Development Systems: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Universidade Salvador – Unifacs Programa De Pós-Graduação Em Redes De Computadores Mestrado Profissional Em Redes De Computadores
UNIVERSIDADE SALVADOR – UNIFACS PROGRAMA DE PÓS-GRADUAÇÃO EM REDES DE COMPUTADORES MESTRADO PROFISSIONAL EM REDES DE COMPUTADORES DEMIAN LESSA INTERFACES GRÁFICAS COM O USUÁRIO: UMA ABORDAGEM BASEADA EM PADRÕES Salvador 2005 DEMIAN LESSA INTERFACES GRÁFICAS COM O USUÁRIO: UMA ABORDAGEM BASEADA EM PADRÕES Dissertação apresentada ao Mestrado Profissional em Redes de Computadores da Universidade Salvador – UNIFACS, como requisito parcial para obtenção do grau de Mestre. Orientador: Prof. Dr. Manoel Gomes de Mendonça. Salvador 2005 Lessa, Demian Interfaces gráficas com o usuário: uma abordagem baseada em padrões / Demian Lessa. – Salvador, 2005. 202 f.: il. Dissertação apresentada ao Mestrado Profissional em Redes de Computadores da Universidade Salvador – UNIFACS, como requisito parcial para a obtenção do grau de Mestre. Orientador: Prof. Dr. Manoel Gomes de Mendonça. 1. Interfaces gráficas para usuário - Sistema de computador. I. Mendonça, Manoel Gomes de, orient. II. Título. TERMO DE APROVAÇÃO DEMIAN LESSA INTERFACES GRÁFICAS COM O USUÁRIO: UMA ABORDAGEM BASEADA EM PADRÕES Dissertação aprovada como requisito parcial para obtenção do grau de Mestre em em Redes de Computadores da Universidade Salvador – UNIFACS, pela seguinte banca examinadora: Manoel Gomes de Mendonça – Orientador _________________________________ Doutor em Ciência da Computação pela Universidade de Maryland em College Park, Estados Unidos Universidade Salvador - UNIFACS Celso Alberto Saibel Santos ____________________________________________ Doutor em Informatique Fondamentalle et Parallelisme pelo Université Paul Sabatier de Toulouse III, França Universidade Federal da Bahia – UFBA Flávio Morais de Assis Silva _____________________________________________ Doutor em Informática pelo Technische Universität Berlin, Alemanha Universidade Federal da Bahia – UFBA Salvador de de 2005 A meus pais, Luiz e Ines, pelo constante incentivo intelectual e, muito especialmente, por todo amor e carinho repetidamente demonstrados. -
CSCE A201 Computer Programming I Lab 0
CSCE A201 Computer Programming I Lab 0 Lecture Instructors: Dr. Kenrick Mock, MW 11:30‐12:45pm Dr. Frank Witmer, TR 10‐11:15am Lab Assistants: Deanna Flynn Elisha Waugh Goals for Today • Introduce lab assistants • Meet some of your classmates • Introduction to Dr. Java • Understand platform independence • Write your first (!?) Java program Syllabus Highlights wrt. Lab • May students collaborate on lab assignments? • May students collaborate on programming assignments? • What percentage of the total course grade is determined by lab? • How is the lab grade determined? Introduce your Neighbor 1. Name 2. Hometown 3. Something interesting (e.g. hobby or recent trip) Some Java Development Environments • Dr. Java – from Rice University, simple & effective – standalone executable (installation instructions on Blackboard) • jGRASP – NSF funded at Auburn University • Intellij IDEA – good code completion & error messages – https://www.jetbrains.com/idea/ • NetBeans – from Oracle, good for multiple, larger projects • Eclipse – more plug‐ins, more customizable – good for Android development) • TextPad (initially free, but then ~$30) • Any text editor & command line – Notepad++ with Cygwin/DOS – emacs, vim, nano with unix/linux • See also Appendix 1 in Savitch book Java Example • Class Hello must be stored in file Hello.java public class Hello { public static void main(String[] args) { System.out.println("Hello world."); } } Platform Independence Demo • Compile java & C++ programs on linux – Which executable/bytecode will run on a Windows machine? Platform Independence • Use ‘javac’ command to compile Java source code .java files high‐level language • Use ‘java’ command to run Java bytecode .class and .jar (Java Archive) files low‐level language Same bytecodes can run any platform with an appropriate JVM (‘java’) Lab 0 Exercise 1. -
Programming Manual Version 2.0
