Stratigraphy of the Eocene Green River Formation, Southeastern Uinta Basin, Utah – Outcrop to Subsurface Correlation

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphy of the Eocene Green River Formation, Southeastern Uinta Basin, Utah – Outcrop to Subsurface Correlation STRATIGRAPHY OF THE EOCENE GREEN RIVER FORMATION, SOUTHEASTERN UINTA BASIN, UTAH – OUTCROP TO SUBSURFACE CORRELATION by Josh Day A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology) Golden, Colorado Date _________________________ Signed: __________________________________ Joshua Day Signed: __________________________________ Dr. J. Frederick Sarg Thesis Advisor Golden, Colorado Date _________________________ Signed: __________________________________ Dr. Paul Santi Professor and Head Department of Geology and Geological Engineering ii ABSTRACT A stratigraphic correlation was constructed for the Eocene Green River Formation in the area of the southeastern Uinta basin, Utah that integrated centimeter-to-decimeter scale outcrop and core measurements with 12 well logs. Green River Formation strata from the Uteland Butte tongue to the Mahogany Marker were examined. This correlation connects existing outcrop and subsurface studies and provides facies-to-log calibration for the characteristically unusual log responses of Green River Formation strata. The correlation utilized nine markers that were consistently present in the study area and which tie into existing studies (Hogan, 2015). Log calibration of lacustrine facies has traditionally been difficult due to facies and stratigraphic complexities. This study utilizes gamma ray assay measurements of described outcrop as well as gamma ray, bulk density, and neutron porosity of described cores to provide a general calibration of log response to facies association. This identified five groupings of calibrated facies associations: FA1 – Fluvial sandstones, FA2/FA6 – Floodplain and littoral mudstones, FA3 – Deltaic deposits, FA4/FA5 – Carbonate deposits, and FA7 – Oil shale. These calibrations are useful in determining facies distribution and depositional environment where the only (or predominant) data source is well logs. iii TABLE OF CONTENTS ABSTRACT ................................................................................................................................... iii TABLE OF CONTENTS ............................................................................................................... iv LIST OF FIGURES ...................................................................................................................... vii LIST OF TABLES ........................................................................................................................ xii ACKNOWLEDGMENTS ........................................................................................................... xiii CHAPTER 1 INTRODUCTION ...................................................................................................1 1.1 Research Problem ....................................................................................................1 1.2 Previous Work .........................................................................................................1 1.3 Study Objectives ......................................................................................................5 CHAPTER 2 BACKGROUND GEOLOGY .................................................................................7 2.1 Regional Structure ...................................................................................................7 2.2 Regional Stratigraphy and Depositional Environment ............................................8 CHAPTER 3 DATA COLLECTION ..........................................................................................12 3.1 Study Area .............................................................................................................12 3.2 Outcrop .................................................................................................................14 3.3 Core ........................................................................................................................17 3.3.1 11 S Uinta Basin (U682) ............................................................................19 3.3.2 EX-1 Utah (U631 .......................................................................................20 CHAPTER 4 FACIES AND FACIES ASSOCIATIONS ...........................................................23 4.1 FA1 – Fluvial Channels .........................................................................................26 4.2 FA2 – Floodplain deposits .....................................................................................33 4.3 FA3 – Deltaic Deposits ..........................................................................................34 4.4 FA4 – Microbial Carbonates ..................................................................................35 iv 4.5 FA5 – Littoral to Sublittoral Carbonates ...............................................................39 4.6 FA6 – Littoral to Sublittoral Siliciclastics .............................................................40 4.7 FA7 – Oil Shale .....................................................................................................44 CHAPTER 5 CROSS SECTIONS AND MARKERS .................................................................48 5.1 Cross Sections ........................................................................................................48 5.2 Markers ..................................................................................................................49 5.2.1 Wasatch ......................................................................................................49 5.2.2 Uteland Butte .............................................................................................53 5.2.3 Castle Peak .................................................................................................53 5.2.4 Black Shale ................................................................................................54 5.2.5 Three Point .................................................................................................55 5.2.6 Douglas Creek, TGR3, Marker 8 ...............................................................56 5.2.7 Mahogany Marker ......................................................................................58 CHAPTER 6 LOG CALIBRATION AND INTERPRETATION...............................................59 6.1 Calibration of FA1 – Fluvial Channels ..................................................................60 6.2 Calibration of FA2 – Floodplain Deposits and FA6 – Littoral to Sublittoral Siliciclastics ...........................................................................................................61 6.3 Calibration of FA3 – Deltaic Deposits ...................................................................61 6.4 Calibration of FA4 – Microbial Carbonates and FA5 – Littoral to Sublittoral Carbonates..............................................................................................................63 6.5 Calibration of FA7 – Oil Shale ..............................................................................63 6.6 Interpretation of Cross Sections .............................................................................64 CHAPTER 7 DISCUSSION ........................................................................................................67 CHAPTER 8 CONCLUSIONS....................................................................................................74 8.1 Further Work ..........................................................................................................74 8.2 Summary of Conclusions .......................................................................................75 v REFERENCES CITED ..................................................................................................................77 APPENDIX A SUPPLEMENTAL ELECTRONIC FILES ...............................................82 vi LIST OF FIGURES Figure 2.1 Uinta and Piceance Creek basins (USGS, 2003) .....................................................8 Figure 2.2 Bounding structures of the Uinta basin with key locations, cross sections that connect to the current study, and the study area for the current study. Blue cross sections are from Hogan 2015; yellow cross section is from Birgenheier and Vanden Berg (2011) (adapted from Google Maps, 2014) ..............................10 Figure 2.3 Paleogeographic reconstruction of Lake Uinta (adapted from Blakey, 2009) .......10 Figure 2.4 Stratigraphy of the Green River Formation in the Uinta basin with rich and lean zones, and lake stages delineated. Lake Stage (1) after Johnson (1985). Lake Stage (2) after Tanavsuu-Milkeviciene and Sarg (2012). W and C are the ages of the Wavy and Curly Tuffs respectively (after Smith et al., 2008). Colored lines in column “M” represent approximate location of markers used in cross sections C-C’ and D-D’ (see section 5.2): yellow – Wasatch, cyan – Uteland Butte, blue – Castle Peak, purple – Black Shale, orange – Three Point, brown – Douglas Creek, red – TGR3, pink – Marker 8, green – Mahogany. Adapted from Hogan (2015) ..................................................................................11 Figure 3.1 Location of cross sections A-A' and B-B' from Hogan (2015) (in blue); cross sections C-C' and D-D' from the current study (in green). Well names listed by number ...................................................................................................................13
Recommended publications
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • Quaternary Tectonics of Utah with Emphasis on Earthquake-Hazard Characterization
    QUATERNARY TECTONICS OF UTAH WITH EMPHASIS ON EARTHQUAKE-HAZARD CHARACTERIZATION by Suzanne Hecker Utah Geologiral Survey BULLETIN 127 1993 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES 0 STATE OF UTAH Michael 0. Leavitt, Governor DEPARTMENT OF NATURAL RESOURCES Ted Stewart, Executive Director UTAH GEOLOGICAL SURVEY M. Lee Allison, Director UGSBoard Member Representing Lynnelle G. Eckels ................................................................................................... Mineral Industry Richard R. Kennedy ................................................................................................. Civil Engineering Jo Brandt .................................................................................................................. Public-at-Large C. Williatn Berge ...................................................................................................... Mineral Industry Russell C. Babcock, Jr.............................................................................................. Mineral Industry Jerry Golden ............................................................................................................. Mineral Industry Milton E. Wadsworth ............................................................................................... Economics-Business/Scientific Scott Hirschi, Director, Division of State Lands and Forestry .................................... Ex officio member UGS Editorial Staff J. Stringfellow .........................................................................................................
