Combined Water Activity and Solute Effects on Growth and Survival of Listeria Monocytogenes Scott A

Total Page:16

File Type:pdf, Size:1020Kb

Combined Water Activity and Solute Effects on Growth and Survival of Listeria Monocytogenes Scott A 414 Journal of Food Protection, Vol. 55, No. 6, Pages 414-418 (June 1992) Copyright©, International Association of Milk. Food and Environmental Sanitarians Combined Water Activity and Solute Effects on Growth and Survival of Listeria monocytogenes Scott A A. J. MILLER* Eastern Regional Research Center, Agricultural Research Service U. S. Department of Agriculture, 600 E. Mermaid Lane, Philadelphia, P ennsylvaina 19118 Downloaded from http://meridian.allenpress.com/jfp/article-pdf/55/6/414/1664071/0362-028x-55_6_414.pdf by guest on 02 October 2021 (Received for publication October 8, 1991) ABSTRACT al. (14) found that L. monocytogenes strain No. 18 (sero­ type l/2a) remained viable at 37°C for 15 d in 10.5% NaCl, Water activity and solute effects were determined on the growth and survival of Listeria monocytogenes Scott A in bacte­ 10 d in 13% NaCl, and 5 d in 20-30% NaCl. Survival times riological media. Media were adjusted to water activity (a ) levels more than doubled at 22°C. The organism survived longer of 0.99-0.80 with NaCl, glycerol (GLY), or propylene glycol than 100 d in 30.5% NaCl (aw = 0.80) at 4°C. (PG). Minimum aw levels for growth occurred at 0.90, 0.92, and There is a need to obtain a better understanding of the 0.97 for GLY, NaCl, and PG, respectively. Survival was related effect of a on the growth kinetics and survival of L. to the a level, as well as the solute employed. Cells survived the monocytogenes. The aim of this study, therefore, is to longest in GLY and died earliest in PG; NaCl was intermediate. establish how a - as modulated by different solutes affects These results provide quantitative isothermal criteria for estimat­ growth and survival of L. monocytogenes strain Scott A. ing the aw level necessary to prevent growth of L. monocytogenes in food. MATERIALS AND METHODS Strain and maintenance conditions Studies on the effect of water activity (a ) on the Listeria monocytogenes Scott A, from the culture collection growth and survival of the foodborne intracellular pathogen at the U.S. Department of Agriculture, Agricultural Research Listeria monocytogenes have been limited principally to the Service, Eastern Regional Research Center, was maintained at use of salt as a solute. Simon (15) was among the first to 4°C on brain heart infusion (BHI) agar streak plates and subcul- tured monthly. Culture purity and identity were confirmed at the report L. monocytogenes halotolerance. Seeliger (13) deter­ time of each subculturing by Gram stain, catalase test, hemolytic mined that the organism is capable of growing to 10% activity on sheep red blood cell agar plates, and mobility test NaCl (aw = 0.93). Others have demonstrated that tempera­ using phase contrast microscopy. For the experiments described ture and salt combinations affected its growth. For ex­ here, a single colony was picked and grown overnight in 100 ml ample, Conner et al. (5) showed that L. monocytogenes pH 7.4, BHI broth at 30°C at 300 rpm. One-ml portions of the Scott A and LCDC 81-861 grew in cabbage juice contain­ culture were distributed into sterile glass vials and mixed with 20 ing 2% NaCl (aw = 0.99) but did not grow at 5% NaCl (aw u.1 dimethyl sulfoxide as a cryoprotectant. Vials were frozen = 0.97) at 30°C. Yet, Benganovic et al. (2) reported that a immediately in dry ice and stored at -70°C. For each experiment strain of the organism which was isolated from sheep grew a vial was removed, thawed at 4°C, and 10 u.1 transferred to 100 ml fresh BHI broth. The inoculum was grown overnight as at 6°C in 5% NaCl. Petran and Zottola (11,12) studied the described above. For growth/survival studies, the overnight cul­ effect of other humectants on growth or inhibition of L. ture was diluted to log10 3-4 CFU/ml in 0.1% peptone (Difco monocytogenes, including propylene glycol, lactose, fruc­ Laboratories, Detroit, MI). tose, galactose, and sucrose. Knowledge of the effect of water activity on survival Experimental procedure of the pathogen is similarly limited to NaCl studies. Seeliger BHI