www.tinybasic.de programming manual version 2.0 TinyBasic Programming Manual Version 2.0 April 2008 altenburg © 2006-2008 by U. Altenburg CHAPTER 1 Introduction.....................................................8 EDITOR, COMPILER, DOWNLOAD, CONSOLE, SCOPE CHAPTER 2 Preprocessor……….........................................12 #TARGET, #INCLUDE, #DEFINE, #UNDEF, #IFDEF, #IFNDEF, #ELSE, #ENDIF CHAPTER 3 Variables and Types.......................................14 CHAR, BYTE, WORD, INTEGER, LONG, FLOAT, DATA, READ, RESTORE, LOAD, STORE, INC, DEC CHAPTER 4 Maths and Expressions..................................19 +, -, *, /, <, >, <=, >=, <>, <<, >>, (), [], NOT, AND, OR, XOR, MOD CHAPTER 5 Control Flow...................................................22 IF, THEN, ELSE, ELSIF, ENDIF, DO, LOOP, FOR, NEXT, WHILE, WEND, EXIT, ON, GOTO, GOSUB, RETURN, WAIT, PAUSE TinyBasic Programming www.tinybasic.de 5 CHAPTER 6 Functions.......................................................28 LO, HI, MIN, MAX, LEN, POS, VAL, PI, SIN, COS, TAN, ATN, DEG, RAD, SQR, EXP, LOG, POW, ABS, INT, ROUND, POINT, PEEK, EOF CHAPTER 7 Input and Output...........................................33 PUT, GET, PRINT, INPUT, OPEN, CLOSE, FLUSH, FIND, INITGSM, SENDSMS, RECVSMS, ERR, CR, NL, CHR, HEX, SPC, TAB, USING CHAPTER 8 Date and Time................................................40 SETCLOCK, DATE, TIME, HOUR, MINUTE, SECOND, DAY, MONTH, YEAR CHAPTER 9 Displays and Graphics...................................42 SETDISPLAY, SETSYMBOL, CLS, FONT, COLOR, PLOT, MOVE, DRAW, FRAME, -
Java Ide's One-On-One*
DR. J VS. THE BIRD: JAVA IDE'S ONE-ON-ONE* Michael Olan Computer Science and Information Systems Richard Stockton College Pomona, NJ 08240 609-652-4587 [email protected] ABSTRACT An important decision facing instructors of introductory programming courses is the choice of supporting software development tools. Usually this involves selecting an integrated development environment (IDE). BlueJ has received widespread adoption for first year courses that use the Java programming language; however, DrJava is emerging as an alternative. This paper features a comparison of the pedagogical approaches used by BlueJ and DrJava as a guideline for selecting the tool best suited to the teaching style used in the introductory course. 1. INTRODUCTION The choice was simple when text editors and the command line were the only tools for developing programs. That changed with the introduction of integrated development environments (IDE's), and campuses nationwide adopted Borland's Turbo Pascal. Languages also have changed. Pascal was designed as a teaching language, but now academic programs use advanced languages designed for professional software engineers. Making these complex languages accessible to beginning students requires a careful selection of the development environment. This discussion will only include Java, currently the dominant language choice for introductory courses. Let us first consider several levels of tool support in the introductory course sequence: 1) Minimal: A text editor and the command line. 2) Simple IDE: Just the basics, no bells and whistles. 3) Professional IDE: Powerful and feature filled. ___________________________________________ * Copyright © 2004 by the Consortium for Computing Sciences in Colleges. Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the CCSC copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Consortium for Computing Sciences in Colleges. -
The Impact of Different Teaching Approaches and Languages On
