A Compressing File System for Non
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Better Performance Through a Disk/Persistent-RAM Hybrid Design
The Conquest File System: Better Performance Through a Disk/Persistent-RAM Hybrid Design AN-I ANDY WANG Florida State University GEOFF KUENNING Harvey Mudd College PETER REIHER, GERALD POPEK University of California, Los Angeles ________________________________________________________________________ Modern file systems assume the use of disk, a system-wide performance bottleneck for over a decade. Current disk caching and RAM file systems either impose high overhead to access memory content or fail to provide mechanisms to achieve data persistence across reboots. The Conquest file system is based on the observation that memory is becoming inexpensive, which enables all file system services to be delivered from memory, except providing large storage capacity. Unlike caching, Conquest uses memory with battery backup as persistent storage, and provides specialized and separate data paths to memory and disk. Therefore, the memory data path contains no disk-related complexity. The disk data path consists of only optimizations for the specialized disk usage pattern. Compared to a memory-based file system, Conquest incurs little performance overhead. Compared to several disk-based file systems, Conquest achieves 1.3x to 19x faster memory performance, and 1.4x to 2.0x faster performance when exercising both memory and disk. Conquest realizes most of the benefits of persistent RAM at a fraction of the cost of a RAM-only solution. Conquest also demonstrates that disk-related optimizations impose high overheads for accessing memory content in a memory-rich environment. Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—Storage Hierarchies; D.4.3 [Operating Systems]: File System Management—Access Methods and Directory Structures; D.4.8 [Operating Systems]: Performance—Measurements General Terms: Design, Experimentation, Measurement, and Performance Additional Key Words and Phrases: Persistent RAM, File Systems, Storage Management, and Performance Measurement ________________________________________________________________________ 1. -
System Calls System Calls
System calls We will investigate several issues related to system calls. Read chapter 12 of the book Linux system call categories file management process management error handling note that these categories are loosely defined and much is behind included, e.g. communication. Why? 1 System calls File management system call hierarchy you may not see some topics as part of “file management”, e.g., sockets 2 System calls Process management system call hierarchy 3 System calls Error handling hierarchy 4 Error Handling Anything can fail! System calls are no exception Try to read a file that does not exist! Error number: errno every process contains a global variable errno errno is set to 0 when process is created when error occurs errno is set to a specific code associated with the error cause trying to open file that does not exist sets errno to 2 5 Error Handling error constants are defined in errno.h here are the first few of errno.h on OS X 10.6.4 #define EPERM 1 /* Operation not permitted */ #define ENOENT 2 /* No such file or directory */ #define ESRCH 3 /* No such process */ #define EINTR 4 /* Interrupted system call */ #define EIO 5 /* Input/output error */ #define ENXIO 6 /* Device not configured */ #define E2BIG 7 /* Argument list too long */ #define ENOEXEC 8 /* Exec format error */ #define EBADF 9 /* Bad file descriptor */ #define ECHILD 10 /* No child processes */ #define EDEADLK 11 /* Resource deadlock avoided */ 6 Error Handling common mistake for displaying errno from Linux errno man page: 7 Error Handling Description of the perror () system call. -
Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C
Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift Computer Sciences Department, University of Wisconsin, Madison Abstract and most complex code bases in the kernel. Further, We introduce Membrane, a set of changes to the oper- file systems are still under active development, and new ating system to support restartable file systems. Mem- ones are introduced quite frequently. For example, Linux brane allows an operating system to tolerate a broad has many established file systems, including ext2 [34], class of file system failures and does so while remain- ext3 [35], reiserfs [27], and still there is great interest in ing transparent to running applications; upon failure, the next-generation file systems such as Linux ext4 and btrfs. file system restarts, its state is restored, and pending ap- Thus, file systems are large, complex, and under develop- plication requests are serviced as if no failure had oc- ment, the perfect storm for numerous bugs to arise. curred. Membrane provides transparent recovery through Because of the likely presence of flaws in their imple- a lightweight logging and checkpoint infrastructure, and mentation, it is critical to consider how to recover from includes novel techniques to improve performance and file system crashes as well. Unfortunately, we cannot di- correctness of its fault-anticipation and recovery machin- rectly apply previous work from the device-driver litera- ery. We tested Membrane with ext2, ext3, and VFAT. ture to improving file-system fault recovery. File systems, Through experimentation, we show that Membrane in- unlike device drivers, are extremely stateful, as they man- duces little performance overhead and can tolerate a wide age vast amounts of both in-memory and persistent data; range of file system crashes. -
