The Systems Thinking Learning Lens

Total Page:16

File Type:pdf, Size:1020Kb

The Systems Thinking Learning Lens THE SYSTEMS THINKING LEARNING LENS: AN EXPLORATORY STUDY OF EXECUTIVES’ MENTAL MODELS by Debbie Sutherland Dissertation Committee: Professor Lyle Yorks, Sponsor Professor Victoria Marsick Approved by the Committee on the Degree of Doctor of Education Date: May 22, 2019 Submitted in partial fulfillment of the requirements for the Degree of Doctor of Education in Teacher’s College, Columbia University 2019 ABSTRACT THE SYSTEMS THINKING LEARNING LENS: AN EXPLORATORY STUDY OF EXECUTIVES’ MENTAL MODELS Debbie Sutherland It has become progressively difficult for businesses to tackle unanticipated events and define the influencers that generate unintended business consequences. As such, uncertain and ambiguous situations are now the prescriptive norm for many companies. Executives are at the forefront of having to make sense of the uncertainty to seek the ideal decision pathway. The purpose of this exploratory research study was to seek what is known about learning how to develop a systems thinking mental model by exploring the perceptions and narratives of 12 global executives working in the United Arab Emirates (UAE) within complex adaptive systems (CAS) and their understanding of their thinking patterns that may have assisted in learning how to develop a systems thinking mental model to manage business ambiguity. Three research questions were developed to identify the types of experiences, perceptions, thinking patterns, and enablers—be they within the individual, organizational, or environmental context—that may have provided a strategic learning path. The research questions include: (a) What characterizes the mental models the executives hold (the distinct nature or features of their beliefs, behaviors, and principles)?; (b) What are the experiences that provide the scaffolding in developing a systems thinking mental model (experiences and events)?; and (c) What aspects of the individual, organizational, and environmental interactions enable individuals to learn how to develop a systems thinking capacity (relationships, systems, and elements)? The qualitative exploratory research study used three data collection methods: (a) semi-structured interviews, (b) focus group session, and (c) demographic questionnaire. The researcher concluded from the findings, analysis, interpretations, and synthesis that: (a) a systems thinking mental model is reflective of and responsive to different elements, situations, and influencers; (b) certain behaviors are an integral part of a systems thinking mental model; (c) informal learning experiences in ambiguous and uncertain situations may provide an ambiguous thinking learning pathway; and (d) learning through social, cultural, and operational systems is an under-utilized strategic intent. © Copyright Debbie Sutherland 2019 All Rights Reserved ii DEDICATION This dissertation is dedicated to my husband, John Sutherland, who provided the unending support in my continuous learning journey; who was always there to listen to my thoughts; who provided encouragement when my mental road blocks took hold; and who was the foundation that enabled me to reach this academic achievement. I would also like to share this dedication with my children, Bailey and Jake Sutherland, who provided the positive enthusiasm and interest in my studies and never wavered from their chant: “You can do this.” I am full of gratitude for their love and support. iii ACKNOWLEDGMENTS First and foremost, I would like to acknowledge Professor Yorks and Professor Marsick for sharing their deep knowledge and guidance in my academic journey. Professor Marsick provided me with a rich body of research and myriad insights that enabled me to expand my thinking processes. Professor Yorks, my doctorate advisor with research interests in strategy development as an organizational learning process and management development, was instrumental in helping me keep an “academic practitioner” thread woven throughout the dissertation to ensure there was a strong corporate learning angle. My gratitude extends to Professor of Practice William Passmore, who advises leaders worldwide on matters concerning change, leadership, and organization design, and Professor Aaron Pallas, who has devoted his academic career to education policy. The Committee was generous with their time, insights, and recommendations. Second, I would like to thank the Teachers College, Columbia University AEGIS faculty at large, who provided an inspiring, challenging, and high- caliber learning environment that enabled me to feel like a full-time contributing member of the Columbia University doctoral studies cohort, even though I lived overseas. Third, my warmest acknowledgment is for the amazing AEGIS XXV cohort who enriched my doctorate learning experiences in so many ways. I felt privileged to be part of this amazing cohort. Special thanks to Pamela Booth Rosati, who was my constant thought partner during our monthly meetings over the years. Lastly, a special thank you to all the executives, who participated in the pilot studies, focus group, and the interviews, for being generous with their time and insights. D. S. iv TABLE OF CONTENTS Chapter I – INTRODUCTION ........................................................................................ 1 Concept Overview ............................................................................................... 3 Statement of the Problem ..................................................................................... 6 The Academic Gap .............................................................................................. 9 UAE and Global Executives ................................................................................ 