Efficient Multi-Key Homomorphic Encryption with Packed Ciphertexts

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Multi-Key Homomorphic Encryption with Packed Ciphertexts Efficient Multi-Key Homomorphic Encryption with Packed Ciphertexts with Application to Oblivious Neural Network Inference Hao Chen1, Wei Dai1, Miran Kim2, and Yongsoo Song1 1 Microsoft Research, Redmond, USA 2 UTHealth, Houston, USA fhaoche, wei.dai, [email protected] [email protected] Abstract. Homomorphic Encryption (HE) is a cryptosystem which supports computation on en- crypted data. L´opez-Alt et al. (STOC 2012) proposed a generalized notion of HE, called Multi-Key Homomorphic Encryption (MKHE), which is capable of performing arithmetic operations on ci- phertexts encrypted under different keys. In this paper, we present multi-key variants of two HE schemes with packed ciphertexts. We present new relinearization algorithms which are simpler and faster than previous method by Chen et al. (TCC 2017). We then generalize the bootstrapping techniques for HE to obtain multi-key fully homomorphic encryption schemes. We provide a proof-of-concept implementation of both MKHE schemes using Microsoft SEAL. For example, when the dimension of base ring is 8192, homomor- phic multiplication between multi-key BFV (resp. CKKS) ciphertexts associated with four parties followed by a relinearization takes about 116 (resp. 67) milliseconds. Our MKHE schemes have a wide range of applications in secure computation between multiple data providers. As a benchmark, we homomorphically classify an image using a pre-trained neural network model, where input data and model are encrypted under different keys. Our implementation takes about 1.8 seconds to evaluate one convolutional layer followed by two fully connected layers on an encrypted image from the MNIST dataset. Keywords: Multi-key homomorphic encryption · Packed ciphertext · Ring learning with errors · Neural networks. 1 Introduction As large amount of data are being generated and used for driving novel scientific discoveries, the effective and responsible utilization of large data remains to be a big challenge. This issue might be alleviated by outsourcing to public cloud service providers with intensive computing resources. However, there still remains a problem in privacy and security of outsourcing data and analysis. In the past few years, significant progresses have been made on cryptographic techniques for secure computation. Among the techniques for secure computation, Multi-Party Computation (MPC) and Homomorphic Encryption (HE) have received increasing attention due to technical breakthroughs. The history of MPC dates back three decades ago [50, 5], and since then it has been intensively studied in the theory community. In this approach, two or more parties participate in an interactive protocol to compute a function on their private inputs, where only the output of the function is revealed to the parties. Recent years witnessed a large body of works on improving the practical efficiency of MPC, and state-of-the-art protocols have achieved orders of magnitude improvements on performance (see e.g. [20, 49, 36]). However, these protocols are still inherently inefficient in terms of communication complexity: the number of bits that the parties need to exchange during the protocol is proportional to the product between the complexity of the function and the number of parties. Therefore, the high communication complexity remains the main bottleneck of MPC protocols. Moreover, the aforementioned MPC protocols may not be desirable for cloud-based applications, as all the parties involved need to perform local computation proportional to the complexity of the function. 2 H. Chen et al. However, in practical use-cases, we cannot expect the data providers to either perform large amount of work or stay online during the entire protocol execution. Another model was proposed where the data owners secret-share their data with a small number of independent servers, who perform an MPC to generate the computation result [23, 44]. These protocols have good performance and they moved the burden from the data providers to the servers, but their privacy guarantees rely on the assumption that the servers do not collude. HE refers to a cryptosystem that allows computing on encrypted data without decrypting them, thus enabling securely outsourcing computation in an untrusted cloud. There have been significant technical advances on HE after Gentry's first construction [24]. For example, one can encrypt multiple plaintext values into a single packed ciphertext, and use the single instruction multiple data (SIMD) techniques to perform operations on these values in parallel [48, 26]. Hence, HE schemes with packing techniques [7, 6, 22, 16] have good amortized complexity per plaintext value, and they have been applied to privacy- preserving big data analysis [39, 11, 37]. However, traditional HE schemes only allow computation on ciphertexts decryptable under the same secret key. Therefore, HE does not naturally support secure computation applications