Ext4 File System and Crash Consistency
1 Ext4 file system and crash consistency Changwoo Min 2 Summary of last lectures • Tools: building, exploring, and debugging Linux kernel • Core kernel infrastructure • Process management & scheduling • Interrupt & interrupt handler • Kernel synchronization • Memory management • Virtual file system • Page cache and page fault 3 Today: ext4 file system and crash consistency • File system in Linux kernel • Design considerations of a file system • History of file system • On-disk structure of Ext4 • File operations • Crash consistency 4 File system in Linux kernel User space application (ex: cp) User-space Syscalls: open, read, write, etc. Kernel-space VFS: Virtual File System Filesystems ext4 FAT32 JFFS2 Block layer Hardware Embedded Hard disk USB drive flash 5 What is a file system fundamentally? int main(int argc, char *argv[]) { int fd; char buffer[4096]; struct stat_buf; DIR *dir; struct dirent *entry; /* 1. Path name -> inode mapping */ fd = open("/home/lkp/hello.c" , O_RDONLY); /* 2. File offset -> disk block address mapping */ pread(fd, buffer, sizeof(buffer), 0); /* 3. File meta data operation */ fstat(fd, &stat_buf); printf("file size = %d\n", stat_buf.st_size); /* 4. Directory operation */ dir = opendir("/home"); entry = readdir(dir); printf("dir = %s\n", entry->d_name); return 0; } 6 Why do we care EXT4 file system? • Most widely-deployed file system • Default file system of major Linux distributions • File system used in Google data center • Default file system of Android kernel • Follows the traditional file system design 7 History of file system design 8 UFS (Unix File System) • The original UNIX file system • Design by Dennis Ritche and Ken Thompson (1974) • The first Linux file system (ext) and Minix FS has a similar layout 9 UFS (Unix File System) • Performance problem of UFS (and the first Linux file system) • Especially, long seek time between an inode and data block 10 FFS (Fast File System) • The file system of BSD UNIX • Designed by Marshall Kirk McKusick, et al. -
CIS 191 Linux Lab Exercise
CIS 191 Linux Lab Exercise Lab 9: Backup and Restore Fall 2008 Lab 9: Backup and Restore The purpose of this lab is to explore the different types of backups and methods of restoring them. We will look at three utilities often used for backups and learn the advantages and disadvantages of each. Supplies • VMWare Server 1.05 or higher • Benji VM Preconfiguration • Labs 6 and Labs 7 completed on a pristine Benji VM [root@benji /]# fdisk -l Disk /dev/sda: 5368 MB, 5368709120 bytes 255 heads, 63 sectors/track, 652 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/sda1 * 1 382 3068383+ 83 Linux /dev/sda2 383 447 522112+ 82 Linux swap / Solaris /dev/sda3 448 511 514080 83 Linux /dev/sda4 512 652 1132582+ 5 Extended /dev/sda5 512 549 305203+ 83 Linux /dev/sda6 550 556 56196 83 Linux /dev/sda7 557 581 200781 83 Linux [root@benji /]# [root@benji /]# mount /dev/sda1 on / type ext3 (rw) proc on /proc type proc (rw) sysfs on /sys type sysfs (rw) devpts on /dev/pts type devpts (rw,gid=5,mode=620) tmpfs on /dev/shm type tmpfs (rw) /dev/sda5 on /opt type ext3 (rw) /dev/sda3 on /var type ext3 (rw) none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw) sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw) /dev/sda7 on /home type ext3 (rw,usrquota) [root@benji /]# cat /etc/fstab LABEL=/1 / ext3 defaults 1 1 devpts /dev/pts devpts gid=5,mode=620 0 0 tmpfs /dev/shm tmpfs defaults 0 0 LABEL=/opt /opt ext3 defaults 1 2 proc /proc proc defaults 0 0 sysfs /sys sysfs defaults 0 0 LABEL=/var /var ext3 defaults 1 2 LABEL=SWAP-sda2 swap swap defaults 0 0 LABEL=/home /home ext3 usrquota,defaults 1 2 [root@benji /]# Forum If you get stuck on one of the steps below don’t beat your head against the wall. -
Connecting the Storage System to the Solaris Host