11 Research Purpose and Questions ......................................................................... 13 Researcher Design Overview ............................................................................... 14 Researcher Perspectives ....................................................................................... 17 Assumptions ......................................................................................................... 17 Rationale and Significance of the Study .............................................................. 20 Summary and Overview ...................................................................................... 21 Key Terms ............................................................................................................ 23 Chapter II – LITERATURE REVIEW ............................................................................ 26 A Systems Thinking Overview ............................................................................ 27 Defining Systems Thinking ..................................................................... 28 Evolution of Systems Thinking ............................................................... 30 Complex Adaptive Systems ..................................................................... 32 The Systems Thinking Learning Lens Overview .................................... 33 Collated Systems Thinking Concepts ...................................................... 39 Mental Models: Understanding Cognitive Complexities .................................... 40 Ambiguity ................................................................................................ 41 Systems Thinking and Mental Models .................................................... 43 Sense Making and Perceptions ................................................................ 45 Context Matters ........................................................................................ 46 Neuroscience Influencers ......................................................................... 51 Collated Mental Model Concepts ............................................................ 53 The Individual, Organizational, and Environmental Learning Nexus ................. 54 Experiential Learning............................................................................... 55 Informal and Situated Learning Theories ................................................ 59 Collated Learning From Experience Concepts ......................................... 65 Organizational Learning ...................................................................................... 66 Collated Organizational Theory Concepts ............................................... 70 Literature Review Summary ................................................................................ 71 Conceptual Framework Description .................................................................... 73 Chapter III – METHODOLOGY ..................................................................................... 76 Qualitative Methodology ..................................................................................... 77 Exploratory Research Design .................................................................. 78 Social Constructivism .............................................................................. 81 Areas of Information Needed............................................................................... 83 Demographic Information ........................................................................ 84 Perceptual and Conceptual Information................................................... 84 v Chapter III (continued) Overview of Research Design ............................................................................. 85 Selection of Participants
Recommended publications
  • AFRI and NIWQP Project Directors Meeting
    AFRI and NIWQP Project Directors Meeting Washington, D.C October 12-13, 2016 United States Department of Agriculture National Institute of Food and Agriculture National Institute of Food and Agriculture Agriculture and Food Research Initiative/National Integrated Water Quality AFRI and NIWQP Annual Project Directors Meeting United State Department of Agriculture National Institute of Food and Agriculture Washington D.C 20024 Welcome to the 2016 AFRI/NIWQP Annual Project Directors Meeting The USDA National Institute of Food and Agriculture (NIFA) welcomes you to the FY 2016 USDA- NIFA AFRI and NIWQP Annual Project Directors’ Meeting. The meeting brings together project directors, co- project directors, graduate students and collaborators from the National Integrated Water Quality Program (NIWQP, FY 2010-2014), the Agricultural and Food Research Initiative (AFRI), Water for Agriculture Challenge Area (FY 2014,-2015), AFRI Foundational RENRE (FY 2011- 2013) program and AFRI Foundational BENRE (FY2014 - FY2015). The purpose of the meeting is for NIFA staff to interact with awardees and learn more about the success of their projects, identify outcomes and learn about current research needs. It will also provide the opportunity for awardees to get the most recent updates on program priorities and new programs. This year we have added additional breakout sessions for more interaction and networking opportunity. We expect that the interaction among awardees will provide the opportunity for collaboration that will help in the development of future NIFA awards. We hope that everyone who attends will be enriched and impressed by the exciting science, innovation and productivity of your fellow awardees. Thank you for coming! Sincerely, James (Jim) Dobrowolski Nancy Cavallaro Dewell Paez Nat’l Program Leader Nat’l Program Leader Program Specialist 202 -401-5016 202-401-5176 202-401-4141 [email protected] [email protected] [email protected] AGENDA Wednesday, October 12, 2016 7:00 a.m.