involving multiple data providers, each providing its own secret key. Fig. 1. High-level overview of the application to oblivious neural network inference. L´opez-Alt et al. [43] proposed a Multi-Key Homomorphic Encryption (MKHE) scheme, which is a cryptographic primitive supporting arithmetic operations on ciphertexts which are not necessarily decryptable to the same secret key. In addition to solving the aforementioned issues of HE, MKHE can be also used to design round-efficient MPC protocols with minimal communication cost [45]. In addition, an MPC protocol from MKHE satisfies the on-the-fly MPC [43] property, where the circuit to be evaluated can be dynamically decided after the data providers upload their encrypted data. Despite its versatility, MKHE has been seldom used in practice. Early studies [19, 45, 46] used a multi- key variant of the GSW scheme [28]. These constructions have large ciphertexts and their performance does not scale well with the number of parties. Previous works [8, 10] proposed MKHE schemes with short ciphertexts, with the caveat that one ciphertext encrypts only a single bit. The only existing MKHE scheme with packed ciphertexts [13, 41] is a multi-key variant of the BGV scheme [7]. Note that all the above studies were purely abstract with no implementation given, and it remains an open problem whether an MKHE scheme with support for SIMD operations can be practical. 1.1 Our Contributions We design multi-key variants of the BFV [6, 22] and CKKS [16] schemes. We propose a new method for generating a relinearization key which is simpler and faster compared to previous technique in [13]. Furthermore, we adapt the state-of-the-art bootstrapping algorithms for these schemes [12, 14, 9] to the multi-key scenario to build Multi-Key Fully Homomorphic Encryptions with packed ciphertexts. Finally, we give a proof-of-concept implementation of our multi-key schemes using Microsoft SEAL [47] and Efficient MKHE with Packed Ciphertexts 3 present experimental results. To the best of our knowledge, this is the first practical implementation of MKHE schemes that support packed ciphertexts. We also present the first viable application of MKHE that securely evaluates a pre-trained convolu- tional neural network (CNN) model. We build an efficient protocol where a cloud server provides on-line prediction service to a data owner using a classifier from a model provider, while protecting the privacy of both data and model using MKHE. Our scheme with support for the multi-key operations makes it possible to achieve this at a low end-to-end latency, and near-optimal cost for the data and model providers, as shown in Fig. 1. The server can store numerous ciphertexts encrypted under different keys, but the computational cost of a certain task depends only on the number of parties related to the circuit. We note that our solution has the advantage over single-key HE since the ML model providers do not need to send the unencrypted model to the server. 1.2 Overview of Our Construction n Let R = Z[X]=(X +1) be the cyclotomic ring with a power-of-two dimension n, and si 2 R be the secret of the i-th party. The starting point of the construction of a ring-based MKHE scheme is the requirement that the resulting scheme should be able to handle homomorphic computations on ciphertexts under independently generated secret keys. A ciphertext of our MKHE scheme associated to k different parties k+1 is of the form ct = (c0; c1; : : : ; ck) 2 Rq for a modulus q, which is decryptable by the concatenated secret sk = (1; s1; : : : ; sk). In other words, its phase µ = hct; ski (mod q) is a randomized encoding of a plaintext message m corresponding to the base scheme. Homomorphic multiplication of BFV or CKKS consists of two steps: tensor product and relineariza- tion. The tensor product of two input ciphertexts satisfies hct1 ⊗ct2; sk⊗ski = hct1; ski· hct2; ski, so it is a valid encryption under the tensor squared secret sk ⊗ sk. In the relinearization step, we aim to transform (k+1)2 the extended ciphertext ct = ct1 ⊗ ct2 2 Rq into a canonical ciphertext encrypting the same message under sk. This step can be understood as a key-switching process which requires a special encryption of sk ⊗ sk. We note that sk ⊗ sk contains entries sisj which depend on secrets of two distinct parties. Hence a relinearization key corresponding to non-linear entries cannot be generated by a single party, different from the traditional HE schemes. We propose an RLWE-based cryptosystem to achieve this functionality. It looks similar to the ring variant of GSW [28, 21] but our scheme supports some operations between ciphertexts under different keys. Let g 2 Zd be an integral vector, called the gadget vector. This scheme assumes the Common d Reference String (CRS) model so all parties share a random polynomial vector a 2 Rq . Each party d×3 i generates a special encryption of secret si by itself, which is a matrix Di = [di;0jdi;1jdi;2] 2 Rq satisfying di;0 + si · di;1 ≈ ri · g (mod q) and di;2 ≈ ri · a + si · g (mod q) where ri is a small polynomial sampled from the key distribution.