Configuration Guide for Solaris™ Host Attachment Hitachi Virtual Storage Platform Hitachi Universal Storage Platform V/VM FASTFIND LINKS Document Organization Product Version Getting Help Contents MK-96RD632-05 Copyright © 2010 Hitachi, Ltd., all rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or stored in a database or retrieval system for any purpose without the express written permission of Hitachi, Ltd. (hereinafter referred to as “Hitachi”) and Hitachi Data Systems Corporation (hereinafter referred to as “Hitachi Data Systems”). Hitachi Data Systems reserves the right to make changes to this document at any time without notice and assumes no responsibility for its use. This document contains the most current information available at the time of publication. When new and/or revised information becomes available, this entire document will be updated and distributed to all registered users. All of the features described in this document may not be currently available. Refer to the most recent product announcement or contact your local Hitachi Data Systems sales office for information about feature and product availability. Notice: Hitachi Data Systems products and services can be ordered only under the terms and conditions of the applicable Hitachi Data Systems agreement(s). The use of Hitachi Data Systems products is governed by the terms of your agreement(s) with Hitachi Data Systems. Hitachi is a registered trademark of Hitachi, Ltd. in the United States and other countries. Hitachi Data Systems is a registered trademark and service mark of Hitachi, Ltd. -
Life in the Fast Lane: Optimisation for Interactive and Batch Jobs Nikola Marković, Boemska T.S
Paper 11825-2016 Life in the Fast Lane: Optimisation for Interactive and Batch Jobs Nikola Marković, Boemska T.S. Ltd.; Greg Nelson, ThotWave Technologies LLC. ABSTRACT We spend so much time talking about GRID environments, distributed jobs, and huge data volumes that we ignore the thousands of relatively tiny programs scheduled to run every night, which produce only a few small data sets, but make all the difference to the users who depend on them. Individually, these jobs might place a negligible load on the system, but by their sheer number they can often account for a substantial share of overall resources, sometimes even impacting the performance of the bigger, more important jobs. SAS® programs, by their varied nature, use available resources in a varied way. Depending on whether a SAS® procedure is CPU-, disk- or memory-intensive, chunks of memory or CPU can sometimes remain unused for quite a while. Bigger jobs leave bigger chunks, and this is where being small and able to effectively exploit those leftovers can be a great advantage. We call our main optimization technique the Fast Lane, which is a queue configuration dedicated to jobs with consistently small SASWORK directories, that, when available, lets them use unused RAM in place of their SASWORK disk. The approach improves overall CPU saturation considerably while taking loads off the I/O subsystem, and without failure results in improved runtimes for big jobs and small jobs alike, without requiring any changes to deployed code. This paper explores the practical aspects of implementing the Fast Lane on your environment. -
Winreporter Documentation
WinReporter documentation Table Of Contents 1.1 WinReporter overview ............................................................................................... 1 1.1.1.................................................................................................................................... 1 1.1.2 Web site support................................................................................................. 1 1.2 Requirements.............................................................................................................. 1 1.3 License ....................................................................................................................... 1 2.1 Welcome to WinReporter........................................................................................... 2 2.2 Scan requirements ...................................................................................................... 2 2.3 Simplified Wizard ...................................................................................................... 3 2.3.1 Simplified Wizard .............................................................................................. 3 2.3.2 Computer selection............................................................................................. 3 2.3.3 Validate .............................................................................................................. 4 2.4 Advanced Wizard....................................................................................................... 5 2.4.1 -
AMD Alchemy™ Processors Building a Root File System for Linux® Incorporating Memory Technology Devices
AMD Alchemy™ Processors Building a Root File System for Linux® Incorporating Memory Technology Devices 1.0 Scope This document outlines a step-by-step process for building and deploying a Flash-based root file system for Linux® on an AMD Alchemy™ processor-based development board, using an approach that incorporates Memory Technology Devices (MTDs) with the JFFS2 file system. Note: This document describes creating a root file system on NOR Flash memory devices, and does not apply to NAND Flash devices. 