Lecture 5- Pendulums and Dampled SHM Chapter 15.1-15.3

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 5- Pendulums and Dampled SHM Chapter 15.1-15.3 Admin Pendulums Dampening Resonance Lecture 5- Pendulums and Dampled SHM Chapter 15.1-15.3 Prof. Noronha-Hostler PHY-124H HONORS ANALYTICAL PHYSICS IB Phys- 124H Feb. 15th, 2018 1 / 13 Admin Pendulums Dampening Resonance Tutoring Tutoring for a fee: http://physics.rutgers.edu/descr/tutorpage2017.pdf Math and Science Learning Center: https://rlc.rutgers.edu/services/peer-tutoring 2 / 13 Admin Pendulums Dampening Resonance Test Exams are graded by GradeBook is having issues, hopefully something by the end of the day... 3 / 13 Admin Pendulums Dampening Resonance Physical Pendulum 4 / 13 Admin Pendulums Dampening Resonance SHM vs. Circular motion 5 / 13 15.4.5. If the mass of a simple pendulum is doubled, how does the frequency of oscillation change, if at all? a) The frequency would double. b) The frequency would be reduced to one-half its initial value. c) The frequency would be reduced by a factor of (2 / 2 ). d) The frequency would increase by a factor of 2. e) The frequency would be unchanged. 15.4.5. If the mass of a simple pendulum is doubled, how does the frequency of oscillation change, if at all? a) The frequency would double. b) The frequency would be reduced to one-half its initial value. c) The frequency would be reduced by a factor of (2 / 2 ). d) The frequency would increase by a factor of 2. e) The frequency would be unchanged. 15.4.8. A grandfather clock, which uses a pendulum to keep accurate time, is adjusted at sea level. The clock is then taken to an altitude of several kilometers. How will the clock behave in its new location? a) The clock will run slow. b) The clock will run fast. c) The clock will run the same as it did at sea level. d) The clock cannot run at such high altitudes. 15.4.8. A grandfather clock, which uses a pendulum to keep accurate time, is adjusted at sea level. The clock is then taken to an altitude of several kilometers. How will the clock behave in its new location? a) The clock will run slow. b) The clock will run fast. c) The clock will run the same as it did at sea level. d) The clock cannot run at such high altitudes. Admin Pendulums Dampening Resonance Damped oscillator 6 / 13 Admin Pendulums Dampening Resonance Damped oscillator 7 / 13 Admin Pendulums Dampening Resonance Damped oscillator 8 / 13 Admin Pendulums Dampening Resonance Resonance Bridge resonance 9 / 13 15.5.1. Consider three different torsion pendulums, each of mass m, consisting of a solid disk suspended from the middle of one flat side, a hollow sphere, and a rod suspended from the middle. The diameter of the disk and sphere are both the same as the length of the rod. The wires they are suspended from are identical. Which torsion pendulum will twist back and forth the fastest? a) the disk b) the rod c) the sphere d) The disk and the rod will oscillate with the same frequency. 15.5.1. Consider three different torsion pendulums, each of mass m, consisting of a solid disk suspended from the middle of one flat side, a hollow sphere, and a rod suspended from the middle. The diameter of the disk and sphere are both the same as the length of the rod. The wires they are suspended from are identical. Which torsion pendulum will twist back and forth the fastest? a) the disk b) the rod c) the sphere d) The disk and the rod will oscillate with the same frequency. 15.6.2. At the surface of Mars, the acceleration due to gravity is 3.71 m/s2. On Earth, a pendulum that has a period of one second has a length of 0.248 m. What is the length of a pendulum on Mars that oscillates with a period of one second? a) 0.0940 m b) 0.143 m c) 0.248 m d) 0.296 m e) 0.655 m 15.6.2. At the surface of Mars, the acceleration due to gravity is 3.71 m/s2. On Earth, a pendulum that has a period of one second has a length of 0.248 m. What is the length of a pendulum on Mars that oscillates with a period of one second? a) 0.0940 m b) 0.143 m c) 0.248 m d) 0.296 m e) 0.655 m Admin Pendulums Dampening Resonance Wave Types Mechanical Waves 10 / 13 Admin Pendulums Dampening Resonance Waves 11 / 13 Admin Pendulums Dampening Resonance Wave Types 12 / 13 Admin Pendulums Dampening Resonance Wave Types 13 / 13 16.3.1. A transverse wave is traveling along a Slinky. The drawing below represents a section of the Slinky at one instant in time. The direction the wave is