The Α7 Nicotinic Agonist ABT-126 in the Treatment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Role of Prefrontal Cortex and Cholinergic Modulation in Attentional
Role of prefrontal cortex and cholinergic modulation in attentional performance in rats Beth Mary Fisher Department of Psychology Downing College University of Cambridge September 2017 This dissertation is submitted for the degree of Doctor of Philosophy Declaration This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. It does not exceed the prescribed word limit of the degree committee for the faculty of biology of 60,000 words. i2 Acknowledgements Firstly, I would like to thank my supervisor Tim Bussey and advisor Trevor Robbins for their invaluable support, guidance and encouragement throughout my PhD. Their insightful scientific discussions, passion for the field and praise of me, have shaped me to become a scientist I am proud of, and given me an unknown confidence. Not only are they experts in the field, but they are down to earth, kind and fun. -
Contemporary Clinical Trials Communications 16 (2019) 100488
Contemporary Clinical Trials Communications 16 (2019) 100488 Contents lists available at ScienceDirect Contemporary Clinical Trials Communications journal homepage: http://www.elsevier.com/locate/conctc Opinion paper Creating an academic research organization to efficiently design, conduct, coordinate, and analyze clinical trials: The Center for Clinical Trials & Data Coordination Kaleab Z. Abebe *, Andrew D. Althouse, Diane Comer, Kyle Holleran, Glory Koerbel, Jason Kojtek, Joseph Weiss, Susan Spillane Center for Clinical Trials & Data Coordination, Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA ARTICLE INFO ABSTRACT Keywords: When properly executed, the randomized controlled trial is one of the best vehicles for assessing the effectiveness Data coordinating center of one or more interventions. However, numerous challenges may emerge in the areas of study startup, Clinical trial management recruitment, data quality, cost, and reporting of results. The use of well-run coordinating centers could help prevent these issues, but very little exists in the literature describing their creation or the guiding principles behind their inception. The Center for Clinical Trials & Data Coordination (CCDC) was established in 2015 through institutional funds with the intent of 1) providing relevant expertise in clinical trial design, conduct, coordination, and analysis; 2) advancing the careers of clinical investigators and CCDC-affiliated faculty; and 3) obtaining large data coordi nating center (DCC) grants. We describe the organizational structure of the CCDC as well as the homegrown clinical trial management system integrating nine crucial elements: electronic data capture, eligibility and randomization, drug and external data tracking, safety reporting, outcome adjudication, data and safety moni toring, statistical analysis and reporting, data sharing, and regulatory compliance. -
Hayward Et Al, 2017
European Neuropsychopharmacology (]]]]) ], ]]]–]]] www.elsevier.com/locate/euroneuro Partial agonism at the α7 nicotinic acetylcholine receptor improves attention, impulsive action and vigilance in low attentive rats Andrew Haywardn, Lisa Adamson, Joanna C. Neilln Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester M13 9PT, UK Received 7 July 2016; received in revised form 9 January 2017; accepted 18 January 2017 KEYWORDS Abstract 5 choice-continuous Inattention is a disabling symptom in conditions such as schizophrenia and attention deficit/ performance task; hyperactivity disorder. Nicotine can improve attention and vigilance, but is unsuitable for clinical use 5C-CPT; due to abuse liability. Genetic knockout of the α7 nicotinic acetylcholine receptor (nAChR) induces α 7 nAChR; attention deficits therefore selective agonism may improve attention, without the abuse liability Animal Model; associated with nicotine. The α7 nAChR partial agonist encenicline (formerly EVP-6124) enhances Behavioural separa- memory in rodents and humans. Here we investigate, for the first time, efficacy of encenicline to tion; Low attentive improve attention and vigilance in animals behaviourally grouped for low attentive traits in the 5 choice-continuous performance task (5C-CPT). Female Lister Hooded rats were trained to perform the5C-CPTwithavariablestimulusduration(SD).Animalswerethengroupedbasedonperformance intoupperandlowerquartilesofd0 (vigilance) and accuracy (selective attention), producing high- attentive (HA) and low-attentive (LA) groups. LA animals showed an increase in selective attention and vigilance at 0.3 mg/kg encenicline, a reduction in impulsive action (probability of false alarms) and increase in vigilance following 1 mg/kg at 0.75 s SD. At 1 mg/kg, HA animals had reduced selective attention at 0.75 s SD and reduced vigilance at 0.75 and 1.25 s SD. -