    [Show full text]
  • Stratigraphic Correlation Chart for Western Colorado and Northwestern New Mexico
    New Mexico Geological Society Guidebook, 32nd Field Conference, Western Slope Colorado, 1981 75 STRATIGRAPHIC CORRELATION CHART FOR WESTERN COLORADO AND NORTHWESTERN NEW MEXICO M. E. MacLACHLAN U.S. Geological Survey Denver, Colorado 80225 INTRODUCTION De Chelly Sandstone (or De Chelly Sandstone Member of the The stratigraphic nomenclature applied in various parts of west- Cutler Formation) of the west side of the basin is thought to ern Colorado, northwestern New Mexico, and a small part of east- correlate with the Glorieta Sandstone of the south side of the central Utah is summarized in the accompanying chart (fig. 1). The basin. locations of the areas, indicated by letters, are shown on the index map (fig. 2). Sources of information used in compiling the chart are Cols. B.-C. shown by numbers in brackets beneath the headings for the col- Age determinations on the Hinsdale Formation in parts of the umns. The numbers are keyed to references in an accompanying volcanic field range from 4.7 to 23.4 m.y. on basalts and 4.8 to list. Ages where known are shown by numbers in parentheses in 22.4 m.y. on rhyolites (Lipman, 1975, p. 6, p. 90-100). millions of years after the rock name or in parentheses on the line The early intermediate-composition volcanics and related rocks separating two chronostratigraphic units. include several named units of limited areal extent, but of simi- No Quaternary rocks nor small igneous bodies, such as dikes, lar age and petrology—the West Elk Breccia at Powderhorn; the have been included on this chart.
    [Show full text]
  • Eocene Green River Formation, Western United States
    Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States M. Elliot Smith* Alan R. Carroll Brad S. Singer Department of Geology and Geophysics, University of Wisconsin, 1215 West Dayton Street, Madison, Wisconsin 53706, USA ABSTRACT Members. Sediment accumulation patterns than being confi ned to a single episode of arid thus refl ect basin-center–focused accumula- climate. Evaporative terminal sinks were Numerous 40Ar/39Ar experiments on sani- tion rates when the basin was underfi lled, initially located in the Greater Green River dine and biotite from 22 ash beds and 3 and supply-limited accumulation when the and Piceance Creek Basins (51.3–48.9 Ma), volcaniclastic sand beds from the Greater basin was balanced fi lled to overfi lled. Sedi- then gradually migrated southward to the Green River, Piceance Creek, and Uinta ment accumulation in the Uinta Basin, at Uinta Basin (47.1–45.2 Ma). This history is Basins of Wyoming, Colorado, and Utah Indian Canyon, Utah, was relatively con- likely related to progressive southward con- constrain ~8 m.y. of the Eocene Epoch. Mul- stant at ~150 mm/k.y. during deposition of struction of the Absaroka Volcanic Prov- tiple analyses were conducted per sample over 5 m.y. of both evaporative and fl uctuat- ince, which constituted a major topographic using laser fusion and incremental heating ing profundal facies, which likely refl ects the and thermal anomaly that contributed to a techniques to differentiate inheritance, 40Ar basin-margin position of the measured sec- regional north to south hydrologic gradient. loss, and 39Ar recoil.