Recommended publications
  • SIGMOD Record, June 2018 (Vol
    SIGMOD Officers, Committees, and Awardees Chair Vice-Chair Secretary/Treasurer Juliana Freire Ihab Francis Ilyas Fatma Ozcan Computer Science & Engineering Cheriton School of Computer Science IBM Research New York University University of Waterloo Almaden Research Center Brooklyn, New York Waterloo, Ontario San Jose, California USA CANADA USA +1 646 997 4128 +1 519 888 4567 ext. 33145 +1 408 927 2737 juliana.freire <at> nyu.edu ilyas <at> uwaterloo.ca fozcan <at> us.ibm.com SIGMOD Executive Committee: Juliana Freire (Chair), Ihab Francis Ilyas (Vice-Chair), Fatma Ozcan (Treasurer), K. Selçuk Candan, Yanlei Diao, Curtis Dyreson, Christian S. Jensen, Donald Kossmann, and Dan Suciu. Advisory Board: Yannis Ioannidis (Chair), Phil Bernstein, Surajit Chaudhuri, Rakesh Agrawal, Joe Hellerstein, Mike Franklin, Laura Haas, Renee Miller, John Wilkes, Chris Olsten, AnHai Doan, Tamer Özsu, Gerhard Weikum, Stefano Ceri, Beng Chin Ooi, Timos Sellis, Sunita Sarawagi, Stratos Idreos, Tim Kraska SIGMOD Information Director: Curtis Dyreson, Utah State University Associate Information Directors: Huiping Cao, Manfred Jeusfeld, Asterios Katsifodimos, Georgia Koutrika, Wim Martens SIGMOD Record Editor-in-Chief: Yanlei Diao, University of Massachusetts Amherst SIGMOD Record Associate Editors: Vanessa Braganholo, Marco Brambilla, Chee Yong Chan, Rada Chirkova, Zachary Ives, Anastasios Kementsietsidis, Jeffrey Naughton, Frank Neven, Olga Papaemmanouil, Aditya Parameswaran, Alkis Simitsis, Wang-Chiew Tan, Pinar Tözün, Marianne Winslett, and Jun Yang SIGMOD Conference
    [Show full text]
  • Composition of Software Architectures Christos Kloukinas
    Composition of Software Architectures Christos Kloukinas To cite this version: Christos Kloukinas. Composition of Software Architectures. Computer Science [cs]. Université Rennes 1, 2002. English. tel-00469412 HAL Id: tel-00469412 https://tel.archives-ouvertes.fr/tel-00469412 Submitted on 1 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Composition of Software Architectures - Ph.D. Thesis - - Presented in front of the University of Rennes I, France - - English Version - Christos Kloukinas Jury Members : Jean-Pierre Banâtre Jacky Estublier Cliff Jones Valérie Issarny Nicole Lévy Joseph Sifakis February 12, 2002 Résumé Les systèmes informatiques deviennent de plus en plus complexes et doivent offrir un nombre croissant de propriétés non fonctionnelles, comme la fiabi- lité, la disponibilité, la sécurité, etc.. De telles propriétés sont habituellement fournies au moyen d’un intergiciel qui se situe entre le matériel (et le sys- tème d’exploitation) et le niveau applicatif, masquant ainsi les spécificités du système sous-jacent et permettant à des applications d’être utilisées avec dif- férentes infrastructures. Cependant, à mesure que les exigences de propriétés non fonctionnelles augmentent, les architectes système se trouvent confron- tés au cas où aucun intergiciel disponible ne fournit toutes les propriétés non fonctionnelles visées.