traveling is from left to right. Two segments are labeled on the Slinky. At the instant shown, which of the following statements correctly describes the motion of the particles that compose the Slinky in segments A and B? a) In segment A the particles are moving downward and in segment B the particles are moving upward. b) In segment A the particles are moving upward and in segment B the particles are moving upward. c) In segment A the particles are moving downward and in segment B the particles are moving downward. d) In segment A the particles are moving upward and in segment B the particles are moving downward. e) In segment A the particles are moving toward the left and in segment B the particles are moving toward the right. 16.3.1. A transverse wave is traveling along a Slinky. The drawing below represents a section of the Slinky at one instant in time. The direction the wave is traveling is from left to right. Two segments are labeled on the Slinky. At the instant shown, which of the following statements correctly describes the motion of the particles that compose the Slinky in segments A and B? a) In segment A the particles are moving downward and in segment B the particles are moving upward. b) In segment A the particles are moving upward and in segment B the particles are moving upward. c) In segment A the particles are moving downward and in segment B the particles are moving downward. d) In segment A the particles are moving upward and in segment B the particles are moving downward. e) In segment A the particles are moving toward the left and in segment B the particles are moving toward the right. 16.3.2. Mike is holding one end of a Slinky. His hand moves up and down and causes a transverse wave to travel along the Slinky away from him. Is the motion of Mike’s hand a wave? a) Yes, the motion of Mike’s hand is a wave because it moves up and down in periodic motion. b) Yes, the motion of Mike’s hand is a wave because Mike is transferring energy to the Slinky. c) No, the motion of Mike’s hand is not a wave because there is no traveling disturbance. d) No, the motion of Mike’s hand is not a wave because there is no energy traveling along the Slinky. 16.3.2. Mike is holding one end of a Slinky. His hand moves up and down and causes a transverse wave to travel along the Slinky away from him. Is the motion of Mike’s hand a wave? a) Yes, the motion of Mike’s hand is a wave because it moves up and down in periodic motion. b) Yes, the motion of Mike’s hand is a wave because Mike is transferring energy to the Slinky. c) No, the motion of Mike’s hand is not a wave because there is no traveling disturbance. d) No, the motion of Mike’s hand is not a wave because there is no energy traveling along the Slinky..
Recommended publications
  • Grandfathers' Clocks: Their Making and Their Makers in Lancaster County
    GRANDFATHERS' CLOCKS: THEIR MAKING AND THEIR MAKERS IN LANCASTER COUNTY, Whilst Lancaster county is not the first or only home of the so-called "Grandfathers' Clock," yet the extent and the excellence of the clock industry in this type of clocks entitle our county to claim special distinction as one of the most noted centres of its production. I, therefore, feel the story of it specially worthy of an enduring place in our annals, and it is with pleasure •and patriotic enthusiasm that I devote the time and research necessary to do justice to the subject that so closely touches the dearest traditions of our old county's social life and surroundings. These old clocks, first bought and used by the forefathers of many of us, have stood for a century or more in hundreds of our homes, faithfully and tirelessly marking the flight of time, in annual succession, for four genera- tions of our sires from the cradle to the grave. Well do they recall to memory and imagination the joys and sorrows, the hopes and disappointments, the successes and failures, the ioves and the hates, hours of anguish, thrills of happiness and pleasure, that have gone into and went to make up the lives of the lines of humanity that have scanned their faces to know and note the minutes and the hours that have made the years of each succeeding life. There is a strong human element in the existence of all such clocks, and that human appeal to our thoughts and memories is doubly intensified when we know that we are looking upon a clock that has thus spanned the lives of our very own flesh and blood from the beginning.