    [Show full text]
  • Rapid and Early Post-Flood Mammalian Diversification Videncede in the Green River Formation
    The Proceedings of the International Conference on Creationism Volume 6 Print Reference: Pages 449-457 Article 36 2008 Rapid and Early Post-Flood Mammalian Diversification videncedE in the Green River Formation John H. Whitmore Cedarville University Kurt P. Wise Southern Baptist Theological Seminary Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Whitmore, John H. and Wise, Kurt P. (2008) "Rapid and Early Post-Flood Mammalian Diversification Evidenced in the Green River Formation," The Proceedings of the International Conference on Creationism: Vol. 6 , Article 36. Available at: https://digitalcommons.cedarville.edu/icc_proceedings/vol6/iss1/36 In A. A. Snelling (Ed.) (2008). Proceedings of the Sixth International Conference on Creationism (pp. 449–457). Pittsburgh, PA: Creation Science Fellowship and Dallas, TX: Institute for Creation Research. Rapid and Early Post-Flood Mammalian Diversification Evidenced in the Green River Formation John H. Whitmore, Ph.D., Cedarville University, 251 N. Main Street, Cedarville, OH 45314 Kurt P. Wise, Ph.D., Southern Baptist Theological Seminary, 2825 Lexington Road.
    [Show full text]
  • Ichnotaxonomy of the Eocene Green River Formation
    Ichnotaxonomy of the Eocene Green River Formation, Soldier Summit and Spanish Fork Canyon, Uinta Basin, Utah: Interpreting behaviors, lifestyles, and erecting the Cochlichnus Ichnofacies By © 2018 Joshua D. Hogue B.S. Old Dominion University, 2013 Submitted to the graduate degree program in Geology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science. Chair: Dr. Stephen T. Hasiotis Dr. Paul Selden Dr. Georgios Tsoflias Date Defended: May 1, 2018 ii The thesis committee for Joshua D. Hogue certifies that this is the approved version of the following thesis: Ichnotaxonomy of the Eocene Green River Formation, Soldier Summit and Spanish Fork Canyon, Uinta Basin, Utah: Interpreting behaviors, lifestyles, and erecting the Cochlichnus Ichnofacies Chair: Dr. Stephen T. Hasiotis Date Approved: May 1, 2018 iii ABSTRACT The Eocene Green River Formation in the Uinta Basin, Utah, has a diverse ichnofauna. Nineteen ichnogenera and 26 ichnospecies were identified: Acanthichnus cursorius, Alaripeda lofgreni, c.f. Aquatilavipes isp., Aulichnites (A. parkerensis and A. tsouloufeidos isp. nov.), Aviadactyla (c.f. Av. isp. and Av. vialovi), Avipeda phoenix, Cochlichnus (C. anguineus and C. plegmaeidos isp. nov.), Conichnus conichnus, Fuscinapeda texana, Glaciichnium liebegastensis, Glaroseidosichnus ign. nov. gierlowskii isp. nov., Gruipeda (G. fuenzalidae and G. gryponyx), Midorikawapeda ign. nov. semipalmatus isp. nov., Planolites montanus, Presbyorniformipes feduccii, Protovirgularia dichotoma, Sagittichnus linki, Treptichnus (T. bifurcus, T. pedum, and T. vagans), and Tsalavoutichnus ign. nov. (Ts. ericksonii isp. nov. and Ts. leptomonopati isp. nov.). Four ichnocoenoses are represented by the ichnofossils—Cochlichnus, Conichnus, Presbyorniformipes, and Treptichnus—representing dwelling, feeding, grazing, locomotion, predation, pupation, and resting behaviors of organisms in environments at and around the sediment-water-air interface.
    [Show full text]
  • Geology of the Northern Portion of the Fish Lake Plateau, Utah
    GEOLOGY OF THE NORTHERN PORTION OF THE FISH LAKE PLATEAU, UTAH DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State - University By DONALD PAUL MCGOOKEY, B.S., M.A* The Ohio State University 1958 Approved by Edmund M." Spieker Adviser Department of Geology CONTENTS Page INTRODUCTION. ................................ 1 Locations and accessibility ........ 2 Physical features ......... _ ................... 5 Previous w o r k ......... 10 Field work and the geologic map ........ 12 Acknowledgements.................... 13 STRATIGRAPHY........................................ 15 General features................................ 15 Jurassic system......................... 16 Arapien shale .............................. 16 Twist Gulch formation...................... 13 Morrison (?) formation...................... 19 Cretaceous system .............................. 20 General character and distribution.......... 20 Indianola group ............................ 21 Mancos shale. ................... 24 Star Point sandstone................ 25 Blackhawk formation ........................ 26 Definition, lithology, and extent .... 26 Stratigraphic relations . ............ 23 Age . .............................. 23 Price River formation...................... 31 Definition, lithology, and extent .... 31 Stratigraphic relations ................ 34 A g e .................................... 37 Cretaceous and Tertiary systems . ............ 37 North Horn formation. ..........