(Tert- Butoxycarbonyl)Amino](3 361442- 3
Alternative Name CAS 1. Product Name Use Number 320345- 2. Aclidinium bromide API 99-1 (2S)-[(tert- Butoxycarbonyl)amino](3 361442- 3. Saxagliptin int -hydroxyadamant-1- 00-4 yl)ethanoic acid 1,3- 1,3- 5001-18- 4. Dihydroxyadamantane Adamantanediol 3 1,3-Dimethyladamantane 702-79-4 memantine intermediate 5. 1-Acetylamido-3,5- 19982- 6. Memantine int dimethyladamantane 07-1 1- 7. 880-52-4 Acetylaminoadamantane 1- 4942-47- 8. 1-Adamantaneacetic acid Adamantylacetic 6 acid [2-(1- 6240-11- 9. 1-Adamantaneethanol Adamantylethano 5 l)] 1- 10. 1-Adamantanemethanol Adamantylmetha 770-71-8 nol 1- 1660-04- 1-Adamantyl methyl rimantadine intermediate; 11. Acetyladamantan 4 ketone e 1-Chloro-3,5- 707-36-8 memantine intermediate; 12. dimethyladamantane 1-Hydroxy-3,5- memantine intermediate; 13. 707-37-9 dimethyladamantane 2- 14. 2-Adamantanol Hydroxyadamant 700-57-2 ane 15. 2-Adamantanone 700-58-3 2-Aminoadamantane 10523- 16. hydrochloride 68-9 3-Amino-1-hydroxy- 3-Amino-1- 702-82-9 vildagliptin intermediate; 17. adamantane adamantanol 3- 38584- 18. (Hydroxymethyl)adamant 37-1 -1-ol 19. 3-aminomethyl- 865887- mequitazine intermediate; 20. quinuclidine 14-5 dihydrochloride zacopride intermediate; 6530-09- mezacopride intermediate; 3-Aminoquinuclidine 21. 2 pancopride intermediate; dihydrochloride azasetron intermediate; 3-Carbethoxy-dehydro- quifenadine intermediate; 50790- 22. quinuclidine sequifenadine intermediate; 85-7 hydrochloride quifenadine intermediate; 3- 6238-33- 23. sequifenadine intermediate; Carbethoxyquinuclidine 1 3-hydroxymethyl 79221- mequitazine intermediate; 24. quinuclidine 75-3 hydrochloride 3-Quinuclidine 6238-34- 25. carboxylic acid 2 hydrochloride 1619-34- penehyclidine intermediate; 26. 3-Quinuclidinol 7 clidinium intermediate; cevimeline intermediate; 3-Quinuclidinone 1193-65- 27. -
Adaptive Enrichment Designs in Clinical Trials
Annual Review of Statistics and Its Application Adaptive Enrichment Designs in Clinical Trials Peter F. Thall Department of Biostatistics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA; email: [email protected] Annu. Rev. Stat. Appl. 2021. 8:393–411 Keywords The Annual Review of Statistics and Its Application is adaptive signature design, Bayesian design, biomarker, clinical trial, group online at statistics.annualreviews.org sequential design, precision medicine, subset selection, targeted therapy, https://doi.org/10.1146/annurev-statistics-040720- variable selection 032818 Copyright © 2021 by Annual Reviews. Abstract All rights reserved Adaptive enrichment designs for clinical trials may include rules that use in- terim data to identify treatment-sensitive patient subgroups, select or com- pare treatments, or change entry criteria. A common setting is a trial to Annu. Rev. Stat. Appl. 2021.8:393-411. Downloaded from www.annualreviews.org compare a new biologically targeted agent to standard therapy. An enrich- ment design’s structure depends on its goals, how it accounts for patient heterogeneity and treatment effects, and practical constraints. This article Access provided by University of Texas - M.D. Anderson Cancer Center on 03/10/21. For personal use only. first covers basic concepts, including treatment-biomarker interaction, pre- cision medicine, selection bias, and sequentially adaptive decision making, and briefly describes some different types of enrichment. Numerical illus- trations are provided for qualitatively different cases involving treatment- biomarker interactions. Reviews are given of adaptive signature designs; a Bayesian design that uses a random partition to identify treatment-sensitive biomarker subgroups and assign treatments; and designs that enrich superior treatment sample sizes overall or within subgroups, make subgroup-specific decisions, or include outcome-adaptive randomization. -
