A New Entomopathogenic Fungus, Ophiocordyceps Ponerus Sp. Nov., from China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vol1art2.Pdf
VOLUME 1 JUNE 2018 Fungal Systematics and Evolution PAGES 13–22 doi.org/10.3114/fuse.2018.01.02 Epitypification and re-description of the zombie-ant fungus, Ophiocordyceps unilateralis (Ophiocordycipitaceae) H.C. Evans1,2*, J.P.M. Araújo3, V.R. Halfeld4, D.P. Hughes3 1CAB International, UK Centre, Egham, Surrey, UK 2Departamentos de Entomologia e Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil 3Departments of Entomology and Biology, Penn State University, University Park, Pennsylvania, USA 4Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil *Corresponding author: [email protected] Key words: Abstract: The type of Ophiocordyceps unilateralis (Ophiocordycipitaceae, Hypocreales, Ascomycota) is based on an Atlantic rainforest immature specimen collected on an ant in Brazil. The host was identified initially as a leaf-cutting ant (Atta cephalotes, Camponotus sericeiventris Attini, Myrmicinae). However, a critical examination of the original illustration reveals that the host is the golden carpenter ants carpenter ant, Camponotus sericeiventris (Camponotini, Formicinae). Because the holotype is no longer extant and epitype the original diagnosis lacks critical taxonomic information – specifically, on ascus and ascospore morphology – a new Ophiocordyceps type from Minas Gerais State of south-east Brazil is designated herein. A re-description of the fungus is provided and phylogeny a new phylogenetic tree of the O. unilateralis clade is presented. It is predicted that many more species of zombie- ant fungi remain to be delimited within the O. unilateralis complex worldwide, on ants of the tribe Camponotini. Published online: 15 December 2017. Editor-in-Chief INTRODUCTIONProf. dr P.W. Crous, Westerdijk Fungal Biodiversity Institute, P.O. -
Pathogenicity of Isaria Sp. (Hypocreales: Clavicipitaceae) Against the Sweet Potato Whitefly B Biotype, Bemisia Tabaci (Hemiptera: Aleyrodidae)Q
Crop Protection 28 (2009) 333–337 Contents lists available at ScienceDirect Crop Protection journal homepage: www.elsevier.com/locate/cropro Pathogenicity of Isaria sp. (Hypocreales: Clavicipitaceae) against the sweet potato whitefly B biotype, Bemisia tabaci (Hemiptera: Aleyrodidae)q H. Enrique Cabanillas*, Walker A. Jones 1 USDA-ARS, Kika de la Garza Subtropical Agricultural Research Center, Beneficial Insects Research Unit, 2413 E. Hwy. 83, Weslaco, TX 78596, USA article info abstract Article history: The pathogenicity of a naturally occurring entomopathogenic fungus, Isaria sp., found during natural Received 13 May 2008 epizootics on whiteflies in the Lower Rio Grande Valley of Texas, against the sweet potato whitefly, Received in revised form Bemisia tabaci (Gennadius) biotype B, was tested under laboratory conditions (27 C, 70% RH and 26 November 2008 a photoperiod of 14:10 h light:dark). Exposure of second-, third- and fourth-instar nymphs to 20, 200, Accepted 28 November 2008 and 1000 spores/mm2, on sweet potato leaves resulted in insect mortality. Median lethal concentrations for second-instar nymphs (72–118 spores/mm2) were similar to those for third-instar nymphs Keywords: (101–170 spores/mm2), which were significantly more susceptible than fourth-instar nymphs Biological control 2 Entomopathogenic fungi (166–295 spores/mm ). The mean time to death was less for second instars (3 days) than for third instars 2 Whitefly (4 days) when exposed to 1000 spores/mm . Mycosis in adult whiteflies became evident after delayed infections of sweet potato whitefly caused by this fungus. These results indicate that Isaria sp. is path- ogenic to B. tabaci nymphs, and to adults through delayed infections caused by this fungus. -
University of California Santa Cruz Responding to An
UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes. -
The Promise of Next-Generation Taxonomy
Megataxa 001 (1): 035–038 ISSN 2703-3082 (print edition) https://www.mapress.com/j/mt/ MEGATAXA Copyright © 2020 Magnolia Press Correspondence ISSN 2703-3090 (online edition) https://doi.org/10.11646/megataxa.1.1.6 The promise of next-generation taxonomy MIGUEL VENCES Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany �[email protected]; https://orcid.org/0000-0003-0747-0817 Documenting, naming and classifying the diversity and concepts. We should meet three main challenges, of life on Earth provides baseline information on the using new technological developments without throwing biosphere, which is crucially important to understand and the well-tried and successful foundations of Linnaean mitigate the global changes of the Anthropocene. Since