    [Show full text]
  • Towards a Unified Proof Framework for Automated Fixpoint Reasoning
    Technical Report: Towards A Unified Proof Framework for Automated Fixpoint Reasoning Using Matching Logic∗ Xiaohong Chen, Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu {xc3,trinhmt,nishant2,lpena7,grosu}@illinois.edu University of Illinois at Urbana-Champaign September 8, 2020 Abstract Automation of fixpoint reasoning has been extensively studied for various mathematical structures, logical formalisms, and computational domains, resulting in specialized fixpoint provers for heaps, for streams, for term algebras, for temporal properties, for program correctness, and for many other formal systems and inductive and coinductive properties. However, in spite of great theoretical and practical interest, there is no unified framework for automated fixpoint reasoning. Although several attempts have been made, there is no evidence that such a unified framework is possible, or practical. In this paper, we propose a candidate based on matching logic, a formalism recently shown to theoretically unify the above mentioned formal systems. Unfortunately, the (knaster-tarski) proof rule of matching logic, which enables inductive reasoning, is not syntax-driven. Worse, it can be applied at any step during a proof, making automation seem hopeless. Inspired by recent advances in automation of inductive proofs in separation logic, we propose an alternative proof system for matching logic, which is amenable for automation. We then discuss our implementation of it, which although not superior to specialized state-of-the-art automated provers for specific
    [Show full text]
  • COSMOS D2.2.3 State of the Art Analysis and Requirements Definition
    Ref. Ares(2016)1089931 - 03/03/2016 D2.2.3. SotA Analysis and Requirements Definition (Final) COSMOS Cultivate resilient smart Objects for Sustainable city applicatiOnS Grant Agreement Nº 609043 D2.2.3 State of the Art Analysis and Requirements Definition (Final) WP2: Requirements and Architecture Version: 2.0 Due Date: 30 November 2015 Delivery Date: 30 November 2015 Resubmission Date: 12 February 2016 Nature: Report Dissemination Level: Public Lead partner: UNIS Authors: All Partners Internal reviewers: NTUA, SIEMENS Date: 30/11/2015 Grant Agreement number: 609043 Page 1 of 134 D2.2.3. SotA Analysis and Requirements Definition (Final) www.iot-cosmos.eu The research leading to these results has received funding from the European Community's Seventh Framework Programme under grant agreement n° 609043 Version Control: Version Date Author Author’s Changes Organization 0.1 28/09/2015 Francois Carrez UNIS Initial version ready for contributions 0.2 5/11/2015 Adnan Akbar UNIS CEP and Predictive Analytics 0.3 13/11/2015 Juan Rico ATOS New section in CEP chapter about Fernandez CEP and edge computing 0.4 19/11/2015 Achilleas Marinakis NTUA Privacy by Design section 0.5 20/11/2015 George Kousiouris NTUA Social Network contribution 0.6 22/11/2015 Paula Ta-Shma IBM Updates regarding computations close to the data store and metadata search. 0.7 24/11/2015 Francois Carrez UNIS Update of Introduction and Requirement chapters 0.8 25/11/2015 Leonard Pitu SIEMENS Update of Security Section 0.9 27/11/2015 Achilleas Marinakis NTUA Internal Review 0.10
    [Show full text]
  • Modeling Narrative Discourse David K. Elson
    Modeling Narrative Discourse David K. Elson Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 c 2012 David K. Elson All Rights Reserved ABSTRACT Modeling Narrative Discourse David K. Elson This thesis describes new approaches to the formal modeling of narrative discourse. Al- though narratives of all kinds are ubiquitous in daily life, contemporary text processing techniques typically do not leverage the aspects that separate narrative from expository discourse. We describe two approaches to the problem. The first approach considers the conversational networks to be found in literary fiction as a key aspect of discourse coher- ence; by isolating and analyzing these networks, we are able to comment on longstanding literary theories. The second approach proposes a new set of discourse relations that are specific to narrative. By focusing on certain key aspects, such as agentive characters, goals, plans, beliefs, and time, these relations represent a theory-of-mind interpretation of a text. We show that these discourse relations are expressive, formal, robust, and through the use of a software system, amenable to corpus collection projects through the use of trained annotators. We have procured and released a collection of over 100 encodings, covering a set of fables as well as longer texts including literary fiction and epic poetry. We are able to inferentially find similarities and analogies between encoded stories based on the proposed relations, and an evaluation of this technique shows that human raters prefer such a measure of similarity to a more traditional one based on the semantic distances between story propositions.