    [Show full text]
  • A North American Stem Turaco, and the Complex Biogeographic History of Modern Birds Daniel J
    Field and Hsiang BMC Evolutionary Biology (2018) 18:102 https://doi.org/10.1186/s12862-018-1212-3 RESEARCHARTICLE Open Access A North American stem turaco, and the complex biogeographic history of modern birds Daniel J. Field1,2* and Allison Y. Hsiang2,3 Abstract Background: Earth’s lower latitudes boast the majority of extant avian species-level and higher-order diversity, with many deeply diverging clades restricted to vestiges of Gondwana. However, palaeontological analyses reveal that many avian crown clades with restricted extant distributions had stem group relatives in very different parts of the world. Results: Our phylogenetic analyses support the enigmatic fossil bird Foro panarium Olson 1992 from the early Eocene (Wasatchian) of Wyoming as a stem turaco (Neornithes: Pan-Musophagidae), a clade that is presently endemic to sub-Saharan Africa. Our analyses offer the first well-supported evidence for a stem musophagid (and therefore a useful fossil calibration for avian molecular divergence analyses), and reveal surprising new information on the early morphology and biogeography of this clade. Total-clade Musophagidae is identified as a potential participant in dispersal via the recently proposed ‘North American Gateway’ during the Palaeogene, and new biogeographic analyses illustrate the importance of the fossil record in revealing the complex historical biogeography of crown birds across geological timescales. Conclusions: In the Palaeogene, total-clade Musophagidae was distributed well outside the range of crown Musophagidae in the present day. This observation is consistent with similar biogeographic observations for numerous other modern bird clades, illustrating shortcomings of historical biogeographic analyses that do not incorporate information from the avian fossil record.
    [Show full text]
  • GEOLOGY of the MOAB REGION Introduction
    GEOLOGY OF THE MOAB REGION (Arches, Dead Horse Point and Canyonlands) Annabelle Foos Geology Department, University of Akron Introduction The geology of Arches National Park, porphyry laccolith that was intruded during the Dead Horse Point State Park and the “Island in Oligocene, 30 million years ago and the Sky” section of Canyonlands National Park experienced glaciation during the Pleistocene. is very similar. They occur in the Canyonlands Melting snow which accumulates in the section of the Colorado Plateau, in the vicinity mountains during winter months, replenishes of the confluence between the Green and streams and recharges bedrock aquifers Colorado Rivers. The same stratigraphic units providing a valuable source of fresh water to outcrop in all three parks (figure 1) plus salt this region. (Doelling and others, 1987) tectonic features can be found in both Arches and Canyonlands. While in the Moab region you will become familiar with some of the stratigraphic units we will see throughout the Colorado Plateau, observe salt tectonic features, arch formation and in the distance you can view the La Sal Mountains. Cryptogamic Soils While in these three parks (and throughout this trip) you will be required to STAY ON THE DESIGNATED TRAILS. This rule is especially important at these parks in order to preserve the fragile cryptogamic soils (figure 2). Cryptogamic soils are a complex of lichens, algae, moss and fungus that occurs as a black coating on the ground surface and as small mounds where it is well developed. It plays an extremely important role in the desert ecology. It binds the soil together and inhibits wind erosion and erosion by sheet wash.