nomenclature overboard. Linnaeus, taxonomists have named about 1.8 million species (Roskov et al. 2019) and continue doing so at 1. Fully embrace cybertaxonomy, machine learning a rate of about 15,000–20,000 species per year (IISE and DNA taxonomy to ease, not burden the workflow 2011). Natural history collections—museums, herbaria, of taxonomists. culture collections and others—hold billions of collection specimens (Brooke 2000) and have teamed up to Computer power and especially, DNA sequencing capacity assemble a cybertaxonomic infrastructure that mobilizes increases faster than exponentially (e.g., Rupp 2018) metadata and images of voucher specimens, now even and new technologies offer unprecedented opportunities at the scale of digitizing entire collections of millions for classifying specimens based on molecular evidence of insect or herbaria vouchers in automated imaging or image analysis. Yet, the vast majority of species lines (e.g., Tegelberg et al. -
Further Screening of Entomopathogenic Fungi and Nematodes As Control Agents for Drosophila Suzukii
insects Article Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii Andrew G. S. Cuthbertson * and Neil Audsley Fera, Sand Hutton, York YO41 1LZ, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1904-462-201 Academic Editor: Brian T. Forschler Received: 15 March 2016; Accepted: 6 June 2016; Published: 9 June 2016 Abstract: Drosophila suzukii populations remain low in the UK. To date, there have been no reports of widespread damage. Previous research demonstrated that various species of entomopathogenic fungi and nematodes could potentially suppress D. suzukii population development under laboratory trials. However, none of the given species was concluded to be specifically efficient in suppressing D. suzukii. Therefore, there is a need to screen further species to determine their efficacy. The following entomopathogenic agents were evaluated for their potential to act as control agents for D. suzukii: Metarhizium anisopliae; Isaria fumosorosea; a non-commercial coded fungal product (Coded B); Steinernema feltiae, S. carpocapsae, S. kraussei and Heterorhabditis bacteriophora. The fungi were screened for efficacy against the fly on fruit while the nematodes were evaluated for the potential to be applied as soil drenches targeting larvae and pupal life-stages. All three fungi species screened reduced D. suzukii populations developing from infested berries. Isaria fumosorosea significantly (p < 0.001) reduced population development of D. suzukii from infested berries. All nematodes significantly reduced adult emergence from pupal cases compared to the water control. Larvae proved more susceptible to nematode infection. Heterorhabditis bacteriophora proved the best from the four nematodes investigated; readily emerging from punctured larvae and causing 95% mortality. -
Efficacy of Native Entomopathogenic Fungus, Isaria Fumosorosea, Against
Kushiyev et al. Egyptian Journal of Biological Pest Control (2018) 28:55 Egyptian Journal of https://doi.org/10.1186/s41938-018-0062-z Biological Pest Control RESEARCH Open Access Efficacy of native entomopathogenic fungus, Isaria fumosorosea, against bark and ambrosia beetles, Anisandrus dispar Fabricius and Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae) Rahman Kushiyev, Celal Tuncer, Ismail Erper* , Ismail Oguz Ozdemir and Islam Saruhan Abstract The efficacy of the native entomopathogenic fungus, Isaria fumosorosea TR-78-3, was evaluated against females of the bark and ambrosia beetles, Anisandrus dispar Fabricius and Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae), under laboratory conditions by two different methods as direct and indirect treatments. In the first method, conidial suspensions (1 × 106 and 1 × 108 conidia ml−1) of the fungus were directly applied to the beetles in Petri dishes (2 ml per dish), using a Potter spray tower. In the second method, the same conidial suspensions were applied 8 −1 on a sterile hazelnut branch placed in the Petri dishes. The LT50 and LT90 values of 1 × 10 conidia ml were 4.78 and 5.94/days, for A. dispar in the direct application method, while they were 4.76 and 6.49/days in the branch application 8 −1 method. Similarly, LT50 and LT90 values of 1 × 10 conidia ml for X. germanus were 4.18 and 5.62/days, and 5.11 and 7.89/days, for the direct and branch application methods, respectively. The efficiency of 1 × 106 conidia ml−1 was lower than that of 1 × 108 against the beetles in both application methods. -
Taxonomic Novelties in the Fern Genus Tectaria (Tectariaceae)