    [Show full text]
  • Pluginizing QUIC∗
    Pluginizing QUIC∗ Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet, Thomas Given-Wilson, Axel Legay, Olivier Pereira, Olivier Bonaventure UCLouvain, Belgium [email protected] https://pquic.org ABSTRACT 1 INTRODUCTION Application requirements evolve over time and the underlying Transport protocols including TCP [79], RTP [34], SCTP [91] or protocols need to adapt. Most transport protocols evolve by negoti- QUIC [51, 58] play a key role in today’s Internet. They extend ating protocol extensions during the handshake. Experience with the packet forwarding service provided by the network layer and TCP shows that this leads to delays of several years or more to include a variety of end-to-end services. A transport protocol is usu- widely deploy standardized extensions. In this paper, we revisit the ally designed to support a set of requirements. Protocol designers extensibility paradigm of transport protocols. know that these requirements evolve over time and all these proto- We base our work on QUIC, a new transport protocol that en- cols allow clients to propose the utilization of extensions during crypts most of the header and all the payload of packets, which the handshake. makes it almost immune to middlebox interference. We propose These negotiation schemes have enabled TCP and other trans- Pluginized QUIC (PQUIC), a framework that enables QUIC clients port protocols to evolve over recent decades [24]. A modern TCP and servers to dynamically exchange protocol plugins that extend stack supports a long list of TCP extensions (Windows scale [52], the protocol on a per-connection basis. These plugins can be trans- timestamps [52], selective acknowledgments [65], Explicit Con- parently reviewed by external verifiers and hosts can refuse non- gestion Notification [81] or multipath extensions [32]).
    [Show full text]
  • Formal Methods Specification and Analysis Guidebook for the Verification of Software and Computer Systems
    OIIICI 01 Sill 1) l\l)\llsslo\ \%s( l{\\cl NASA-GB-O01-97 1{1 I I \\l 1 (1 Formal Methods Specification and Analysis Guidebook for the Verification of Software and Computer Systems Volume 11: A Practitioner’s Companion May 1997 L*L● National Aeronautics and Space Administration @ Washington, DC 20546 NASA-GB-001-97 Release 1.0 FORMAL METHODS SPECIFICATION AND ANALYSIS GUIDEBOOK FOR THE VERIFICATION OF SOFTWARE AND COMPUTER SYSTEMS VOLUME II: A PRACTITIONER’S COMPANION FOREWORD This volume presents technical issues involved in applying mathematical techniques known as Formal Methods to specify and analytically verify aerospace and avionics software systems. The first volume, NASA-GB-002-95 [NASA-95a], dealt with planning and technology insertion. This second volume discusses practical techniques and strategies for verifying requirements and high-level designs for software intensive systems. The discussion is illustrated with a realistic example based on NASA’s Simplified Aid for EVA (Extravehicular Activity) Rescue [SAFER94a, SAFER94b]. The vohu-ne is intended as a “companion” and guide for the novice formal methods and analytical verification practitioner. Together, the two volumes address the recognized need for new technologies and improved techniques to meet the demands inherent in developing increasingly complex and autonomous systems. The support of NASA’s Safety and Mission Quality Office for the investigation of formal methods and analytical verification techniques reflects the growing practicality of these approaches for enhancing the quality of aerospace and avionics applications. Major contributors to the guidebook include Judith Crow, lead author (SRI International); Ben Di Vito, SAFER example author (ViGYAN); Robyn Lutz (NASA - JPL); Larry Roberts (Lockheed Martin Space Mission Systems and Services); Martin Feather (NASA - JPL); and John Kelly (NASA - JPL), task lead.
