Exploring Behavioral Patterns of Information Consumption on Social Media: a Case Study of Pbs Newshour on Facebook

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Behavioral Patterns of Information Consumption on Social Media: a Case Study of Pbs Newshour on Facebook EXPLORING BEHAVIORAL PATTERNS OF INFORMATION CONSUMPTION ON SOCIAL MEDIA: A CASE STUDY OF PBS NEWSHOUR ON FACEBOOK By Yan Song A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Information and Media—Doctor of Philosophy 2016 ABSTRACT EXPLORING BEHAVIORAL PATTERNS OF INFORMATION CONSUMPTION ON SOCIAL MEDIA:A CASE STUDY OF PBS NEWSHOUR ON FACEBOOK By Yan Song In August of 2013, Facebook introduced new algorithms to promote high quality news. Since then, many newsrooms have been enjoying substantially increased traffic brought by Facebook to their own websites. 30% of US adults now get news from Facebook according to a 2014 survey by Pew Research Center. Facebook remarked that this strategy is based on mutual benefits between itself and news publishers. In economists’ words, Facebook, as well as other social media platforms including Twitter and LinkedIn, have recognized their roles as multi- sided platforms (MSPs) and sought ways to enhance such roles. It is not the first time for them to try to play an intermediary role as they, especially Facebook, have been constantly coordinating between users, game and app developers, content providers and advertisers. For newsrooms, however, this ecosystem is fairly new. Watching search engines and social media emerging as new multi-sided platforms, news publishers are forced to learn how to adapt their journalistic practices and business models for yet another new media format, reminiscent of the past when newspapers learned to differentiate themselves from radio and television, and filmmakers learned to have their works visually restructured to display better on smaller and narrower television screens. The purpose of this dissertation is to better understand how online audiences respond to and utilize for their own ends news publishers’ content placed with social media and how publishers might adjust their online strategies in response. It aspires to develop a realistic and integrated framework for investigating the mechanisms of content consumption and diffusion on social media by drawing on theories from psychology, communication and economics. While testing applications of these social science theories, I employ newly developed statistical tools to take advantage of the thorough documentation of online activities by social media services to address puzzles newsrooms confront in the everyday practice of online journalism. These include the motivations behind liking, commenting and sharing behaviors; how different news topics, message length, sentiment (positive or negative), and reading ease influence these behaviors; how news publishers can accurately assess the performance of news stories given that users’ reactions are heavily shaped by the nature of the content; and, finally, the strategies newsrooms might use to gain more attention from social media users and grow their audiences and revenues by attracting more fans and followers in the new media ecosystem. ACKNOWLEDGEMENTS First of all, I want to thank my adviser, Steve Wildman, who has been offering his scholarship, wisdom, encouragement, support and care throughout the past six years. Without him, I would never have enjoyed my doctoral program as much or made as many achievements. At the same time, I want to thank Susan, Steve’s wife and best friend, for her sweet words and wonderful cooking to nourish both my mind and my body. Also, I would like to give special thanks to my dissertation committee. I owe a debt of gratitude to Bob LaRose, and Steve Lacy. Coming from different backgrounds, they have added more insights into this study. Ann Kronrod has also shared with me her expertise in marketing and further enriched this study. Further, I must express my gratitude to the following people, whose kindness has made this study possible. Dan Sinker and Erika Owens supported me throughout the Knight-Mozilla OpenNews Fellowship and respected my pursuit of researching online readership. The other OpenNews fellows inspired and taught me a lot, especially Brian Abelson and Stijn Debrouwere, who share a similar interest in media metrics. During this fellowship, Joel Abrams at the Boston Globe worked with me closely and offered me the data that I needed to build the first model, which was how this study was initiated. After reviewing my preliminary findings, Joshua Benton decided to feature them on at the website of the Nieman Journalism Lab under the headline “Sharing Fast and Slow”, which helped me attract a lot of attention from the community. Among them was Travis Daub at PBS NewsHour, who recognized the value of my research and invited iv me to examine the data from his newsroom. The collaboration with PBS NewsHour widened my research from a regional to a nationwide audience. To the open source community and hacks/hackers in Boston, Berlin, Buenos Aires and other places around the world, I have been benefiting tremendously from their work. I am contributing as much as I can as well. Finally, I dedicate this dissertation to my parents. They spent their adolescent years in the Cultural Revolution and had their educations truncated and had few opportunities in their lives. Through my experience of the world and travels, they can see the potential they both had and what they may have experienced were they given the chance. They appreciate freedom and have granted me much of it, which is rarely seen in Chinese parents. Although they are unable to read my dissertation, I know they will be proud to hold it in their hands. 