The Impact of Different Teaching Approaches and Languages on Student Learning of Introductory Programming Concepts A Thesis Submitted to the Faculty of Drexel University by Wanda M. Kunkle in partial fulfillment of the requirements for the degree of Doctor of Philosophy September 2010 Copyright 2010 Wanda M. Kunkle. All Rights Reserved. ii DEDICATIONS I dedicate this dissertation to the memory of Nathan J. Kunkle the loving father who encouraged me to become the person I was meant to be and the highly respected educator who inspired me to follow in his footsteps. Nathan J. Kunkle (1907 – 1965) iii ACKNOWLEDGEMENTS I wish to thank my advisor, Robert Allen, and the members of my dissertation committee for their support and guidance in doing the research and writing required to complete this work. I also wish to thank the Computer Science instructors who helped me recruit the students who participated in my research study, as well as the students themselves. Without the students, there would have been no study. I especially wish to thank the friends and family who encouraged me to keep going when I began to falter because I was feeling overwhelmed by the amount of time and effort I needed to put in to complete this dissertation. Some of those friends are on my dissertation committee, so they are getting thanked twice. Finally, a special thanks goes out to my cousin, Durand Kunkle, who regularly called to ask how I was progressing with my dissertation. He has been planning the celebration for some time now. iv TABLE OF CONTENTS LIST OF FIGURES -
Learning to Code
PART ILEARNING TO CODE How Important is Programming? “To understand computers is to know about programming. The world is divided… into people who have written a program and people who have not.” Ted Nelson, Computer Lib/Dream Machines (1974) How important is it for you to learn to program a computer? Since the introduction of the first digital electronic computers in the 1940s, people have answered this question in surprisingly different ways. During the first wave of commercial computing—in the 1950s and 1960s, when 1large and expensive mainframe computers filled entire rooms—the standard advice was that only a limited number of specialists would be needed to program com- puters using simple input devices like switches, punched cards, and paper tape. Even during the so-called “golden age” of corporate computing in America—the mid- to late 1960s—it was still unclear how many programming technicians would be needed to support the rapid computerization of the nation’s business, military, and commercial operations. For a while, some experts thought that well-designed computer systems might eventually program themselves, requiring only a handful of attentive managers to keep an eye on the machines. By the late 1970s and early 1980s, however, the rapid emergence of personal computers (PCs), and continuing shortages of computer professionals, shifted popular thinking on the issue. When consumers began to adopt low-priced PCs like the Apple II (1977), the IBM PC (1981), and the Commodore 64 (1982) by the millions, it seemed obvious that ground-breaking changes were afoot. The “PC Revolution” opened up new frontiers, employed tens of thousands of people, and (according to some enthusiasts) demanded new approaches to computer literacy. -
ALTAIR 8800 CLONE COMPUTER OPERATOR's MANUAL Version
ALTAIR 8800 CLONE COMPUTER OPERATOR’S MANUAL Version 2.3, April 2021 TABLE OF CONTENTS INTRODUCTION ............................................................... 1 PART 1 – ALTAIR 8800 CLONE HARDWARE SPECIFICATIONS ......................... 2 PART 2 – CONFIGURATION MONITOR ............................................. 4 A. Floppy Disk Menu ....................................................... 4 B. PROM Menu .............................................................. 6 C. Serial Port Menu ....................................................... 7 D. Load .BIN or .HEX File ................................................. 9 E. Administration Menu .................................................... 9 PART 3 – TERMINAL EMULATOR ................................................ 14 A. Overview .............................................................. 14 B. TeraTerm Terminal Emulator ............................................ 14 C. Installing TeraTerm ................................................... 14 D. Configuring TeraTerm .................................................. 14 E. Using TeraTerm ........................................................ 15 PART 4 – ALTAIR 8800 DEMONSTRATIONS ....................................... 16 A. Kill-the-Bit Front Panel Game ......................................... 16 B. Loading and Using 4K BASIC from Paper Tape ............................ 18 C. Loading and Using 8K BASIC from Cassette .............................. 21 D. Loading and Using Disk BASIC from Floppy Disk ........................ -