Phytotaxa 122 (1): 61–64 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.122.1.3 Taxonomic novelties in the fern genus Tectaria (Tectariaceae) HUI-HUI DING1,2, YI-SHAN CHAO3 & SHI-YONG DONG1* 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China. 2 Graduate University of the Chinese Academy of Sciences, Beijing 100093, China. 3 Division of Botanical Garden, Taiwan Forestry Research Institute, Taipei 10066, Taiwan. * Corresponding author: [email protected] Abstract The misapplication of the name Tectaria griffithii is corrected, which results in the revival of T. multicaudata and the proposal of a new combination (T. multicaudata var. amplissima) and two new synonyms (T. yunnanensis and T. multicaudata var. singaporeana). For the reduction of Psomiocarpa and Tectaridium (previously monotypic genera) into Tectaria, T. macleanii (new combination) and T. psomiocarpa (new name) are proposed as new combinations. In addition, the new name Tectaria subvariolosa is put forward to replace a later homonym (T. stenosemioides). Key words: nomenclature, Psomiocarpa, taxonomy, Tectaridium Introduction Tectaria Cavanilles (1799) (Tectariaceae) is a fern genus frequent in tropical regions, with most species growing terrestrially in rain forests. This group is remarkable for its extremely diverse morphology, and the estimated number of species ranges from 150 (Tryon & Tryon 1982; Kramer 1990) to 210 (Holttum 1991a). Holttum (1991a) recognized 105 species in Tectaria from Malesia and presumed that SE Asia is its center of origin. -
Multigene Phylogeny and Morphology Reveal a New Species, Ophiocordyceps Vespulae, from Jilin Province, China
Phytotaxa 478 (1): 033–048 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2021 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.478.1.2 Multigene phylogeny and morphology reveal a new species, Ophiocordyceps vespulae, from Jilin Province, China FENG-YAO LONG1, 2, 6, LI-WU QIN3, 7, YUAN-PIN XIAO2, 4, 8, KEVIN D. HYDE4, 9, SHAO-XIAN WANG3, 10* & TING-CHI WEN1, 2, 5, 11* 1 School of Pharmacy, Guizhou University, Guiyang 550025, Guizhou, China. 2 The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China. 3 Changbai Mountain Academy of Sciences, Jilin Provincial Joint Key Laboratory of Changbai Mountains Biocoenosis & Biodiversity, Erdaobaihe 133613, Jilin, China. 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand. 5Mushroom Research Institute,Guizhou University,Guiyang,550025,China 6 [email protected]; https://orcid.org/0000-0002-5818-694X 7 [email protected]; https://orcid.org/0000-0002-5586-2885 8 [email protected]; https://orcid.org/0000-0003-1730-3545 9 [email protected]; https://orcid.org/0000-0002-2191-0762 10 [email protected]; https://orcid.org/0000-0002-0921-1790 11 [email protected]; https://orcid.org/0000-0003-1744-5869 *Corresponding author Abstract Ophiocordyceps is entomopathogenic and is the best studied genus in Ophiocordycipitaceae. Members of Ophiocordyceps and ants form sophisticated interactions. However, taxonomy and evolutionary relationships of this group of pathogens remain unclear. During a survey in Changbai Mountains, Jiling Province, China, a new entomogenous species, Ophiocordyceps vespulae sp. -
SCIENCE CITATION INDEX EXPANDED - JOURNAL LIST Total Journals: 8631
SCIENCE CITATION INDEX EXPANDED - JOURNAL LIST Total journals: 8631 1. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH 2. AAPG BULLETIN 3. AAPS JOURNAL 4. AAPS PHARMSCITECH 5. AATCC REVIEW 6. ABDOMINAL IMAGING 7. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG 8. ABSTRACT AND APPLIED ANALYSIS 9. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 10. ACADEMIC EMERGENCY MEDICINE 11. ACADEMIC MEDICINE 12. ACADEMIC PEDIATRICS 13. ACADEMIC RADIOLOGY 14. ACCOUNTABILITY IN RESEARCH-POLICIES AND QUALITY ASSURANCE 15. ACCOUNTS OF CHEMICAL RESEARCH 16. ACCREDITATION AND QUALITY ASSURANCE 17. ACI MATERIALS JOURNAL 18. ACI STRUCTURAL JOURNAL 19. ACM COMPUTING SURVEYS 20. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS 21. ACM SIGCOMM COMPUTER COMMUNICATION REVIEW 22. ACM SIGPLAN NOTICES 23. ACM TRANSACTIONS ON ALGORITHMS 24. ACM TRANSACTIONS ON APPLIED PERCEPTION 25. ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION 26. ACM TRANSACTIONS ON AUTONOMOUS AND ADAPTIVE SYSTEMS 27. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC 28. ACM TRANSACTIONS ON COMPUTER SYSTEMS 29. ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION 30. ACM TRANSACTIONS ON DATABASE SYSTEMS 31. ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS 32. ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS 33. ACM TRANSACTIONS ON GRAPHICS 34. ACM TRANSACTIONS ON INFORMATION AND SYSTEM SECURITY 35. ACM TRANSACTIONS ON INFORMATION SYSTEMS 36. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 37. ACM TRANSACTIONS ON INTERNET TECHNOLOGY 38. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA 39. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE 40. ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION 41. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 42. ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS 43. ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS 44. -