broth (Difco Laboratories, Detroit, MI) containing 0.5% (13) demonstrated that some strains tolerated 20% NaCl (a NaCl was adjusted to aw levels of 0.99, 0.97, 0.93, 0.90, 0.87, 0.83, and 0.80 with NaCl"(Mallinckrodt, Inc., Paris, KY), glycerol = 0.86) for short periods and remained viable after 1 year (GLY) from Sigma Chemical Co., St. Louis, MO or propylene in 16% NaCl (a = 0.90) at pH 6.0. Beganovic et al. (2) w glycol (PG) from Fisher Scientific Co., Fairlawn, NJ. Salt contain­ reported that the organism died in 10% NaCl in 15-30 d, at ing samples were prepared to a^ levels of 0.92 and 0.91, as well. a rate which was related to the inoculum size. Shahamat et All chemicals were used as received from the manufacturer or distributor. Solute levels for aw modulations were obtained from Niven (10), Grover and Nicol (7), and Sloan and Labuza (16) for Reference to a brand or firm name does not constitute endorsement by the U.S. Department of Agriculture over others of a similar nature not NaCl, GLY, and PG, respectively. Water activities were con­ mentioned. firmed with a Rotronic Hygroskop DT water activity meter JOURNAL OF FOOD PROTECTION, VOL. 55, JUNE 1992 WATER ACTIVITY AND SOLUTE EFFECTS ON LISTERIA 415 (Rotronic Instrument Corp., Huntington, NY), equipped with a humidity sensor. Triplicate measurements were performed on each treatment combination. One hundred ml of each medium in 250-ml flasks was adjusted to pH 7.4 with dilute HC1 or NaOH, prior to sterilization. Flasks were prepared in triplicate and were frozen and stored at -18°C. Prior to each experiment, one of the three replicate flasks was thawed overnight at 4°C and a culture was prepared as described above. Experimental flasks were equilibrated to 28°C, inoculated with log10 3-4 CFU/ml, and incubated at 28°C at 150 rpm. Samples were taken periodically, diluted serially with 0.1 % peptone, and plated onto tryptose phosphate (TP) agar (Difco) using a Spiral Plater (Spiral Systems Inc., Cincinnati, OH). Petri 200 400 600 800 dishes were incubated inverted for 48 h at 35°C and then enumer­ TIME (hrs) ated using a Model 500 A Bacteria Colony Counter (Spiral Figure 1. Combined NaCl and a effects on growth and inhibition Systems Instruments, Inc.). The threshold level of detection was of L. monocytogenes Scott A in BHI medium at 28°C. Dotted 21 CFU/ml. Survival was defined as the ability of the organism to lines are extrapolations of enumeration data. The minimum level Downloaded from http://meridian.allenpress.com/jfp/article-pdf/55/6/414/1664071/0362-028x-55_6_414.pdf by guest on 02 October 2021 be enumerated under the conditions detailed above. of detection was 21 CFU!ml. Curve fitting Glycerol Growth curves were fitted for solute and a treatments using the Gompertz equation (3,6). Gompertz coefficients were used to The effect of GLY on growth or inhibition of L. derive values of more practical use, including: monocytogenes is presented in Fig. 2 and Table 1. In Exponential growth rate (EGR), log]0 CFU/ml/h contrast to NaCl, growth occurred in GLY to an a = 0.90. Generation time (GT), h ' ° w Lag-phase duration (LPD), h, and GT increased (0.8-17 h) over the permissive growth aw Maximum population density (MPD), log CFU/ml. range of 0.99 to 0.90, as did LPD (2-53 h); EGR decreased" Where there was evidence of cell death, decimal reduction times from 0.4 to 0.02 log10 CFU/h. MPD decreased from log10 10 (D, and D2 values) were calculated using the biphasic logistic CFU/ml for 0.99 to 8.5 at the minimum permissive aw equation proposed by Kamau et al. (8) and modified by Dr. (0.90). The most significant difference between data from Richard C. Whiting (ERRC, Microbial Food Safety Research NaCl and GLY grown L. monocytogenes was a pattern of Unit) to include a lag factor (TL). The equation is: shorter lag time durations in GLY grown cells. At aw levels of < 0.87 there was no growth in a GLY containing F,(l+e-(i'TL ) (l-F,)l+e log N = log medium. The death curves were generally parallel for aw = .