W O 2016/201373 A1 15 December 2016 (15.12.2016) W I PO I P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2016/201373 A1 15 December 2016 (15.12.2016) W I PO I P C T (51) International Patent Classification: (74) Agents: QUEIROZ DE OLIVEIRA, Pierre et al.; Pepper A61K31/17(2006.01) A61P 25/00 (2006.01) Hamilton LLP, 500 Grant Street, Suite 5000, Pittsburgh, A61K 31/415 (2006.01) PA 15219-2507 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated,for every PCT/US2016/037090 kind of national protection available): AE, AG, AL, AM, .) . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filng Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 10 June 2016 (10.06.2016) DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 62/174,983 12 June 2015 (12.06.2015) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/194,084 17 July 2015 (17.07.2015) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Downloadable Database from January 1 to October 21, 2020
medRxiv preprint doi: https://doi.org/10.1101/2020.11.29.20237875; this version posted November 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license . CLINICAL TRIALS IN COVID-19 MANAGEMENT & PREVENTION: A META-EPIDEMIOLOGICAL STUDY EXAMINING METHODOLOGICAL QUALITY Authors: Kimia Honarmand MD MSc1, Jeremy Penn BHSc (c)2, Arnav Agarwal3,4, Reed Siemieniuk3, Romina Brignardello- Petersen3, Jessica J Bartoszko3, Dena Zeraatkar3,5, Thomas Agoritsas3,6, Karen Burns3,7, Shannon M. Fernando MD MSc8, Farid Foroutan9, Long Ge PhD10, Francois Lamontagne11, Mario A Jimenez-Mora MD12, Srinivas Murthy13, Juan Jose Yepes Nuñez12,14 MD, MSc, PhD, Per O Vandvik MD, Ph.D15, Zhikang Ye3, Bram Rochwerg MD MSc3,16 Affiliations: 1. Division of Critical Care, Department of Medicine, Western University, London, Canada 2. Faculty of Health Sciences, McMaster University, Hamilton, Canada 3. Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada 4. Department of Medicine, University of Toronto, Toronto, Canada 5. Department of Biomedical Informatics, Harvard Medical School, Boston, USA 6. Division General Internal Medicine, University Hospitals of Geneva, Geneva, Switzerland 7. Unity Health Toronto, St. Michael’s Hospital, Li Ka Shing Knowledge Institute, Toronto, Canada 8. Division of Critical Care, Department of Medicine, University of Ottawa, Ottawa, Canada 9. Ted Rogers Centre for Heart Research, University Health Network, Toronto General Hospital, Toronto, Canada 10. Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, Gansu, China 11. -
Exploring the Application of a Multicenter Study Design in the Preclinical Phase of Translational Research
Exploring the Application of a Multicenter Study Design in the Preclinical Phase of Translational Research Victoria Hunniford Thesis submitted to the University of Ottawa in partial Fulfillment of the requirements for the Master of Science in Health Systems Telfer School of Management University of Ottawa © Victoria Hunniford, Ottawa, Canada, 2019 Abstract Multicenter preclinical studies have been suggested as a method to improve potential clinical translation of preclinical work by testing reproducibility and generalizability of findings. In these studies, multiple independent laboratories collaboratively conduct a research experiment using a shared protocol. The use of a multicenter design in preclinical experimentation is a recent approach and only a handful of these studies have been published. In this thesis, I aimed to provide insight into preclinical multicenter studies by 1) systematically synthesizing all published preclinical multicenter studies; and 2) exploring the experiences of, barriers and enablers to, and the extent of collaboration within preclinical multicenter studies. In Part One, I conducted a systematic review of preclinical multicenter studies. The database searches identified 3150 citations and 13 studies met inclusion criteria. The multicenter design was applied across a diverse range of diseases including stroke, heart attack, and traumatic brain injury. The median number of centers was 4 (range 2-6) and the median sample size was 133 (range 23-384). Most studies had lower risk of bias and higher completeness of reporting than typically seen in single-centered studies. Only five of the thirteen studies produced results consistent with previous single-center studies, highlighting a central concern of preclinical research: irreproducibility and poor generalizability of findings from single laboratories. -
Ion Channels
UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. -
E6(R2) Good Clinical Practice: Integrated Addendum to ICH E6(R1) Guidance for Industry