    [Show full text]
  • Lattigo: a Multiparty Homomorphic Encryption Library in Go
    Lattigo: a Multiparty Homomorphic Encryption Library inGo Christian Mouchet Jean-Philippe Bossuat [email protected] [email protected] EPFL EPFL Juan Troncoso-Pastoriza Jean-Pierre Hubaux [email protected] [email protected] EPFL EPFL ABSTRACT Table 1: The github.com/ldsec/lattigo/v2 Go module We present and demo of Lattigo, a multiparty homomorphic en- lattigo/ring provides the RNS (Residue Number Sys- cryption library in Go. After a brief introduction of the origin and tem) modular arithmetic over the ring 3 history of the library, we dive into the most relevant technical as- Z& »-¼/¹- ¸ 1º with 3 a power of two. This pects that differentiate Lattigo from other existing libraries. From includes: RNS basis extension, RNS division, the cryptographic research perspective, we describe our realiza- number theoretic transform (NTT), and uni- tion of the keyswitch and CKKS bootstrapping operations. We form, Gaussian and ternary sampling. also present our approach to multiparty homomorphic encryption lattigo/bfv implements the Full-RNS, scale-invariant and its importance for Lattigo use-cases. From the software per- scheme of Brakerski, Fan and Vercauteren 3 spective, we elaborate on the choice of the Go language and the (BFV) [5, 12, 14]; it supports Z? arithmetic. benefits it brings to application developers who use the library. lattigo/ckks implements the Full-RNS scheme of Cheon et We then present performance benchmarks and the main use-case al. [10, 11] (CKKS, a.k.a. HEAAN), that sup- applications the library had so far. The last part of the presentation ports approximate arithmetic over C3/2.
    [Show full text]
  • Automating Software Development with Explicit Model Checking
    Masaryk University, Faculty of Informatics PhD Thesis Automating Software Development with Explicit Model Checking Author: Supervisor: Petr Bauch Jiˇr´ı Barnat Signature: Signature: Brno, 2015 a i Acknowledgements The idea to combine explicit and symbolic approaches to model checking was bestowed upon me by my thesis supervisor, Jiˇr´ıBarnat, for which I will remain forever grateful to him. We have been discussing the topic at length on numerous occasions, always arriving at a new inspiration for further progress. Each of my earlier doubts was shattered and every found obstacle overcome by his help. My previous supervisor, LuboˇsBrim, introduced the idea of analysing requirements without models, which gave me my first experience with autonomous scientific work: an invaluable experience. Yet even greater influence on me had his course on the Dijkstra's method. There was the first spark, my falling for the formal methods. Equally grateful I am to all members of the ParaDiSe and Sybila laboratories, both present and past, for creating an atmosphere which was as friendly as it was inspiring. Finally, I would like to give credit to students that helped me implement some of the ideas I had { Vojtˇech Havel and Jan Tuˇsil{ since their coding skills surpass mine I was able to learn from them as much as they learnt from me. ii a iii Summary In the last decade it became a common practice to formalise software requirements to improve the clarity of users' expectations. This thesis builds on the fact that functional requirements can be expressed in temporal logic and we propose new means of verifying the requirements themselves and the compliance to those requirements throughout the development process.