爸爸妈妈,我爱你们! v TABLE OF CONTENTS LIST OF TABLES ................................................................................................................... viii LIST OF FIGURES ................................................................................................................... ix CHAPTER 1: INTRODUCTION ............................................................................................... 1 CHAPTER 2: BACKGROUND ................................................................................................. 9 News on Facebook .................................................................................................................. 9 Facebook Pages and fans ...................................................................................................... 11 Facebook Insights ................................................................................................................. 12 Facebook users’ behaviors and information flows ............................................................... 15 PBS NewsHour ..................................................................................................................... 20 CHAPTER 3: LITERATURE REVIEW .................................................................................. 22 The origin of gatekeeping ..................................................................................................... 22 Mediated communication through the lens of gatekeeping .................................................. 24 Gatekeepers as decision makers ............................................................................................ 28 Dual process theory ............................................................................................................... 30 Two Types of processing vs. two processing Systems ......................................................... 32 The mostly seamless collaboration of the two minds ........................................................... 33 Dual processing and media use ............................................................................................. 35 Two types of processing and Facebook users’ behaviors ..................................................... 36 Type 1 processing and cognitive ease ................................................................................... 39 Text length ............................................................................................................................ 41 Readability ............................................................................................................................ 42 Emotion and decision making ............................................................................................... 45 Framing ............................................................................................................................. 47 Measuring the emotional content of text .......................................................................... 48 Media avoidance ................................................................................................................... 50 Negativity bias ...................................................................................................................... 50 News preferences .................................................................................................................. 52 Reasons for Facebook use ..................................................................................................... 54 Need to belong .................................................................................................................. 55 Need for self-presentation ................................................................................................. 56 CHAPTER 4: RESEARCH METHODS .................................................................................. 59 Data collection .....................................................................................................................
Recommended publications
  • Bad Is Stronger Than Good
    Review of General Psychology Copyright 2001 by the Educational Publishing Foundation 2001. Vol. 5. No. 4. 323-370 1089-2680/O1/S5.O0 DOI: 10.1037//1089-2680.5.4.323 Bad Is Stronger Than Good Roy F. Baumeister and Ellen Bratslavsky Catrin Finkenauer Case Western Reserve University Free University of Amsterdam Kathleen D. Vohs Case Western Reserve University The greater power of bad events over good ones is found in everyday events, major life events (e.g., trauma), close relationship outcomes, social network patterns, interper- sonal interactions, and learning processes. Bad emotions, bad parents, and bad feedback have more impact than good ones, and bad information is processed more thoroughly than good. The self is more motivated to avoid bad self-definitions than to pursue good ones. Bad impressions and bad stereotypes are quicker to form and more resistant to disconfirmation than good ones. Various explanations such as diagnosticity and sa- lience help explain some findings, but the greater power of bad events is still found when such variables are controlled. Hardly any exceptions (indicating greater power of good) can be found. Taken together, these findings suggest that bad is stronger than good, as a general principle across a broad range of psychological phenomena. Centuries of literary efforts and religious pothesis that bad is stronger than good (see also thought have depicted human life in terms of a Rozin & Royzman, in press). That is, events struggle between good and bad forces. At the that are negatively valenced (e.g., losing metaphysical level, evil gods or devils are the money, being abandoned by friends, and receiv- opponents of the divine forces of creation and ing criticism) will have a greater impact on the harmony.