Effects of the Fungus Isaria Fumosorosea
This article was downloaded by: [University of Florida] On: 11 June 2013, At: 06:27 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/cbst20 Effects of the fungus Isaria fumosorosea (Hypocreales: Cordycipitaceae) on reduced feeding and mortality of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae) Pasco B. Avery a , Vitalis W. Wekesa b c , Wayne B. Hunter b , David G. Hall b , Cindy L. McKenzie b , Lance S. Osborne c , Charles A. Powell a & Michael E. Rogers d a University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL, 34945, USA b USDA, ARS, U.S. Horticultural Research Laboratory, Subtropical Insect Research Unit, 2001 South Rock Road, Ft. Pierce, FL, 34945, USA c University of Florida, Institute of Food and Agricultural Sciences, Mid-Florida Research and Education Center, Department of Entomology and Nematology, 2725 Binion Road, Apopka, FL, 32703, USA d University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA Published online: 25 Aug 2011. To cite this article: Pasco B. Avery , Vitalis W. Wekesa , Wayne B. Hunter , David G. Hall , Cindy L. McKenzie , -
Antioxidant Activity of N-Hydroxyethyl Adenosine from Isaria Sinclairii
Int. J. Indust. Entomol. Vol. 17, No. 2, 2008, pp. 197~200 International Journal of Industrial Entomology Antioxidant Activity of N-hydroxyethyl Adenosine from Isaria sinclairii Mi Young Ahn*, Jung Eun Heo, Jae-Ha Ryu1, Hykyoung Jeong, Sang Deok Ji, Hae Chul Park and Ha Sik Sim Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-100, Korea 1College of Pharmacy, Sookmyung Women’s University, Seoul 140-742, Korea (Received 21 November 2008; Accepted 04 December 2008) The antioxidant activity of Isaria (Paecilomyces) sin- worms) was recently introduced in Korea as a crude drug clairii was determined by measuring its radical scav- for the treatment of cancer and diabetes (Ahn et al., 2004). enging effect on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) Dongchunghacho was also found to possess selective radicals. The n- BuOH extract of P. sinclairii showed antihypertensive activity in a spontaneously hypertensive strong scavenging activity to DPPH. The anti-oxidant rat (SHR) model (Ahn et al., 2007a) as well as anti-obe- potential of the individual fraction was in the order of sity activity in Zucker fat/fat rats (Ahn et al., 2007b). Sen- ethylacetate > n- BuOH > chloroform > n-hexane. The sitive high-performance liquid chromatography (HPLC) n-BuOH soluble fraction exhibiting strong anti-oxi- and tandem mass spectrometry (EI-MS) of the main com- dant activity was further purified by repeated silica gel ponents of the methanol extract of I. sinclairii revealed the column chromatography. N-(2-Hydroxyethyl)adenos- presence of adenosine (Ahn et al., 2007a). Adenosine may ine (HEA) was isolated as one of the active principles play a role in asthma by enhancing the release of the from the n-BuOH layer. -
AR TICLE a Phylogenetically-Based Nomenclature for Cordycipitaceae
IMA FUNGUS · 8(2): 335–353 (2017) doi:10.5598/imafungus.2017.08.02.08 A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales) ARTICLE Ryan M. Kepler1, J. Jennifer Luangsa-ard2, Nigel L. Hywel-Jones3, C. Alisha Quandt4, Gi-Ho Sung5, Stephen A. Rehner6, M. Catherine Aime7, Terry W. Henkel8, Tatiana Sanjuan9, Rasoul Zare10, Mingjun Chen11, Zhengzhi Li3, Amy Y. Rossman12, Joseph W. Spatafora12, and Bhushan Shrestha13 1USDA-ARS, Sustainable Agriculture Systems Laboratory, Beltsville, MD 20705, USA; corresponding author e-mail: [email protected] 2Microbe Interaction and Ecology Laboratory, BIOTEC, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd, Klong Neung, Klong Luang, Pathum Thani, 12120 Thailand 3Zhejiang BioAsia Institute of Life Sciences, 1938 Xinqun Road, Economic and Technological Development Zone, Pinghu, Zhejiang, 314200 China 4Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48104, USA 5Institute for Bio-Medical Convergence, International St Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Korea 6USDA-ARS, Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, MD 20705, USA 7Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA 8Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA 9Laboratorio de Taxonomía y Ecología de Hongos, Universidad de Antioquia, calle 67 No. 53 – 108, A.A. 1226, Medellin, Colombia