    [Show full text]
  • The Swinging Spring: Regular and Chaotic Motion
    References The Swinging Spring: Regular and Chaotic Motion Leah Ganis May 30th, 2013 Leah Ganis The Swinging Spring: Regular and Chaotic Motion References Outline of Talk I Introduction to Problem I The Basics: Hamiltonian, Equations of Motion, Fixed Points, Stability I Linear Modes I The Progressing Ellipse and Other Regular Motions I Chaotic Motion I References Leah Ganis The Swinging Spring: Regular and Chaotic Motion References Introduction The swinging spring, or elastic pendulum, is a simple mechanical system in which many different types of motion can occur. The system is comprised of a heavy mass, attached to an essentially massless spring which does not deform. The system moves under the force of gravity and in accordance with Hooke's Law. z y r φ x k m Leah Ganis The Swinging Spring: Regular and Chaotic Motion References The Basics We can write down the equations of motion by finding the Lagrangian of the system and using the Euler-Lagrange equations. The Lagrangian, L is given by L = T − V where T is the kinetic energy of the system and V is the potential energy. Leah Ganis The Swinging Spring: Regular and Chaotic Motion References The Basics In Cartesian coordinates, the kinetic energy is given by the following: 1 T = m(_x2 +y _ 2 +z _2) 2 and the potential is given by the sum of gravitational potential and the spring potential: 1 V = mgz + k(r − l )2 2 0 where m is the mass, g is the gravitational constant, k the spring constant, r the stretched length of the spring (px2 + y 2 + z2), and l0 the unstretched length of the spring.
    [Show full text]
  • Dynamics of the Elastic Pendulum Qisong Xiao; Shenghao Xia ; Corey Zammit; Nirantha Balagopal; Zijun Li Agenda
    Dynamics of the Elastic Pendulum Qisong Xiao; Shenghao Xia ; Corey Zammit; Nirantha Balagopal; Zijun Li Agenda • Introduction to the elastic pendulum problem • Derivations of the equations of motion • Real-life examples of an elastic pendulum • Trivial cases & equilibrium states • MATLAB models The Elastic Problem (Simple Harmonic Motion) 푑2푥 푑2푥 푘 • 퐹 = 푚 = −푘푥 = − 푥 푛푒푡 푑푡2 푑푡2 푚 • Solve this differential equation to find 푥 푡 = 푐1 cos 휔푡 + 푐2 sin 휔푡 = 퐴푐표푠(휔푡 − 휑) • With velocity and acceleration 푣 푡 = −퐴휔 sin 휔푡 + 휑 푎 푡 = −퐴휔2cos(휔푡 + 휑) • Total energy of the system 퐸 = 퐾 푡 + 푈 푡 1 1 1 = 푚푣푡2 + 푘푥2 = 푘퐴2 2 2 2 The Pendulum Problem (with some assumptions) • With position vector of point mass 푥 = 푙 푠푖푛휃푖 − 푐표푠휃푗 , define 푟 such that 푥 = 푙푟 and 휃 = 푐표푠휃푖 + 푠푖푛휃푗 • Find the first and second derivatives of the position vector: 푑푥 푑휃 = 푙 휃 푑푡 푑푡 2 푑2푥 푑2휃 푑휃 = 푙 휃 − 푙 푟 푑푡2 푑푡2 푑푡 • From Newton’s Law, (neglecting frictional force) 푑2푥 푚 = 퐹 + 퐹 푑푡2 푔 푡 The Pendulum Problem (with some assumptions) Defining force of gravity as 퐹푔 = −푚푔푗 = 푚푔푐표푠휃푟 − 푚푔푠푖푛휃휃 and tension of the string as 퐹푡 = −푇푟 : 2 푑휃 −푚푙 = 푚푔푐표푠휃 − 푇 푑푡 푑2휃 푚푙 = −푚푔푠푖푛휃 푑푡2 Define 휔0 = 푔/푙 to find the solution: 푑2휃 푔 = − 푠푖푛휃 = −휔2푠푖푛휃 푑푡2 푙 0 Derivation of Equations of Motion • m = pendulum mass • mspring = spring mass • l = unstreatched spring length • k = spring constant • g = acceleration due to gravity • Ft = pre-tension of spring 푚푔−퐹 • r = static spring stretch, 푟 = 푡 s 푠 푘 • rd = dynamic spring stretch • r = total spring stretch 푟푠 + 푟푑 Derivation of Equations of Motion
    [Show full text]
  • Grandfathers' Clocks: Their Making and Their Makers in Lancaster County *
    Grandfathers' Clocks: Their Making and Their Makers in Lancaster County * By D. F. MAGEE, ESQ. Whilst Lancaster County is not the first or only home of the so-called "Grandfathers' Clock," yet the extent and the excellence of the clock industry in this type of clocks entitle our county to claim special distinction as one of the most noted centres of its production. I, therefore, feel the story of it specially worthy of an enduring place in our annals, and it is with pleasure and patriotic enthusiasm that I devote the time and research necessary to do justice to the subject that so closely touches the dearest traditions of our old county's social life and surroundings. These old clocks, first bought and used by the forefathers of many of us, have stood for a century or more in hundreds of our homes, faithfully and tirelessly marking the flight of time, in annual succession for four genera- tions of our sires from the cradle to the grave. Well do they recall to memory and imagination the joys and sorrows, the hopes and disappointments, the successes and failures, the loves and the * A second edition of this paper was necessitated by an increasing demand for the pamphlet, long gone from the files of the Historical Society. No at- tempt has been made to re-edit the text. D. F. Magee's sentences, punctuations and all are his own. A few errors of dates or spelling have been corrected, and a few additions have been made. These include the makers, Christian Huber, Henry L.