    [Show full text]
  • A Task-Based Taxonomy of Cognitive Biases for Information Visualization
    A Task-based Taxonomy of Cognitive Biases for Information Visualization Evanthia Dimara, Steven Franconeri, Catherine Plaisant, Anastasia Bezerianos, and Pierre Dragicevic Three kinds of limitations The Computer The Display 2 Three kinds of limitations The Computer The Display The Human 3 Three kinds of limitations: humans • Human vision ️ has limitations • Human reasoning 易 has limitations The Human 4 ️Perceptual bias Magnitude estimation 5 ️Perceptual bias Magnitude estimation Color perception 6 易 Cognitive bias Behaviors when humans consistently behave irrationally Pohl’s criteria distilled: • Are predictable and consistent • People are unaware they’re doing them • Are not misunderstandings 7 Ambiguity effect, Anchoring or focalism, Anthropocentric thinking, Anthropomorphism or personification, Attentional bias, Attribute substitution, Automation bias, Availability heuristic, Availability cascade, Backfire effect, Bandwagon effect, Base rate fallacy or Base rate neglect, Belief bias, Ben Franklin effect, Berkson's paradox, Bias blind spot, Choice-supportive bias, Clustering illusion, Compassion fade, Confirmation bias, Congruence bias, Conjunction fallacy, Conservatism (belief revision), Continued influence effect, Contrast effect, Courtesy bias, Curse of knowledge, Declinism, Decoy effect, Default effect, Denomination effect, Disposition effect, Distinction bias, Dread aversion, Dunning–Kruger effect, Duration neglect, Empathy gap, End-of-history illusion, Endowment effect, Exaggerated expectation, Experimenter's or expectation bias,
    [Show full text]
  • Cognitive Bias Mitigation: How to Make Decision-Making More Rational?
    Cognitive Bias Mitigation: How to make decision-making more rational? Abstract Cognitive biases distort judgement and adversely impact decision-making, which results in economic inefficiencies. Initial attempts to mitigate these biases met with little success. However, recent studies which used computer games and educational videos to train people to avoid biases (Clegg et al., 2014; Morewedge et al., 2015) showed that this form of training reduced selected cognitive biases by 30 %. In this work I report results of an experiment which investigated the debiasing effects of training on confirmation bias. The debiasing training took the form of a short video which contained information about confirmation bias, its impact on judgement, and mitigation strategies. The results show that participants exhibited confirmation bias both in the selection and processing of information, and that debiasing training effectively decreased the level of confirmation bias by 33 % at the 5% significance level. Key words: Behavioural economics, cognitive bias, confirmation bias, cognitive bias mitigation, confirmation bias mitigation, debiasing JEL classification: D03, D81, Y80 1 Introduction Empirical research has documented a panoply of cognitive biases which impair human judgement and make people depart systematically from models of rational behaviour (Gilovich et al., 2002; Kahneman, 2011; Kahneman & Tversky, 1979; Pohl, 2004). Besides distorted decision-making and judgement in the areas of medicine, law, and military (Nickerson, 1998), cognitive biases can also lead to economic inefficiencies. Slovic et al. (1977) point out how they distort insurance purchases, Hyman Minsky (1982) partly blames psychological factors for economic cycles. Shefrin (2010) argues that confirmation bias and some other cognitive biases were among the significant factors leading to the global financial crisis which broke out in 2008.