    [Show full text]
  • What's in a Mental Model of a Dynamic System? Conceptual Structure and Model Comparison
    What’s in a mental model of a dynamic system? Conceptual structure and model comparison Martin Schaffernicht Facultad de Ciencias Empresariales Universidad de Talca Avenida Lircay s/n 3460000 Talca, CHILE [email protected] Stefan N. Groesser University of St. Gallen Institute of Management System Dynamics Group Dufourstrasse 40a CH - 9000 St. Gallen, Switzerland Tel: +41 71 224 23 82 / Fax: +41 71 224 23 55 [email protected] Contribution to the International System Dynamics Conference 2009 Albuquerque, NM, U.S.A. Abstract This paper deals with the representation of mental models of dynamic systems (MMDS). Improving ’mental models’ has always been fundamental in the field of system dynamics. Even though a specific definition exists, no conceptual model of the structure of a MMDS has been offered so far. Previous research about the learning effects of system dynamics interventions have used two methods to represent and analyze mental models. To what extend is the result of these methods comparable? Can they be used to account for a MMDS which is suitable for the system dynamics methodology? Two exemplary MMDSs are compared with both methods. We have found that the procedures and results differ significantly . In addition, neither of the methods can account for the concept of feedback loops. Based on this finding, we propose a conceptual model for the structure of a MMDS, a method to compare them, and a revised definition of MMDS. The paper concludes with a call for more substantive research. Keywords : Mental models, dynamic systems, mental model comparison, graph theory, mental model measurement Introduction Mental models have been a key concept in system dynamics from the beginning of the field (Forrester, 1961).
    [Show full text]
  • Psychology, Meaning Making and the Study of Worldviews: Beyond Religion and Non-Religion
    Psychology, Meaning Making and the Study of Worldviews: Beyond Religion and Non-Religion Ann Taves, University of California, Santa Barbara Egil Asprem, Stockholm University Elliott Ihm, University of California, Santa Barbara Abstract: To get beyond the solely negative identities signaled by atheism and agnosticism, we have to conceptualize an object of study that includes religions and non-religions. We advocate a shift from “religions” to “worldviews” and define worldviews in terms of the human ability to ask and reflect on “big questions” ([BQs], e.g., what exists? how should we live?). From a worldviews perspective, atheism, agnosticism, and theism are competing claims about one feature of reality and can be combined with various answers to the BQs to generate a wide range of worldviews. To lay a foundation for the multidisciplinary study of worldviews that includes psychology and other sciences, we ground them in humans’ evolved world-making capacities. Conceptualizing worldviews in this way allows us to identify, refine, and connect concepts that are appropriate to different levels of analysis. We argue that the language of enacted and articulated worldviews (for humans) and worldmaking and ways of life (for humans and other animals) is appropriate at the level of persons or organisms and the language of sense making, schemas, and meaning frameworks is appropriate at the cognitive level (for humans and other animals). Viewing the meaning making processes that enable humans to generate worldviews from an evolutionary perspective allows us to raise news questions for psychology with particular relevance for the study of nonreligious worldviews. Keywords: worldviews, meaning making, religion, nonreligion Acknowledgments: The authors would like to thank Raymond F.
    [Show full text]
  • Effectiveness of Holistic Mental Model Confrontation in Driving Conceptual Change
    Learning and Instruction xxx (2011) 1e15 Contents lists available at ScienceDirect Learning and Instruction journal homepage: www.elsevier.com/locate/learninstruc Effectiveness of holistic mental model confrontation in driving conceptual change Soniya Gadgil a,*, Timothy J. Nokes-Malach a, Michelene T.H. Chi b a Department of Psychology, Learning Research and Development Center, University of Pittsburgh, United States b Department of Psychology, Arizona State University, United States article info abstract Article history: Prior research on conceptual change has identified multiple kinds of misconceptions at different levels of Received 17 July 2010 representational complexity including false beliefs, flawed mental models, and incorrect ontological Received in revised form categories. We hypothesized that conceptual change of a mental model requires change in the system of 5 June 2011 relations between the features of the prior model. To test this hypothesis, we compared instruction aimed Accepted 8 June 2011 at revising knowledge at the mental model level called holistic confrontation e in which the learner compares and contrasts a diagram of his or her flawed mental model to an expert model e to instruction Keywords: aimed at revising knowledge at the false belief level e in which the learner is prompted to self-explain Learning Conceptual change the expert model alone. We found evidence that participants who engaged in holistic confrontation were Comparison more likely to acquire a correct mental model, and a deeper understanding of the systems of relations in Mental models the model than those who were prompted to self-explain the expert model. The results are discussed in Self-explanation terms of their implications for science instruction.