E6(R2) Good Clinical Practice: Integrated Addendum to ICH E6(R1) Guidance for Industry U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) March 2018 Procedural OMB Control No. 0910-0843 Expiration Date 09/30/2020 See additional PRA statement in section 9 of this guidance. E6(R2) Good Clinical Practice: Integrated Addendum to ICH E6(R1) Guidance for Industry Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993-0002 Phone: 885-543-3784 or 301-796-3400; Fax: 301-431-6353 Email: [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm and/or Office of Communication, Outreach and Development Center for Biologics Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Bldg. 71, Room 3128 Silver Spring, MD 20993-0002 Phone: 800-835-4709 or 240-402-8010 Email: [email protected] http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) March 2018 Procedural Contains Nonbinding Recommendations TABLE OF CONTENTS INTRODUCTION ............................................................................................................... -
Nicotinic Acetylcholine Receptors
nAChR Nicotinic acetylcholine receptors nAChRs (nicotinic acetylcholine receptors) are neuron receptor proteins that signal for muscular contraction upon a chemical stimulus. They are cholinergic receptors that form ligand-gated ion channels in the plasma membranes of certain neurons and on the presynaptic and postsynaptic sides of theneuromuscular junction. Nicotinic acetylcholine receptors are the best-studied of the ionotropic receptors. Like the other type of acetylcholine receptor-the muscarinic acetylcholine receptor (mAChR)-the nAChR is triggered by the binding of the neurotransmitter acetylcholine (ACh). Just as muscarinic receptors are named such because they are also activated by muscarine, nicotinic receptors can be opened not only by acetylcholine but also by nicotine —hence the name "nicotinic". www.MedChemExpress.com 1 nAChR Inhibitors & Modulators (+)-Sparteine (-)-(S)-B-973B Cat. No.: HY-W008350 Cat. No.: HY-114269 Bioactivity: (+)-Sparteine is a natural alkaloid acting as a ganglionic Bioactivity: (-)-(S)-B-973B is a potent allosteric agonist and positive blocking agent. (+)-Sparteine competitively blocks nicotinic allosteric modulator of α7 nAChR, with antinociceptive ACh receptor in the neurons. activity [1]. Purity: 98.0% Purity: 99.93% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in Water, Size: 10mM x 1mL in DMSO, 100 mg 5 mg, 10 mg, 50 mg, 100 mg (±)-Epibatidine A-867744 (CMI 545) Cat. No.: HY-101078 Cat. No.: HY-12149 Bioactivity: (±)-Epibatidine is a nicotinic agonist. (±)-Epibatidine is a Bioactivity: A-867744 is a positive allosteric modulator of α7 nAChRs (IC50 neuronal nAChR agonist. values are 0.98 and 1.12 μM for human and rat α7 receptor ACh-evoked currents respectively, in X. -
Labelling Requirements for Investigational Medicinal Products in Multinational Clinical Trials: Bureaucratic Cost Driver Or Added Value?
Labelling Requirements for Investigational Medicinal Products in Multinational Clinical Trials: Bureaucratic Cost Driver or Added Value? Wissenschaftliche Prüfungsarbeit zur Erlangung des Titels „Master of Drug Regulatory Affairs“ der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Dr. Astrid Weyermann aus Herford Bonn 2006 Dr. Astrid Weyermann Labelling requirements for IMPs in multinational CTs Betreuer und 1. Referent: H. Jopp Zweiter Referent: Dr. J. Hofer Page 2 / 71 Dr. Astrid Weyermann Labelling requirements for IMPs in multinational CTs TABLE OF CONTENTS TABLE OF CONTENTS .......................................................................................................................... 3 1 EXECUTIVE SUMMARY.................................................................................................................. 6 2 INTRODUCTION.............................................................................................................................. 7 2.1 Definitions ..................................................................................................................................... 7 2.2 Clinical Trials ................................................................................................................................ 8 2.2.1 Types of clinical trials ............................................................................................................ 8 2.2.1.1 Phases of Clinical Trials ...................................................................................................