    [Show full text]
  • Gender De-Biasing in Speech Emotion Recognition
    INTERSPEECH 2019 September 15–19, 2019, Graz, Austria Gender de-biasing in speech emotion recognition Cristina Gorrostieta, Reza Lotfian, Kye Taylor, Richard Brutti, John Kane Cogito Corporation fcgorrostieta,rlotfian,ktaylor,rbrutti,jkaneg @cogitocorp.com Abstract vertisement delivery [9], object classification [10] and image search results for occupations [11] . Machine learning can unintentionally encode and amplify neg- There are several factors which can contribute to produc- ative bias and stereotypes present in humans, be they conscious ing negative bias in machine learning models. One major cause or unconscious. This has led to high-profile cases where ma- is incomplete or skewed training data. If certain demographic chine learning systems have been found to exhibit bias towards categories are missing from the training data, models developed gender, race, and ethnicity, among other demographic cate- on this can fail to generalise when applied to new data contain- gories. Negative bias can be encoded in these algorithms based ing those missing categories. The majority of models deployed on: the representation of different population categories in the in modern technology applications are based on supervised ma- training data; bias arising from manual human labeling of these chine learning and much of the labeled data comes from people. data; as well as modeling types and optimisation approaches. In Labels can include movie reviews, hotel ratings, image descrip- this paper we assess the effect of gender bias in speech emotion tions, audio transcriptions, and perceptual ratings of emotion. recognition and find that emotional activation model accuracy is As people are inherently biased, and because models are an es- consistently lower for female compared to male audio samples.
    [Show full text]
  • THE ROLE of PUBLICATION SELECTION BIAS in ESTIMATES of the VALUE of a STATISTICAL LIFE W
    THE ROLE OF PUBLICATION SELECTION BIAS IN ESTIMATES OF THE VALUE OF A STATISTICAL LIFE w. k i p vi s c u s i ABSTRACT Meta-regression estimates of the value of a statistical life (VSL) controlling for publication selection bias often yield bias-corrected estimates of VSL that are substantially below the mean VSL estimates. Labor market studies using the more recent Census of Fatal Occu- pational Injuries (CFOI) data are subject to less measurement error and also yield higher bias-corrected estimates than do studies based on earlier fatality rate measures. These re- sultsareborneoutbythefindingsforalargesampleofallVSLestimatesbasedonlabor market studies using CFOI data and for four meta-analysis data sets consisting of the au- thors’ best estimates of VSL. The confidence intervals of the publication bias-corrected estimates of VSL based on the CFOI data include the values that are currently used by government agencies, which are in line with the most precisely estimated values in the literature. KEYWORDS: value of a statistical life, VSL, meta-regression, publication selection bias, Census of Fatal Occupational Injuries, CFOI JEL CLASSIFICATION: I18, K32, J17, J31 1. Introduction The key parameter used in policy contexts to assess the benefits of policies that reduce mortality risks is the value of a statistical life (VSL).1 This measure of the risk-money trade-off for small risks of death serves as the basis for the standard approach used by government agencies to establish monetary benefit values for the predicted reductions in mortality risks from health, safety, and environmental policies. Recent government appli- cations of the VSL have used estimates in the $6 million to $10 million range, where these and all other dollar figures in this article are in 2013 dollars using the Consumer Price In- dex for all Urban Consumers (CPI-U).
    [Show full text]
  • Bias and Fairness in NLP
    Bias and Fairness in NLP Margaret Mitchell Kai-Wei Chang Vicente Ordóñez Román Google Brain UCLA University of Virginia Vinodkumar Prabhakaran Google Brain Tutorial Outline ● Part 1: Cognitive Biases / Data Biases / Bias laundering ● Part 2: Bias in NLP and Mitigation Approaches ● Part 3: Building Fair and Robust Representations for Vision and Language ● Part 4: Conclusion and Discussion “Bias Laundering” Cognitive Biases, Data Biases, and ML Vinodkumar Prabhakaran Margaret Mitchell Google Brain Google Brain Andrew Emily Simone Parker Lucy Ben Elena Deb Timnit Gebru Zaldivar Denton Wu Barnes Vasserman Hutchinson Spitzer Raji Adrian Brian Dirk Josh Alex Blake Hee Jung Hartwig Blaise Benton Zhang Hovy Lovejoy Beutel Lemoine Ryu Adam Agüera y Arcas What’s in this tutorial ● Motivation for Fairness research in NLP ● How and why NLP models may be unfair ● Various types of NLP fairness issues and mitigation approaches ● What can/should we do? What’s NOT in this tutorial ● Definitive answers to fairness/ethical questions ● Prescriptive solutions to fix ML/NLP (un)fairness What do you see? What do you see? ● Bananas What do you see? ● Bananas ● Stickers What do you see? ● Bananas ● Stickers ● Dole Bananas What do you see? ● Bananas ● Stickers ● Dole Bananas ● Bananas at a store What do you see? ● Bananas ● Stickers ● Dole Bananas ● Bananas at a store ● Bananas on shelves What do you see? ● Bananas ● Stickers ● Dole Bananas ● Bananas at a store ● Bananas on shelves ● Bunches of bananas What do you see? ● Bananas ● Stickers ● Dole Bananas ● Bananas
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 BIASES IN IMPRESSION FORMATION. A DEMONSTRATION OF A BIVARIATE MODEL OF EVALUATION DISSERTATION Presented in Partial Fulfillment for the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Wendi L.