1.1 Journaling Flash File System JFFS2 is the second generation of the Journaling Flash File System (JFFS). This file system provides a crash-safe and powerdown-safe Linux file system for use with Flash memory devices. The home page for the JFFS project is located at http://developer.axis.com/software/jffs. 1.2 Memory Technology Device The MTD subsystem provides a generic Linux driver for a wide range of memory devices, including Flash memory devices. This driver creates an abstracted device used by JFFS2 to interface to the actual Flash memory hardware. The home page for the MTD project is located at http://www.linux-mtd.infradead.org. 2.0 Building the Root File System Before being deployed to an AMD Alchemy platform, the file system must first be built on an x86 Linux host PC. The pri- mary concern when building a Flash-based root file system is often the size of the image. The file system must be designed so that it fits within the available space of the Flash memory, with enough extra space to accommodate any runtime-created files, such as temporary or log files. -
Filesystem Considerations for Embedded Devices ELC2015 03/25/15
Filesystem considerations for embedded devices ELC2015 03/25/15 Tristan Lelong Senior embedded software engineer Filesystem considerations ABSTRACT The goal of this presentation is to answer a question asked by several customers: which filesystem should you use within your embedded design’s eMMC/SDCard? These storage devices use a standard block interface, compatible with traditional filesystems, but constraints are not those of desktop PC environments. EXT2/3/4, BTRFS, F2FS are the first of many solutions which come to mind, but how do they all compare? Typical queries include performance, longevity, tools availability, support, and power loss robustness. This presentation will not dive into implementation details but will instead summarize provided answers with the help of various figures and meaningful test results. 2 TABLE OF CONTENTS 1. Introduction 2. Block devices 3. Available filesystems 4. Performances 5. Tools 6. Reliability 7. Conclusion Filesystem considerations ABOUT THE AUTHOR • Tristan Lelong • Embedded software engineer @ Adeneo Embedded • French, living in the Pacific northwest • Embedded software, free software, and Linux kernel enthusiast. 4 Introduction Filesystem considerations Introduction INTRODUCTION More and more embedded designs rely on smart memory chips rather than bare NAND or NOR. This presentation will start by describing: • Some context to help understand the differences between NAND and MMC • Some typical requirements found in embedded devices designs • Potential filesystems to use on MMC devices 6 Filesystem considerations Introduction INTRODUCTION Focus will then move to block filesystems. How they are supported, what feature do they advertise. To help understand how they compare, we will present some benchmarks and comparisons regarding: • Tools • Reliability • Performances 7 Block devices Filesystem considerations Block devices MMC, EMMC, SD CARD Vocabulary: • MMC: MultiMediaCard is a memory card unveiled in 1997 by SanDisk and Siemens based on NAND flash memory. -
007-2007: the FILENAME Statement Revisited
SAS Global Forum 2007 Applications Development Paper 007-2007 The FILENAME Statement Revisited Yves DeGuire, Statistics Canada, Ottawa, Ontario, Canada ABSTRACT The FILENAME statement has been around for a long time for connecting external files with SAS®. Over the years, it has grown quite a bit to encompass capabilities that go beyond the simple sequential file. Most SAS programmers have used the FILENAME statement to read/write external files stored on disk. However, few programmers have used it to access devices other than disk or to interface with different access methods. This paper focuses on some of those capabilities by showing you some interesting devices and access methods supported by the FILENAME statement. INTRODUCTION – FILENAME STATEMENT 101 The FILENAME statement is a declarative statement that is used to associate a fileref with a physical file or a device. A fileref is a logical name that can be used subsequently in lieu of a physical name. The syntax for the FILENAME statement is as follows: FILENAME fileref <device-type> <'external-file'> <options>; This is the basic syntax to associate an external file or a device to a fileref. There are other forms that allow you to list or clear filerefs. Please refer to SAS OnlineDoc® documentation for a complete syntax of the FILENAME statement. Once the association has been made between a physical file and a fileref, the fileref can be used in as many DATA steps as necessary without having to re-run a FILENAME statement. Within a DATA step, the use of an INFILE or a FILE statement allows the programmer to determine which file to read or write using an INPUT or a PUT statement. -
Managing File Systems in Oracle® Solaris 11.4
® Managing File Systems in Oracle Solaris 11.4 Part No: E61016 November 2020 Managing File Systems in Oracle Solaris 11.4 Part No: E61016 Copyright © 2004, 2020, Oracle and/or its affiliates. License Restrictions Warranty/Consequential Damages Disclaimer This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. Warranty Disclaimer The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. Restricted Rights Notice If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial