let X be a smooth proper surface over T with a flat proper morphism π : X → S with smooth geometrically connected generic fiber X0 over Spec Fq(S). Let J be the Jacobian of X0. Our main results are two proofs of the following result conjectured by Artin and Tate [Tat95, Conjecture (d)] : Theorem 1. The Artin-Tate conjecture for X is equivalent to the Birch-Swinnerton-Dyer conjecture for J. Recall that these conjectures concern two (conjecturally finite) groups: the Tate-Shafarevich group X(J/F ) of J and the Brauer group Br(X) of X. A result of Artin-Grothendieck [Gor79, Theorem 2.3] [Gro68, §4] is that X(J/F ) is finite if and only if Br(X) is finite. Our first proof is based on a beautiful result of Geisser [Gei20, Theorem 1.1] relating the conjectural finite orders of X(J/F ) and Br(X). The second (and very short) proof of Theorem 1 in §4 is completely due to the third-named author.
    [Show full text]
  • Fundamental Algebraic Geometry
    http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA.
    [Show full text]
  • Life and Work of Friedrich Hirzebruch
    Jahresber Dtsch Math-Ver (2015) 117:93–132 DOI 10.1365/s13291-015-0114-1 HISTORICAL ARTICLE Life and Work of Friedrich Hirzebruch Don Zagier1 Published online: 27 May 2015 © Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2015 Abstract Friedrich Hirzebruch, who died in 2012 at the age of 84, was one of the most important German mathematicians of the twentieth century. In this article we try to give a fairly detailed picture of his life and of his many mathematical achievements, as well as of his role in reshaping German mathematics after the Second World War. Mathematics Subject Classification (2010) 01A70 · 01A60 · 11-03 · 14-03 · 19-03 · 33-03 · 55-03 · 57-03 Friedrich Hirzebruch, who passed away on May 27, 2012, at the age of 84, was the outstanding German mathematician of the second half of the twentieth century, not only because of his beautiful and influential discoveries within mathematics itself, but also, and perhaps even more importantly, for his role in reshaping German math- ematics and restoring the country’s image after the devastations of the Nazi years. The field of his scientific work can best be summed up as “Topological methods in algebraic geometry,” this being both the title of his now classic book and the aptest de- scription of an activity that ranged from the signature and Hirzebruch-Riemann-Roch theorems to the creation of the modern theory of Hilbert modular varieties. Highlights of his activity as a leader and shaper of mathematics inside and outside Germany in- clude his creation of the Arbeitstagung,
    [Show full text]
  • 1:34 Pm April 11, 2013 Red.Tex
    1:34 p.m. April 11, 2013 Red.tex The structure of reductive groups Bill Casselman University of British Columbia, Vancouver [email protected] An algebraic group defined over F is an algebraic variety G with group operations specified in algebraic terms. For example, the group GLn is the subvariety of (n + 1) × (n + 1) matrices A 0 0 a with determinant det(A) a = 1. The matrix entries are well behaved functions on the group, here for 1 example a = det− (A). The formulas for matrix multiplication are certainly algebraic, and the inverse of a matrix A is its transpose adjoint times the inverse of its determinant, which are both algebraic. Formally, this means that we are given (a) an F •rational multiplication map G × G −→ G; (b) an F •rational inverse map G −→ G; (c) an identity element—i.e. an F •rational point of G. I’ll look only at affine algebraic groups (as opposed, say, to elliptic curves, which are projective varieties). In this case, the variety G is completely characterized by its affine ring AF [G], and the data above are respectively equivalent to the specification of (a’) an F •homomorphism AF [G] −→ AF [G] ⊗F AF [G]; (b’) an F •involution AF [G] −→ AF [G]; (c’) a distinguished homomorphism AF [G] −→ F . The first map expresses a coordinate in the product in terms of the coordinates of its terms. For example, in the case of GLn it takes xik −→ xij ⊗ xjk . j In addition, these data are subject to the group axioms. I’ll not say anything about the general theory of such groups, but I should say that in practice the specification of an algebraic group is often indirect—as a subgroup or quotient, say, of another simpler one.