    [Show full text]
  • Implementation Guidance for FIPS 140-2 and the Cryptographic Module Validation Program
    Implementation Guidance for FIPS 140-2 and the Cryptographic Module Validation Program National Institute of Standards and Technology Canadian Centre for Cyber Security Initial Release: March 28, 2003 Last Update: May 4, 2021 Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program National Institute of Standards and Technology Table of Contents OVERVIEW ....................................................................................................................................................... 6 GENERAL ISSUES............................................................................................................................................ 7 G.1 REQUEST FOR GUIDANCE FROM THE CMVP AND CAVP ............................................................................ 7 G.2 COMPLETION OF A TEST REPORT: INFORMATION THAT MUST BE PROVIDED TO NIST AND CCCS ............... 9 G.3 PARTIAL VALIDATIONS AND NOT APPLICABLE AREAS OF FIPS 140-2 ..................................................... 11 G.4 DESIGN AND TESTING OF CRYPTOGRAPHIC MODULES ............................................................................... 12 G.5 MAINTAINING VALIDATION COMPLIANCE OF SOFTWARE OR FIRMWARE CRYPTOGRAPHIC MODULES ........ 13 G.6 MODULES WITH BOTH A FIPS MODE AND A NON-FIPS MODE ................................................................... 15 G.7 RELATIONSHIPS AMONG VENDORS, LABORATORIES, AND NIST/CCCS .................................................. 16 G.8 REVALIDATION REQUIREMENTS ..............................................................................................................
    [Show full text]
  • PCI DSS E-Commerce Guidelines Information Supplement • PCI DSS E-Commerce Guidelines • January 2013
    Standard: PCI Data Security Standard (PCI DSS) Version: 2.0 Date: January 2013 Author: E-commerce Special Interest Group PCI Security Standards Council Information Supplement: PCI DSS E-commerce Guidelines Information Supplement • PCI DSS E-commerce Guidelines • January 2013 Table of Contents 1 Executive Summary ........................................................................................................................................... 3 2 Introduction ........................................................................................................................................................ 4 2.1 Intended Use of this Information Supplement ............................................................................................... 4 3 E-commerce Overview ...................................................................................................................................... 6 3.1 Third-party Entities ........................................................................................................................................ 6 3.1.1 E-commerce Payment Gateway/Payment Processor .......................................................................... 6 3.1.2 Web-hosting Provider ........................................................................................................................... 6 3.1.3 General Infrastructure Hosting Provider ............................................................................................... 7 3.2 E-commerce Infrastructure...........................................................................................................................
    [Show full text]
  • The TPM: Technical Overview of Microsoft's Interim Measures
    The TPM: Technical Overview of Microsoft’s Interim Measures against CVE-2017-15361 Aleksandar Milenkoski To cite this version: Aleksandar Milenkoski. The TPM: Technical Overview of Microsoft’s Interim Measures against CVE- 2017-15361. [Technical Report] ERNW Enno Rey Netzwerke GmbH. 2020. hal-03088319 HAL Id: hal-03088319 https://hal.archives-ouvertes.fr/hal-03088319 Submitted on 26 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License The TPM: Technical Overview of Microsoft’s Interim Measures against CVE-2017-15361 ) Aleksandar Milenkoski [email protected] This work is part of the Windows Insight series. This series aims to assist efforts on analysing inner working principles, functionalities, and properties of the Microsoft Windows operating system. For general inquiries contact Aleksandar Milenkoski ([email protected]) or Dominik Phillips ([email protected]). For inquiries on this work contact the corresponding author ()). The content of this work has been created in the course of the project named ’Studie zu Systemaufbau, Protokollierung, Härtung und Sicherheitsfunktionen in Windows 10 (SiSyPHuS Win10)’ (ger.) - ’Study of system design, logging, hard- ening, and security functions in Windows 10’ (eng.).
    [Show full text]