    [Show full text]
  • Pioneers in Optics: Christiaan Huygens
    Downloaded from Microscopy Pioneers https://www.cambridge.org/core Pioneers in Optics: Christiaan Huygens Eric Clark From the website Molecular Expressions created by the late Michael Davidson and now maintained by Eric Clark, National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 . IP address: [email protected] 170.106.33.22 Christiaan Huygens reliability and accuracy. The first watch using this principle (1629–1695) was finished in 1675, whereupon it was promptly presented , on Christiaan Huygens was a to his sponsor, King Louis XIV. 29 Sep 2021 at 16:11:10 brilliant Dutch mathematician, In 1681, Huygens returned to Holland where he began physicist, and astronomer who lived to construct optical lenses with extremely large focal lengths, during the seventeenth century, a which were eventually presented to the Royal Society of period sometimes referred to as the London, where they remain today. Continuing along this line Scientific Revolution. Huygens, a of work, Huygens perfected his skills in lens grinding and highly gifted theoretical and experi- subsequently invented the achromatic eyepiece that bears his , subject to the Cambridge Core terms of use, available at mental scientist, is best known name and is still in widespread use today. for his work on the theories of Huygens left Holland in 1689, and ventured to London centrifugal force, the wave theory of where he became acquainted with Sir Isaac Newton and began light, and the pendulum clock. to study Newton’s theories on classical physics. Although it At an early age, Huygens began seems Huygens was duly impressed with Newton’s work, he work in advanced mathematics was still very skeptical about any theory that did not explain by attempting to disprove several theories established by gravitation by mechanical means.
    [Show full text]
  • A Phenomenology of Galileo's Experiments with Pendulums
    BJHS, Page 1 of 35. f British Society for the History of Science 2009 doi:10.1017/S0007087409990033 A phenomenology of Galileo’s experiments with pendulums PAOLO PALMIERI* Abstract. The paper reports new findings about Galileo’s experiments with pendulums and discusses their significance in the context of Galileo’s writings. The methodology is based on a phenomenological approach to Galileo’s experiments, supported by computer modelling and close analysis of extant textual evidence. This methodology has allowed the author to shed light on some puzzles that Galileo’s experiments have created for scholars. The pendulum was crucial throughout Galileo’s career. Its properties, with which he was fascinated from very early in his career, especially concern time. A 1602 letter is the earliest surviving document in which Galileo discusses the hypothesis of pendulum isochronism.1 In this letter Galileo claims that all pendulums are isochronous, and that he has long been trying to demonstrate isochronism mechanically, but that so far he has been unable to succeed. From 1602 onwards Galileo referred to pendulum isochronism as an admirable property but failed to demonstrate it. The pendulum is the most open-ended of Galileo’s artefacts. After working on my reconstructed pendulums for some time, I became convinced that the pendulum had the potential to allow Galileo to break new ground. But I also realized that its elusive nature sometimes threatened to undermine the progress Galileo was making on other fronts. It is this ambivalent nature that, I thought, might prove invaluable in trying to understand crucial aspects of Galileo’s innovative methodology.