    [Show full text]
  • Preliminary Geologic Map of the Enterprise Quadrangle, Washington and Iron Counties, Utah
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY PRELIMINARY GEOLOGIC MAP OF THE ENTERPRISE QUADRANGLE, WASHINGTON AND IRON COUNTIES, UTAH By H. Richard Blank U.S. Geological Survey, Denver, CO Open-File Report 93-203 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. 1993 PRELIMINARY GEOLOGIC MAP OF THE ENTERPRISE QUADRANGLE, WASHINGTON AND IRON COUNTIES, UTAH INTRODUCTION This map is the first to be released of 4 contiguous l:24,000-scale geologic map sheets comprising the area known informally as the Bull Valley district of the eastern Bull Valley Mountains. The district contains abundant low-grade contact metasomatic and jaspillitic sediment-hosted iron deposits, and less abundant but higher-grade vein-iron deposits. All are associated with monzonitic hypabyssal magmatism of early Miocene age, including emplacement of the Big Mountain intrusion, which cores the Big Mountain structural and topographic dome in the southeast corner of the Enterprise quadrangle. Numerous iron mining claims in the district were patented in years past but intensive exploration, including diamond drilling, had ceased by about 1960 and no ore has ever been shipped from the district on a commercial basis. Mineral resources of the eastern Bull Valley Mountains and vicinity include gold and silver in addition to iron. The Goldstrike district, about 18 km southwest of the Enterprise quadrangle, is currently an active gold producer; and until recently the Escalante mine, located a few km north of the quadrangle, was an important primary producer of silver. Ground water is doubtless the most significant non-mineral resource in the quadrangle, sustaining a flourishing agricultural industry in the southern Escalante Valley.
    [Show full text]
  • The Origin of Modern Birds This Talk Was Given at the Denver Museum Of
    The Origin of Modern Birds This talk was given at the Denver Museum of Natural History by Dr. Daniel J. Field, a lecturer at the Department of Earth Sciences at Cambridge University. Dr. Field is a Research Associate at the Denver Museum of Natural Science and a Fellow in Natural Sciences at Christ’s College, Cambridge. He discussed how the K-T Mass Extinction affected the evolution on modern birds. Birds are the most ubiquitous and widespread vertebrate animals with nearly 11,000 species of different shapes, colors and sizes. Can the diversity be explained by extensively examining the fossil record? The last 10 years have been an exciting time to examine the origin of birds due to advances in genome sequencing, and in computing power to analyze vast datasets. The only direct method of determining bird evolution is the fossil record. For example, the pseudo-toothed birds, or pelagornis, can be traced to modern-day ducks and chickens. The name derives from the boney projections on the sides of their bills which are a re-invention of teeth. They are the largest flying birds to have ever lived, from the Paleocene to the Pleistocene, and the only way we know of their existence is through the fossil record. You can see representative size in the illustration comparing Pelagornis to the modern-day albatross. It is reconstructed in the Bird Hall of the Denver Museum. The closest relatives of birds are crocodilians which are in a group called the archosaurs, whose most recent common ancestor lived over 200 million years ago.
    [Show full text]
  • Paleontological Resources Technical Report Riley Ridge to Natrona Project DECEMBER 2018
    U.S. Department of the Interior Bureau of Land Management Paleontological Resources Technical Report Riley Ridge to Natrona Project DECEMBER 2018 Table of Contents 1.0 Introduction ......................................................................................................................................... 1 2.0 Regional Setting .................................................................................................................................. 1 3.0 Inventory Methodology ....................................................................................................................... 1 4.0 Potential Fossil-Bearing Geologic Formations ................................................................................... 4 4.1 Browns Park Formation (PFYC 3) ............................................................................................ 4 4.2 White River Formation or Group (PFYC 5) .............................................................................. 5 4.3 Wind River Formation (PFYC 5) .............................................................................................. 5 4.4 Green River Formation (PFYC 5) ............................................................................................. 5 4.5 Wasatch Formation (PFYC 5) ................................................................................................... 5 4.6 Battle Spring Formation (PFYC 3)............................................................................................ 6 4.7 Bridger Formation
    [Show full text]