(l+eW-u)) (l+ep=(t-TL)) 0.87-0.80. Differences observed in the shoulder (TL) or D H m value (D ) did not show an obvious trend, in contrast to the where: N = surviving population (CFU) at time t; N0 = initial NaCl data. Where death occurred at common aw levels, the population (CFU); F] = population fraction in major group; 1- F shoulders (TL) for the GLY treatments were uniformly = F2 = population fraction in minor group; $} = constant for major greater than any of the NaCl treatments and L. monocyto­ group; (32 = constant for minor group; TL = lag time, and e is the genes survived longer in GLY than in NaCl. Survival in base of the natural logarithm. The D values were calculated by the GLY was 400-500 h at 28°C (Fig. 2). equation D. = 2.3/(3.. RESULTS Sodium chloride Growth/inhibition curves are presented in Fig. 1 and j-A- 0.99 -*- 0.87 results from the Gompertz curve fitting are presented in -o- 0.97 -*- 0.83 Table 1. Growth occurred at water activities of 0.99, 0.97, -•- 0.93 -D- 0.80 :-•- 0.90 0.93, and 0.92.
Recommended publications
  • Fish and Fishery Products Hazards and Controls Guidance
    CHAPTER 14: Pathogenic Bacteria Growth and Toxin Formation as a Result of Inadequate Drying This guidance represents the Food and Drug Administration’s (FDA’s) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations. If you want to discuss an alternative approach, contact the FDA staff responsible for implementing this guidance. If you cannot identify the appropriate FDA staff, call the telephone number listed on the title page of this guidance. UNDERSTAND THE POTENTIAL HAZARD. expected conditions of storage and distribution. Additionally, finished product package closures Pathogenic bacteria growth and toxin formation should be free of gross defects that could expose in the finished product as a result of inadequate the product to moisture during storage and drying of fishery products can cause consumer distribution. Chapter 18 provides guidance on illness. The primary pathogens of concern are control of container closures. Staphylococcus aureus (S. aureus) and Clostridium Some dried products that are reduced oxygen botulinum (C. botulinum). See Appendix 7 for a packaged (e.g., vacuum packaged, modified description of the public health impacts of atmosphere packaged) are dried only enough these pathogens. to control growth and toxin formation by C. botulinum type E and non-proteolytic types B • Control by Drying and F (i.e., types that will not form toxin with Dried products are usually considered shelf stable a water activity of below 0.97).
    [Show full text]
  • Explain What Water Activity Is and How It Relates to Bacterial Growth
    Explain what water activity is and how it relates to bacterial growth. Differentiate between the major types of foodborne illnesses -- infection, intoxication, and toxin-mediated infection. Water in food that is not bound to food molecules can support the growth of bacteria, yeast, and mold. The term water activity (a w) refers to this unbound water. The water activity of a food is not the same thing as its moisture content. Although moist foods are likely to have greater water activity than are dry foods, this is not always so. In fact, a variety of foods may have exactly the same moisture content and yet have quite different water activities. The water activity (a w) of a food is the ratio between the vapor pressure of the food itself, when in a completely undisturbed balance with the surrounding air media, and the vapor pressure of distilled water under identical conditions. A water activity of 0.80 means the vapor pressure is 80 percent of that of pure water. The water activity increases with temperature. The moisture condition of a product can be measured as the equilibrium relative humidity (ERH) expressed in percentage or as the water activity expressed as a decimal. Most foods have a water activity above 0.95 and that will provide sufficient moisture to support the growth of bacteria, yeasts, and mold. The amount of available moisture can be reduced to a point that will inhibit the growth of microorganisms. Water activity values of selected foods Food Water activity Fresh meat and fish .99 Liverwurst .96 Cheese spread .95 Bread .95 Red bean paste .93 Caviar .92 Aged cheddar .85 Fudge sauce .83 Salami .82 Soy sauce .8 Jams and jellies .8 Peanut butter .7 Dried fruit .6 Cookies .3 Instant coffee .2 Predicting Food Spoilage Water activity (a w) has its most useful application in predicting the growth of bacteria, yeast, and mold.