    [Show full text]
  • Workshop on Rational Points and Brauer-Manin Obstruction
    WORKSHOP ON RATIONAL POINTS AND BRAUER-MANIN OBSTRUCTION OBSTRUCTION GUYS ABSTRACT. Here we present an extended version of the notes taken by the seminars organized during the winter semester of 2015. The main goal is to provide a quick introduction to the theory of Brauer-Manin Obstructions (following the book of Skorobogatov and some more recent works). We thank Professor Harari for his support and his active participation in this exciting workshop. Contents 1. Talk 1: A first glance, Professor Harari 3 1.1. Galois and Étale Cohomology............................... 3 1.1.1. Group Cohomology ................................ 3 1.1.2. Modified/Tate Group................................ 3 1.1.3. Restriction-inflation ................................ 3 1.1.4. Profinite Groups .................................. 4 1.1.5. Galois Case..................................... 4 1.1.6. Étale Cohomology................................. 4 1.1.7. Non abelian Cohomology ............................. 4 1.2. Picard Group, Brauer Group................................ 5 1.3. Obstructions ........................................ 6 1.4. Miscellaneous ....................................... 7 1.4.1. Weil Restrictions.................................. 7 1.4.2. Induced Module are acyclic ............................ 7 2. Talk 2: Torsors, Emiliano Ambrosi 8 2.1. Torsors........................................... 8 2.2. Torsors and cohomology.................................. 10 2.3. Torsors and rational points................................. 11 3. Talk 3: Descent
    [Show full text]
  • Yuri Ivanovich Manin
    Yuri Ivanovich Manin Academic career 1960 PhD, Steklov Mathematical Institute, Moscow, Russia 1963 Habilitation, Steklov Mathematical Institute, Moscow, Russia 1960 - 1993 Principal Researcher, Steklov Mathematical In- stitute, Russian Academy of Sciences, Moscow, Russia 1965 - 1992 Professor (Algebra Chair), University of Mos- cow, Russia 1992 - 1993 Professor, Massachusetts Institute of Technolo- gy, Cambridge, MA, USA 1993 - 2005 Scientific Member, Max Planck Institute for Ma- thematics, Bonn 1995 - 2005 Director, Max Planck Institute for Mathematics, Bonn 2002 - 2011 Board of Trustees Professor, Northwestern Uni- versity, Evanston, IL, USA Since 2005 Professor Emeritus, Max Planck Institute for Mathematics, Bonn Since 2011 Professor Emeritus, Northwestern University, Evanston, IL, USA Honours 1963 Moscow Mathematical Society Award 1967 Highest USSR National Prize (Lenin Prize) 1987 Brouwer Gold Medal 1994 Frederic Esser Nemmers Prize 1999 Rolf Schock Prize 1999 Doctor honoris causa, University of Paris VI (Universite´ Pierre et Marie Curie), Sorbonne, France 2002 King Faisal Prize for Mathematics 2002 Georg Cantor Medal of the German Mathematical Society 2002 Abel Bicentennial Doctor Phil. honoris causa, University of Oslo, Norway 2006 Doctor honoris causa, University of Warwick, England, UK 2007 Order Pour le Merite,´ Germany 2008 Great Cross of Merit with Star, Germany 2010 Janos´ Bolyai International Mathematical Prize 2011 Honorary Member, London Mathematical Society Invited Lectures 1966 International Congress of Mathematicians, Moscow, Russia 1970 International Congress of Mathematicians, Nice, France 1978 International Congress of Mathematicians, Helsinki, Finland 1986 International Congress of Mathematicians, Berkeley, CA, USA 1990 International Congress of Mathematicians, Kyoto, Japan 2006 International Congress of Mathematicians, special activity, Madrid, Spain Research profile Currently I work on several projects, new or continuing former ones.
    [Show full text]