    [Show full text]
  • Knowledge Management to Learning Organization Connection
    Knowledge Management to Learning Organization Connection Paul Chinowsky1 and Patricia Carrillo2 Abstract: The changes in the engineering-construction industry of the 21st century require organizations to take a more active role in developing knowledge management and learning organization initiatives. The need to both retain knowledge within the organization and focus on continuous human resource development throughout all levels of the organization is becoming a primary challenge throughout the industry. This paper addresses this challenge by focusing on the question of the link between knowledge management and learning organizations, and how to transform an organization from a focus on knowledge management to a focus on developing a learning culture. Based on a series of studies by the writers into the characteristics of both knowledge management and learning organizations, this paper outlines models of each of these concepts and introduces a bridge that details the level of knowledge management implementation that must be in place prior to an organization having the capacity to move to a learning focus. Additionally, the case studies conducted during the current study provide a basis for presenting potentially unsuccessful paths that may be selected by organizations during the imple- mentation of a knowledge management to learning organization transition. DOI: 10.1061/͑ASCE͒0742-597X͑2007͒23:3͑122͒ CE Database subject headings: Construction management; Information management; Organizations. Introduction This move to a learning organization is a comprehensive transformation by an organization. However, the drivers for this ͑ ͒ The engineering-procurement-construction EPC industry of the move are well documented by researchers both within and outside 21st century is undergoing significant changes as it addresses the business domain ͑Goh 1998; McGill et al.
    [Show full text]
  • Solin JSE February 2017 General
    Journal of Sustainability Education Vol. 12, February 2017 ISSN: 2151-7452 Book Review of Systems Thinking Made Simple: New Hope for Solving Wicked Problems Jeremy Solin (University of Wisconsin-Extension, ThinkWater) [email protected] Abstract: In this book review the author summarized the text, Systems thinking made simple: New hope for solving wicked problems by Derek and Laura Cabrera (2015). In the text, cognitive thought is described as a complex adaptive system and four simple rules of thinking are included as an approach to problem solving. Keywords: cognition, complex adaptive systems, sustainability education, systems thinking, thinking Dr. Jeremy Solin is the Wisconsin Coordinator and National Program Manager of ThinkWater, a national campaign supported by USDA to help people of all backgrounds and ages think and care deeply about water. He’s worked in the environmental and sustainability education fields for the past 20 years. Book Review of Systems Thinking Made Simple: New Hope for Solving Wicked Problems As an educator for the past 20 years, I would have told you that systems thinking was at the core of my approach to teaching – helping people understand things from a critical systems perspective. What I have come to realize is that my understanding of systems thinking was helping people understand systems science, but not using systems science to understand their own thinking. Dr. Derek Cabrera a cognitive and systems scientist at Cornell, and author, along with his partner Laura, of Systems Thinking Made Simple: New Hope for Solving Wicked Problems, helped me to connect systems and thinking. In Systems Thinking Made Simple, the Cabrera’s lay out the case for understanding thinking as a complex adaptive system (CAS).
    [Show full text]
  • Mental Models in Expert Physics Reasoning. INSTITUTION California Univ., Berkeley
    DOCUMENT RESUME ED 285 736 SE 048 324 AUTHOR Roschelle, Jeremy; Greeno, James G. TITLE Mental Models in Expert Physics Reasoning. INSTITUTION California Univ., Berkeley. SPONS AGENCY Office of Naval Research, Washington, D.C. Personnel and Training Branch. REPORT NO GA-2 PUB DATE Jul 87 CONTRACT N00014-85-K-0095 NOTE 29p.; For related documents, see SE 048 323-327. PUB TYPE Reports Research/Technical (143) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Physics; *Problem Solving; Science Education; *Science Instruction; Sciences IDENTIFIERS *Experts; *Mental Models ABSTRACT Proposed is a relational framework for characterizing experienced physicists' representations of physics problem situations and the process of constructing these representations. A representation includes a coherent set of relations among: (1) a mental model of the objects in the situation, along with their relevant properties and relations; (2) a mental model of theoretical idealizations of objects; and (3) parameter histories based on mental simulations of both models. Evidence from protocols and a small experiment support a conclusion that experienced physicists' processes of representing problem situations (a) use informal commonsense knowledge, including envisionment of objects in the situations, and (b) are interactive, with mutual. influences between informal knowledge and their technical, theorc.t.cal knowledge. Also described are characteristics of the mental models that represent problem situations and the process of constructing them, drawing from work by artificial intelligence researchers on qualitative process models, and specifying several categories of rules that would be needed for an implementation of the system as a simulation program. (Author/RH) ********************k****2********************************************* Reproductions supplied by EDRS are the best that can be made from the original document.