    [Show full text]
  • Oac 310:260 Oklahoma State Department of Health
    OAC 310:260 OKLAHOMA STATE DEPARTMENT OF HEALTH CHAPTER 260. GOOD MANUFACTURING PRACTICE REGULATIONS Subchapter Section 1. General Provisions . 310:260-1-1 3. Manufacturing, Processing, Packing or Holding Human Food . 310:260-3-1 5. Pecan Processing . 310:260-5-1 7. Salvageable and Salvaged Merchandise . 310:260-7-1 9. Food Storage Warehouses . 310:260-9-1 11. Licensing, Inspections and Plan Review . 310:260-11-1 13. Special Risk Situations . 310:260-13-1 [Authority: 63 O.S. 1981, Section 1-1101 et seq.] [Source: Codified 12-31-91] SUBCHAPTER 1. GENERAL PROVISIONS Section 310:260-1-1. Purpose; citation 310:260-1-2. Scope 310:260-1-3. Incorporation by reference 310:260-1-4. Memorandums of agreement 310:260-1-5. Exclusion 310:260-1-6. Definitions 310:260-1-1. Purpose; citation (a) The Oklahoma State Board of Health finds and declares that a uniform statewide code is needed to regulate all food manufacturing, processing, packing, holding, transporting or salvaging operations conducting business within the State of Oklahoma, to provide for uniformity in inspecting of such establishments, and to protect the health of consumers by preventing the sale or distribution of foods which have become adulterated or misbranded. (b) These rules and regulations may be cited as the Human Foods Good Manufacturing Practice Regulations. 310:260-1-2. Scope The criteria in subchapter 3 shall apply in determining whether the facilities, methods, practices, and controls used in the manufacture, processing, packing, salvaging or holding of food are in conformance with or are operated or administered in conformity with good manufacturing practices to ensure that food for human consumption is safe and has been prepared, packaged, salvaged, or held under sanitary conditions.
    [Show full text]
  • Food Preservation Methods Department of Food Science Foods Are Freshest and at Optimum Quality at the Time of Their Harvest Or Slaughter
    PURDUE EXTENSION FS-15-W Food Entrepreneurship Series Food Preservation Methods Department of Food Science Foods are freshest and at optimum quality at the time of their harvest or slaughter. To maintain this ous ways to extend the period of time during which quality in foods that will be consumed later, the the food can be shipped, displayed in the store, foods can be preserved by cold, heat, chemical purchased by the consumer, and finally consumed. Katherine Clayton preservatives, or combinations of these methods. The physical and chemical composition of the food science Extension Cold usually means refrigeration or freezing. food helps determine the type of process required outreach specialist Heating involves many processing methods, for preservation. Other factors that influence a such as pasteurization, commercial sterilization, choice of preservation method are the desired end Deidre Bush product, type of packaging, cost, and distribution former Extension assistant and drying. Adding preservative ingredients and processing by means of fermentation are also methods. Kevin Keener ways to preserve foods. food process engineer, The Role of Water Activity and Extension specialist, and A food entrepreneur needs a basic understand- Acidity in Preservation professor of food science ing of the various preservation techniques before starting a business. The two most important chemical composition factors that affect how a food is preserved are Food processing converts harvested or raw water content and acidity. Water content includes foods into forms that are more easily stored and moisture level, but an even more important Department of Food Science consumed, and sometimes into a form that may measurement is water activity.