    [Show full text]
  • Optimism Bias and Differential Information Use in Supply Chain Forecasting
    Optimism bias and differential information use in supply chain forecasting Robert Fildes Dept. Management Science, Lancaster University, LA1 4YX, UK Email: [email protected] Paul Goodwin*, School of Management, University of Bath Bath, BA2 7AY,UK Tel: 44-1225-383594 Fax: 44-1225-386473 Email: [email protected] August 2011 * Corresponding author Acknowledgements This research was supported by a grant from SAS and the International Institute of Forecasters. 1 Abstract Companies tend to produce over optimistic forecasts of demand. Psychologists have suggested that optimism, at least in part, results from selective bias in processing information. When high demand is more desirable than low demand information favouring high demand may carry more weight than information that suggests the opposite. To test this, participants in an experiment used a prototypical forecasting support system to forecast the demand uplift resulting from sales promotion campaigns. One group was rewarded if demand exceeded an uplift of 80%. All of the participants were also supplied with information some of which supported an uplift of greater than 80% and some of which suggested that the uplift would fall below this value. This enabled an assessment to be made of the extent to which those who were rewarded if the uplift exceeded 80% paid more attention to the positive information than those who were not rewarded. While the experiment provided strong evidence of desirability bias there was no evidence that the group receiving rewards for sales exceeding the threshold made greater use of positive reasons. Possible explanations for this are discussed, together with the implications for forecasting support system design.
    [Show full text]
  • Why So Confident? the Influence of Outcome Desirability on Selective Exposure and Likelihood Judgment
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of North Carolina at Greensboro Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/ Why so confident? The influence of outcome desirability on selective exposure and likelihood judgment Authors Paul D. Windschitl , Aaron M. Scherer a, Andrew R. Smith , Jason P. Rose Abstract Previous studies that have directly manipulated outcome desirability have often found little effect on likelihood judgments (i.e., no desirability bias or wishful thinking). The present studies tested whether selections of new information about outcomes would be impacted by outcome desirability, thereby biasing likelihood judgments. In Study 1, participants made predictions about novel outcomes and then selected additional information to read from a buffet. They favored information supporting their prediction, and this fueled an increase in confidence. Studies 2 and 3 directly manipulated outcome desirability through monetary means. If a target outcome (randomly preselected) was made especially desirable, then participants tended to select information that supported the outcome. If made undesirable, less supporting information was selected. Selection bias was again linked to subsequent likelihood judgments. These results constitute novel evidence for the role of selective exposure in cases of overconfidence and desirability bias in likelihood judgments. Paul D. Windschitl , Aaron M. Scherer a, Andrew R. Smith , Jason P. Rose (2013) "Why so confident? The influence of outcome desirability on selective exposure and likelihood judgment" Organizational Behavior and Human Decision Processes 120 (2013) 73–86 (ISSN: 0749-5978) Version of Record available @ DOI: (http://dx.doi.org/10.1016/j.obhdp.2012.10.002) Why so confident? The influence of outcome desirability on selective exposure and likelihood judgment q a,⇑ a c b Paul D.