Introduction to Algorithms in Java
Algorithms in Java: Shuffling and Random Numbers Algorithms Introduction Itʹs impossible to study programming – or even talk in depth about it – without talking about algorithms. Theyʹre an essential part of programming. Fortunately, all of us – programmers and non‐programmers alike – have experience with algorithms. Every time you give someone driving directions; every time you use a recipe to cook; every time you follow instructions for using a piece of software – all of these activities (and countless others) involve algorithms. So what is an algorithm? Simply put, an algorithm is a set of instructions, intended to solve a specific problem or accomplish a specific, finite goal, in a direct fashion. What Makes an Effective Algorithm? In general, ambiguity doesnʹt make for a good algorithm; this is particularly true in programming, because computers are mostly incapable of knowing what we want them to do, unless we spell it out precisely. So the algorithms we use should also be precise – even before we translate them into a programming language. An effective algorithm usually has the following characteristics: • Clear conditions of application: What task is the algorithm intended to accomplish, and what are the requirements for us to be able to use it? • Initialization steps & starting conditions: What do we do to prepare our data for the algorithm? How can we tell if weʹre ready to proceed? • Explicit stopping conditions and states: How do we know when weʹre done? How do we know whether we met the desired goal? • Unambiguous steps that lead from the starting conditions to the stopping conditions. Note that “unambiguous” is a subjective term. -
Evolution of the Major Programming Languages
COS 301 Programming Languages Evolution of the Major Programming Languages UMaine School of Computing and Information Science COS 301 - 2018 Topics Zuse’s Plankalkül Minimal Hardware Programming: Pseudocodes The IBM 704 and Fortran Functional Programming: LISP ALGOL 60 COBOL BASIC PL/I APL and SNOBOL SIMULA 67 Orthogonal Design: ALGOL 68 UMaine School of Computing and Information Science COS 301 - 2018 Topics (continued) Some Early Descendants of the ALGOLs Prolog Ada Object-Oriented Programming: Smalltalk Combining Imperative and Object-Oriented Features: C++ Imperative-Based Object-Oriented Language: Java Scripting Languages A C-Based Language for the New Millennium: C# Markup/Programming Hybrid Languages UMaine School of Computing and Information Science COS 301 - 2018 Genealogy of Common Languages UMaine School of Computing and Information Science COS 301 - 2018 Alternate View UMaine School of Computing and Information Science COS 301 - 2018 Zuse’s Plankalkül • Designed in 1945 • For computers based on electromechanical relays • Not published until 1972, implemented in 2000 [Rojas et al.] • Advanced data structures: – Two’s complement integers, floating point with hidden bit, arrays, records – Basic data type: arrays, tuples of arrays • Included algorithms for playing chess • Odd: 2D language • Functions, but no recursion • Loops (“while”) and guarded conditionals [Dijkstra, 1975] UMaine School of Computing and Information Science COS 301 - 2018 Plankalkül Syntax • 3 lines for a statement: – Operation – Subscripts – Types • An assignment -
M.Nlo Hrk, CA
vee P.t). b{)x JI() pa... k.~ca.~4-02~ N-.Proflt a... U.I.I"OSTAGE PAID ",""h No. 427 M.nlo hrk, CA Celiverto+ ~• jli • ~• N n z- 0 of m,. 