    [Show full text]
  • Sarlette Et Al
    COMPARISON OF THE HUYGENS MISSION AND THE SM2 TEST FLIGHT FOR HUYGENS ATTITUDE RECONSTRUCTION(*) A. Sarlette(1), M. Pérez-Ayúcar, O. Witasse, J.-P. Lebreton Planetary Missions Division, Research and Scientific Support Department, ESTEC-ESA, Noordwijk, The Netherlands. Email: [email protected], [email protected], [email protected] (1) Stagiaire from February 1 to April 29; student at Liège University, Belgium. Email: [email protected] ABSTRACT 1. The SM2 probe characteristics The Huygens probe is the ESA’s main contribution to In agreement with its main purpose – performing a the Cassini/Huygens mission, carried out jointly by full system check of the Huygens descent sequence – NASA, ESA and ASI. It was designed to descend into the SM2 probe was a full scale model of the Huygens the atmosphere of Titan on January 14, 2005, probe, having the same inner and outer structure providing surface images and scientific data to study (except that the deploying booms of the HASI the ground and the atmosphere of Saturn’s largest instrument were not mounted on SM2), the same mass moon. and a similar balance. A complete description of the Huygens flight model system can be found in [1]. In the framework of the reconstruction of the probe’s motions during the descent based on the engineering All Descent Control SubSystem items (parachute data, additional information was needed to investigate system, mechanisms, pyro and command devices) were the attitude and an anomaly in the spin direction. provided according to expected flight standard; as the test flight was successful, only few differences actually Two years before the launch of the Cassini/Huygens exist at this level with respect to the Huygens probe.
    [Show full text]
  • Computer-Aided Design and Kinematic Simulation of Huygens's
    applied sciences Article Computer-Aided Design and Kinematic Simulation of Huygens’s Pendulum Clock Gloria Del Río-Cidoncha 1, José Ignacio Rojas-Sola 2,* and Francisco Javier González-Cabanes 3 1 Department of Engineering Graphics, University of Seville, 41092 Seville, Spain; [email protected] 2 Department of Engineering Graphics, Design, and Projects, University of Jaen, 23071 Jaen, Spain 3 University of Seville, 41092 Seville, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-953-212452 Received: 25 November 2019; Accepted: 9 January 2020; Published: 10 January 2020 Abstract: This article presents both the three-dimensional modelling of the isochronous pendulum clock and the simulation of its movement, as designed by the Dutch physicist, mathematician, and astronomer Christiaan Huygens, and published in 1673. This invention was chosen for this research not only due to the major technological advance that it represented as the first reliable meter of time, but also for its historical interest, since this timepiece embodied the theory of pendular movement enunciated by Huygens, which remains in force today. This 3D modelling is based on the information provided in the only plan of assembly found as an illustration in the book Horologium Oscillatorium, whereby each of its pieces has been sized and modelled, its final assembly has been carried out, and its operation has been correctly verified by means of CATIA V5 software. Likewise, the kinematic simulation of the pendulum has been carried out, following the approximation of the string by a simple chain of seven links as a composite pendulum. The results have demonstrated the exactitude of the clock.
    [Show full text]
  • SETTING up and MOVING a PENDULUM CLOCK by Brian Loomes, UK
    SETTING UP AND MOVING A PENDULUM CLOCK by Brian Loomes, UK oving a pendulum This problem may face clock with anchor the novice in two different Mescapement can ways. Firstly as a clock be difficult unless you have that runs well in its present a little guidance. Of all position but that you need these the longcase clock to move. Or as a clock is trickiest because the that is new to you and that long pendulum calls for you need to assemble greater care at setting it in and set going for the very balance, usually known as first time—such as one you have just inherited or bought at auction. If it is the first of these then you can attempt to ignore my notes about levelling. But floors in different rooms or different houses seldom agree Figure 1. When moving an on levels, and you may eight-day longcase clock you eventually have to follow need to hold the weight lines through the whole process in place by taping round the of setting the clock level accessible part of the barrel. In and in beat. a complicated musical clock, Sometimes you can such as this by Thomas Lister of persuade a clock to run by Halifax, it is vital. having it at a silly angle, or by pushing old pennies or wooden wedges under the seatboard. But this is hardly ideal and next time you move the clock you start with the same performance all over again. setting it ‘in beat’. These My suggestion is that you notes deal principally with bite the bullet right away longcase clocks.