    [Show full text]
  • Sad, Thus True. Negativity Bias in Judgments of Truth Benjamin E
    Sad, thus true. Negativity bias in judgments of truth Benjamin E. Hilbig To cite this version: Benjamin E. Hilbig. Sad, thus true. Negativity bias in judgments of truth. Journal of Experimental Social Psychology, Elsevier, 2009, 45 (4), pp.983. 10.1016/j.jesp.2009.04.012. hal-00687909 HAL Id: hal-00687909 https://hal.archives-ouvertes.fr/hal-00687909 Submitted on 16 Apr 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Sad, thus true. Negativity bias in judgments of truth Benjamin E. Hilbig PII: S0022-1031(09)00093-6 DOI: 10.1016/j.jesp.2009.04.012 Reference: YJESP 2250 To appear in: Journal of Experimental Social Psychology Received Date: 24 October 2008 Revised Date: 30 March 2009 Accepted Date: 4 April 2009 Please cite this article as: Hilbig, B.E., Sad, thus true. Negativity bias in judgments of truth, Journal of Experimental Social Psychology (2009), doi: 10.1016/j.jesp.2009.04.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript.
    [Show full text]
  • Negativity Bias, Negativity Dominance, and Contagion
    Personality and Social Psychology Review Copyright © 2001 by 2001, Vol. 5, No. 4, 296–320 Lawrence Erlbaum Associates, Inc. Negativity Bias, Negativity Dominance, and Contagion Paul Rozin and Edward B. Royzman Department of Psychology and Solomon Asch Center for Study of Ethnopolitical Conflict University of Pennsylvania We hypothesize that there is a general bias, based on both innate predispositions and experience, in animals and humans, to give greater weight to negative entities (e.g., events, objects, personal traits). This is manifested in 4 ways: (a) negative potency (negative entities are stronger than the equivalent positive entities), (b) steeper nega- tive gradients (the negativity of negative events grows more rapidly with approach to them in space or time than does the positivity of positive events, (c) negativity domi- nance (combinations of negative and positive entities yield evaluations that are more negative than the algebraic sum of individual subjective valences would predict), and (d) negative differentiation (negative entities are more varied, yield more complex conceptual representations, and engage a wider response repertoire). We review evi- dence for this taxonomy, with emphasis on negativity dominance, including literary, historical, religious, and cultural sources, as well as the psychological literatures on learning, attention, impression formation, contagion, moral judgment, development, and memory. We then consider a variety of theoretical accounts for negativity bias. We suggest that 1 feature of negative events that make them dominant is that negative enti- ties are more contagious than positive entities. Brief contact with a cockroach will usually render taminated—that is, lowered in social status—by a delicious meal inedible.
    [Show full text]
  • Correcting Sampling Bias in Non-Market Valuation with Kernel Mean Matching
    CORRECTING SAMPLING BIAS IN NON-MARKET VALUATION WITH KERNEL MEAN MATCHING Rui Zhang Department of Agricultural and Applied Economics University of Georgia [email protected] Selected Paper prepared for presentation at the 2017 Agricultural & Applied Economics Association Annual Meeting, Chicago, Illinois, July 30 - August 1 Copyright 2017 by Rui Zhang. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. Abstract Non-response is common in surveys used in non-market valuation studies and can bias the parameter estimates and mean willingness to pay (WTP) estimates. One approach to correct this bias is to reweight the sample so that the distribution of the characteristic variables of the sample can match that of the population. We use a machine learning algorism Kernel Mean Matching (KMM) to produce resampling weights in a non-parametric manner. We test KMM’s performance through Monte Carlo simulations under multiple scenarios and show that KMM can effectively correct mean WTP estimates, especially when the sample size is small and sampling process depends on covariates. We also confirm KMM’s robustness to skewed bid design and model misspecification. Key Words: contingent valuation, Kernel Mean Matching, non-response, bias correction, willingness to pay 2 1. Introduction Nonrandom sampling can bias the contingent valuation estimates in two ways. Firstly, when the sample selection process depends on the covariate, the WTP estimates are biased due to the divergence between the covariate distributions of the sample and the population, even the parameter estimates are consistent; this is usually called non-response bias.
    [Show full text]