    [Show full text]
  • Management Cybernetics As a Theoretical Basis for Lean Construction Thinking
    Steinhaeusser et al. (2014). Management Cybernetics as a Theoretical Basis for Lean Construction Thinking. Lean Construction Journal 2015 pp 01-14 www.leanconstructionjournal.org (submitted 08Aug2014; resubmitted 11Mar2015; accepted 28Mar2015) Management Cybernetics as a Theoretical Basis for Lean Construction Thinking Tobias Steinhaeusser1, Fatos Elezi2, Iris D. Tommelein3, Udo Lindemann4 Abstract Question: Management cybernetics claims that any successful organization responds to its laws. As there are numerous successful enterprises that use lean thinking as a management philosophy, including increasing numbers of construction companies, does this claim hold and if so, do these laws offer the opportunity to sharpen understanding of Lean Construction practices? Purpose: The purpose of this paper is to explore the use of management cybernetics— specifically Stafford Beer’s Viable Systems Model—as a theoretical basis for Lean Construction thinking. Research Method: Review, analyze, and compare literature on management cybernetics and Lean Construction. Develop an example to illustrate such use. Findings: Through a theoretical approach of describing lean thinking rules from the perspective of management cybernetics, we were able to show that following this argumentation, the Lean Construction idea of Built-in Quality (BiQ) fulfills all requirements of a viable system in management cybernetics. Limitations: Only a small selection of rules is analyzed in this paper. Implications: Management cybernetics can help sharpen understanding when implementing lean thinking in an industrial context. It may also help identify new concepts that can be incorporated into lean thinking. Conversely, understanding lean thinking principles from the perspective of management cybernetics may also help to identify problems where the implementation of lean thinking does not live up to the desired results.
    [Show full text]
  • 1 System Viability of Organizations and The
    SYSTEM VIABILITY OF ORGANIZATIONS AND THE AETIOLOGY OF ORGANIZATIONAL CRISIS A Quantitative Assessment of Stafford Beer’s Viable System Model SYSTEMISCHE LEVENSVATBAARHEID VAN ORGANISATIES EN DE ETIOLOGIE VAN ORGANISATIE CRISES Een kwantitatieve toets van Stafford Beers 'Viable System Model' (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 20 november 2017 des ochtends te 10.30 uur door Michael Dominik PFIFFNER geboren op 9 oktober 1963 te Zürich, Zwitserland 1 Promotoren: Prof. dr. S.G.L. Schruijer Prof. dr. J.P.P.E.F. Boselie 2 3 Committee: Prof. dr. M. van Bottenburg Prof. dr. A.J. Meijer Prof. dr. E.F. Loos Prof. dr. P. Curşeu Prof. dr. A. Wierdsma 4 5 1 Abstract 1.1 Abstract in English Michael Dominik Pfiffner System Viability of Organizations and the Aetiology of Organizational Crisis A Test of Stafford Beer’s Viable System Model and a Quantitative As- sessment of the System Viability of Organizations for the Understanding and Pre-Emption of Organizational Crisis Keywords: System Viability, Organizational Crisis, Failure, Manage- ment Cybernetics, Early Recognition, Prevention, VSM Subject of this dissertation is the aetiology of crisis processes which place organizations under existential threats and which often cause organiza- tional demise and bankruptcy. To date, research on organizational crises (OC) has not succeeded in identifying the generic grounds for these detri- mental processes in organizations. Instead, by referring to the complexity and to the assumed multi-causality of the phenomenon, research has contin- ued to provide only either general observations or deep singular analyses of often prominent crisis cases, which provide no generalizable insights.
    [Show full text]
  • Viable System Model As a Framework for Understanding
    The Viable System Model as a Framework for Understanding Organizations by Raúl Espejo and Antonia Gill Introducing the Model The Viable System Model (VSM) is not a new idea. Created by Stafford Beer over twenty years ago, it has been used extensively as a conceptual tool for understanding organizations, redesigning them (where appropriate) and supporting the management of change. Despite its successful application within numerous private and public sector organizations, however, the VSM is not yet widely known among the general management population. There are two main reasons for this. Firstly, the ideas behind the model are not intuitively easy to grasp; secondly, they run counter to the great legacy of thinking about organizations dating from the Industrial Revolution - a legacy that is only now starting to be questioned. To deal with the second point in more detail, organizations have been viewed traditionally as hierarchical institutions that operate according to a top-down command structure: strategic plans are formulated at the top and implemented by a cascade of instructions through the tiered ranks. It is now widely acknowledged that this modus operandi is too slow and inflexible to cope with the increasing rate of change and complexity surrounding most organizations. Technology developments have helped to usher in a new concept of a flatter, networked-type organization with a wider distribution of data to reach all those who actually perform the work - in real time. The ground is now fertile for viewing the organization in a new light. However, there is also much confusion about the nature of this new-style organization.