3 m 0 'a m 0 c:: 0 _.M• I :::II -'U UI m 'U c» of 0 m 3: DI 3 m .... D ..lI D ~ ~ 111 u::: Not too long ago it became pouible for large scale chips to be made. Intel rolled the ball with the 800e. then rolled it some more with the 8(110. This year's real winner looks like being the PACE chip, from National Semiconductor. These things are oot easy to make. The difficulty of making them is lIflormoosly increased as they get bigger ••nd a 16 bit CPu is awful big. The $lory starts with a few enthusia$ls. a blackboard and a whole crew who doubted it could be made at all. Moby chip, as it was known, was oot a project for the faint hearted. The crooked tines on the blackboard soon became straight and well defined. Very. This is the beginning of the marks which OPtically define the position of every tiny facet of the chip to be. The precision of the whole process starts here, and hera also is the place where chips can be designed not to work - tNery line is checked and rechecked and ... Sometimes a particular person can make things when others can't. There Is the tale of the big manufacturer Now the magic begins. It starts with. sinlJle Cl'VSUI which was licensing a company in another country to of pure silicon. -
Advanced BASIC VCFE9.Pdf
Advanced BASIC Vintage Computer Festival 9.1 Bill Degnan Course Outline • BASIC Overview • Matricies • BASIC Timing Comparisons 1977 • Micro-Soft vs. Tiny BASIC • Micro-Soft BASIC Breakdown using PEEK BASIC Overview • BASIC has three classes of capabilities: commands, statements, and functions. • Commands “part of the operating system or environment” and manipulate global items, such as programs • Statements are made up of keywords, variables, constants, operators, and functions • Functions - A user-defined and library functions. BASIC Overview • Constants. BASIC programs are made up of statements that contain keywords, variables, operators, and constants • Numeric constants (Floating point and Integer) - Each BASIC version handles numeric constants differently. • Character String constants - signaled by a quote (") • Variables - "names" that may take on different values during a problem. - vintage versions of BASIC required variables to start with a letter. Matricies (1966 Dartmouth BASIC) • A matrix is simply a rectangular array of numbers • An array is a set of numbers arranged in rows and columns • A matrix may also consist of a single row or a single column, also called “row vectors” (lists) and “column vectors”. 10 REM MATRICIES USING DARTMOUTH BASIC 20 DIM S(2,2) 30 MAT READ S ... 240 DATA 30, 50 245 DATA 40, 25 250 FOR K=1 TO 2 260 PRINT S(K,1) 270 NEXT K RUN [What would be the output??] Matricies (Digital PDP 11 BASIC) 10 DIM A(2,3) 20 FOR I=0 TO 2 30 FOR J=0 TO 3: LET A(I,J) = 0 40 NEXT J 50 NEXT I 60 FOR I = 0 TO 2: LET A(I,0) = I 70 FOR J = 0 TO 3: LET A(0,J) = J 80 PRINT A(I,J); 90 NEXT J 100 PRINT 110 NEXT I 120 END RUN 0 1 2 3 1 0 0 0 2 0 0 0 STOP AT LINE 120 READY What’s different? The Knight’s Tour • Chess is played on a square board having 64 smaller squares, eight on a side. -
Personal Computing
Personal Computing Thomas J. Bergin ©Computer History Museum American University Recap: Context • By 1977, there was a fairly robust but fragmented hobbyist-oriented microcomputer industry: – Micro Instrumentation Telemetry Systems (MITS) – Processor Technology – Cromemco – MicroStuf – Kentucky Fried Computers • Two things were needed for the personal computer revolution: 1) a way to store and retrieve data, and 2) a programming language in which to write applications. Homebrew Computer Club • March 5, 1975: the Amateur Computer Users Group (Lee Felsenstein, Bob Marsh, Steve Dompier, BobAlbrecht and 27 others) met in Gordon French’s garage, Menlo Park, CA • 3rd meeting drew several hundred people and was moved to the Coleman mansion • Stanford Linear Accelerator Center’s auditorium – Steve Wozniak shows off his single board computer – Steve Jobs attends meetings Homebrew-ed • 21 companies formed: – Apcose Apple – Cromemco Morrow – North Star Osborne • West Coast Computer Faire • Byte magazine, September 1975 • Byte Shop Both: images.google.com And then there was Traf-O-Data • October 28, 1955: William H. Gates III born – father: attorney mother: schoolteacher • Lakeside School: Lakeside Programming Group – Mothers Club: access to time-shared system at GE – Students hired by local firm to debug software – First computer program: Tic-Tac-Toe (age 13) – Traf-O-Data to sell traffic mgt. software (age 16) • 1973, Bill Gates enrolls at Harvard in pre-law. • Paul Allen is in his second year. January 1975, Popular Electronics: Altair • Allen shows