    [Show full text]
  • Vertical Oscillations of Mass on Spring • Pendulum • Damped and Driven
    Lecture 2 Outline • Vertical oscillations of mass on spring • Pendulum • Damped and Driven oscillations (more realistic) Vertical Oscillations (I) • At equilibrium (no net force), spring is stretched (cf. horizontal spring): spring force balances gravity Hooke’s law: (F ) = k∆y =+k∆L sp y − Newton’s law: (F ) =(F ) +(F ) = k∆L mg =0 net y sp y G y − ∆L = mg ⇒ k Vertical Oscillations (II) • Oscillation around equilibrium, y = 0 (spring stretched) block moves upward, spring still stretched (F ) =(F ) +(F ) = k (∆L y) mg net y sp y G y − − Using k∆L mg = 0 (equilibrium), (F ) = ky − net y − • gravity ``disappeared’’... as before: y(t)=A cos (ωt + φ0) Example • A 8 kg mass is attached to a spring and allowed to hang in the Earth’s gravitational field. The spring stretches 2.4 cm. before it reaches its equilibrium position. If allowed to oscillate, what would be its frequency? Pendulum (I) • Two forces: tension (along string) and gravity • Divide into tangential and radial... (F ) =(F ) = mg sin θ = ma net tangent G tangent − tangent acceleration around circle 2 d s = g sin θ dt2 − more complicated Pendulum (II) • Small-angle approximation sin θ θ (θ in radians) ≈ (F ) mg s net tangent ≈− L d2s g (same as mass on spring) dt2 = L s ⇒ s(t)=−A cos (ωt + φ ) or θ(t)=θ cos (ωt + φ ) ⇒ 0 max 0 (independent of m, cf. spring) Example • The period of a simple pendulum on another planet is 1.67 s. What is the acceleration due to gravity on this planet? Assume that the length of the pendulum is 1m.
    [Show full text]
  • THE STUDY of SATURN's RINGS 1 Thesis Presented for the Degree Of
    1 THE STUDY OF SATURN'S RINGS 1610-1675, Thesis presented for the Degree of Doctor of Philosophy in the Field of History of Science by Albert Van Haden Department of History of Science and Technology Imperial College of Science and Teohnology University of London May, 1970 2 ABSTRACT Shortly after the publication of his Starry Messenger, Galileo observed the planet Saturn for the first time through a telescope. To his surprise he discovered that the planet does.not exhibit a single disc, as all other planets do, but rather a central disc flanked by two smaller ones. In the following years, Galileo found that Sa- turn sometimes also appears without these lateral discs, and at other times with handle-like appendages istead of round discs. These ap- pearances posed a great problem to scientists, and this problem was not solved until 1656, while the solution was not fully accepted until about 1670. This thesis traces the problem of Saturn, from its initial form- ulation, through the period of gathering information, to the final stage in which theories were proposed, ending with the acceptance of one of these theories: the ring-theory of Christiaan Huygens. Although the improvement of the telescope had great bearing on the problem of Saturn, and is dealt with to some extent, many other factors were in- volved in the solution of the problem. It was as much a perceptual problem as a technical problem of telescopes, and the mental processes that led Huygens to its solution were symptomatic of the state of science in the 1650's and would have been out of place and perhaps impossible before Descartes.
    [Show full text]
  • Spring-Loaded Inverted Pendulum Goes Through Two Contraction-Extension Cycles During the Single Stance Phase of Walking
    bioRxiv preprint doi: https://doi.org/10.1101/509687; this version posted January 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Spring-loaded inverted pendulum goes through two contraction-extension cycles during the single stance phase of walking Gabriel Antoniak∗1, Tirthabir Biswas∗2, Nelson Cortes3, Siddhartha Sikdar3, Chanwoo Chun1, and Vikas Bhandawaty1 1Department of Biology, Duke University 2Department of Physics, Loyola University 3Department of Bioengineering, George Mason University December 31, 2018 ∗Equal authors yCorresponding author Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/509687; this version posted January 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Despite the overall complexity of legged locomotion, the motion of the center of mass (COM) itself is relatively simple, and can be qualitatively described by simple mechanical models. The spring-loaded inverted pendulum (SLIP) is one such model, and describes both the COM motion and the ground reaction forces (GRFs) during running. Similarly, walking can be modeled by two SLIP- like legs (double SLIP or DSLIP). However, DSLIP has many limitations and is unlikely to serve as a quantitative model for walking. As a first step to obtaining a quantitative model for walking, we explored the ability of SLIP to model the single stance phase of walking across the entire range of walking speeds.
    [Show full text]