    [Show full text]
  • Detangling the Wicked Problem of Modern Crime
    WEBS OF DECEIT: DETANGLING THE WICKED PROBLEM OF MODERN CRIME drhgfdjhngngfmhgmghmghjmghfmf For: 2016 Fram Applied Critical Thinking Speaker Series PAMELA J. SYDELKO DIRECTOR: SYSTEMS SCIENCE CENTER GLOBAL SECURITY SCIENCES DIVISION ARGONNE NATIONAL LABORATORY Pamela J. Sydelko Education PhD M.S. in Soil B.S. in Botany MBA Candidate Science Systems North Dakota Skills Science University University the State Something aboutUniversity me that of you should know of Illinois of Chicago University Hull, UK 1982 1984 2004 Present Experience Environmental Spatial GIS Integrated Executive Systems Science Modeling M&S Management Science the zero 1985 1988 1994 2003 2004 2014 U.S. Army Argonne Construction National Engineering Laboratory Research Laboratory 2 WHAT IS A SYSTEM? EVOLUTION OF SYSTEMS THINKING Systems HARD AND SOFT SYSTEMS THINKING Thinking CRITICAL SYSTEMS THINKING (CST) RadialSYSTEMIC List INTERVENTION-SmartArt This is example for a subtitle WHAT IS A WICKED PROBLEM? Wicked Problems PROPERTIES OF WICKED PROBLEMS COMPLICATED VS WICKED PROBLEM? Brainstorm OUTLINE The Inter- STOVE-PIPED GOVERNMENT agency GOVERNMENT CZARS AND TASK FORCES Proposal PARTICIPATORY SYSTEMIC PROBLEM STRUCTURING Crime at ANTICIPATORY SYSTEMS the Urban Edge SYSTEMIC ORGANIZATIONAL DESIGN EVALUATION OF METHODS AND PROCESS 3 4 WHAT IS A SYSTEM? . A System is a set of interacting or interdependent components forming an integrated whole and serving a common purpose 5 FOUNDATIONS OF SYSTEMS THINKING? "Modern science is characterized by its ever-increasing specialization, necessitated by the enormous amount of data, the complexity of Ludwig von Bertalanffy techniques and of Systems thinking has theoretical structures “There appear to exist roots in the General within every field. Thus general system laws which apply to any Systems Theory that science is split into was advanced by system of a particular Ludwig von innumerable type, irrespective of the Bertalanffy in disciplines continually particular properties of the1940’s.
    [Show full text]
  • The Coherent Architecture of Team Syntegrity ® : From
    THE COHERENT ARCHITECTURE OF TEAM SYNTEGRITY®: FROM SMALL TO MEGA FORMS Truss, J., Cullen, C. and Leonard, A. Team Syntegrity Inc. (TSI), 150 Yonge Blvd, Toronto, Ontario, CANADA M5M 3H4 E-mail: [email protected] Professor Stafford Beer’s book Beyond Dispute: The Invention of Team Syntegrity, (Wiley 1994) describes the invention of a group methodology for dealing with complex issues. Beer applied principles of managerial cybernetics to work out how to achieve high levels of ‘syzygy’ (cooperation and commitment) in groups that are large enough to satisfy issues of requisite variety, and small enough to accomplish something. The result is Syntegration®, a collaborative group process for thirty people that takes five days. In 1992, Team Syntegrity Inc. (TSI) was founded to find viable markets for Syntegration, and to continue the development of the methodology together with Beer. Delving deeply into the underlying geometry of the icosahedron, Joe Truss led the development of a suite of applications of the TS method that remove the constraints of thirty people and five days. Truss showed how the TS method could be used for groups of virtually any size, in sessions lasting from one to many days, without compromising the mathematical integrity of the technique. This paper describes the development of the TS protocols since Beer invented Syntegration and explains how the application of TS architecture and protocols can support viable, connected, self-organizing and truly empowered groups and learning communities. Keywords Syntegration, Management, Cybernetics, Community, Collaboration INTRODUCING TEAM SYNTEGRITY Since 1992, TSI and its growing international network of licensees and practitioners have delivered well over 100 Syntegration® events in many contexts, countries and languages, building on the early experiments and theoretical bases reported by Beer in Beyond Dispute: The Invention of Team Syntegrity (Beer, 1994).
    [Show full text]