    [Show full text]
  • Good Manufacturing Practices For
    Good Manufacturing Practices for Fermented Dry & Semi-Dry Sausage Products by The American Meat Institute Foundation October 1997 ANALYSIS OF MICROBIOLOGICAL HAZARDS ASSOCIATED WITH DRY AND SEMI-DRY SAUSAGE PRODUCTS Staphylococcus aureus The Microorganism Staphylococcus aureus is often called "staph." It is present in the mucous membranes--nose and throat--and on skin and hair of many healthy individuals. Infected wounds, lesions and boils are also sources. People with respiratory infections also spread the organism by coughing and sneezing. Since S. aureus occurs on the skin and hides of animals, it can contaminate meat and by-products by cross-contamination during slaughter. Raw foods are rarely the source of staphylococcal food poisoning. Staphylococci do not compete very well with other bacteria in raw foods. When other competitive bacteria are removed by cooking or inhibited by salt, S. aureus can grow. USDA's Nationwide Data Collection Program for Steers and Heifers (1995) and Nationwide Pork Microbiological Baseline Data Collection Program: Market Hogs (1996) reported that S. aureus was recovered from 4.2 percent of 2,089 carcasses and 16 percent of 2,112 carcasses, respectively. Foods high in protein provide a good growth environment for S. aureus, especially cooked meat/meat products, poultry, fish/fish products, milk/dairy products, cream sauces, salads with ham, chicken, potato, etc. Although salt or sugar inhibit the growth of some microorganisms, S. aureus can grow in foods with low water activity, i.e., 0.86 under aerobic conditions or 0.90 under anaerobic conditions, and in foods containing high concentrations of salt or sugar. S.
    [Show full text]
  • 4.1. Water Activity
    Results and discussion: Water activity 4.1. WATER ACTIVITY The desorption isotherms of meat with a different NaCl content at different temperatures are shown in Figures 4.1.1, 4.1.2, and 4.1.3. The experimental points and the isotherms predicted by the model type II (GAB and Mújica models with salt dependent coefficients and Clausius- Clayperon equation used to consider the temperature effect) are shown. The means of the NaCl contents of the samples were 0, 0.08, 0.2 and 0.31 kg/kg d.m. The experimental data are reported in appendix B. 5 t=5 ºC 4 3 X, kg/kg 2 1 0 0 0.2 0.4 0.6 0.8 1 aw Figure 4.1.1 Calculated (¾) and experimental (+, !, x,O) desorption isotherms at different NaCl content and at 5 ºC (model type 2). X: water content (kg H2O/kg d.m.). (O): meat 0 kg NaCl/kg d.m. (x) meat 0.08 kg NaCl/kg d.m. (!) meat 0.20 kg NaCl/kg d.m. (+) meat 0.31 kg NaCl/kg d.m. 129 Results and discussion: Water activity 5 t=13 ºC 4 3 X, kg/kg 2 1 0 0 0.2 0.4 0.6 0.8 1 aw Figure 4.1.2 Calculated (¾) and experimental (+, !, x,O) desorption isotherms at different NaCl content and at 13 ºC (model type 2). X: water content (kg H2O/kg d.m.). (O): meat 0 kg NaCl/kg d.m. (x) meat 0.08 kg NaCl/kg d.m.
    [Show full text]
  • Proposed Theoretical Water Activity Values at Various Temperatures for Selected Solutions to Be Used As Reference Sources in the Range of Microbial Growth
    419 Journal of Food Protection, Vol. 51, No. 5, Pages 419-423 (May, 1988) Copyright© International Association of Milk, Food and Environmental Sanitarians Proposed Theoretical Water Activity Values at Various Temperatures for Selected Solutions to be Used as Reference Sources in the Range of Microbial Growth SILVIA L. RESNIK1* and JORGE CHIRIFE Downloaded from http://meridian.allenpress.com/jfp/article-pdf/51/5/419/1658009/0362-028x-51_5_419.pdf by guest on 26 September 2021 Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Republic of Argentina (Received for publication March 26, 1987) ABSTRACT based on the thermodynamic properties of strong electro­ lyte aqueous solutions, and was applied either to satu­ This paper compiles recent data on the theoretical prediction rated or unsaturated solutions at different temperatures. of the water activity (a ) of selected saturated salt solutions, w The system of equations developed by Pitzer (7) and his unsaturated NaCl and LiCl solutions, and H2S04 solutions. These results are presented in tabular form in such a way that associates (8,9,14) was successfully used to predict the they can be safely used as reference sources for aw determina­ aw of selected saturated salt solutions, unsaturated NaCl tion in the range of microbial growth (i.e. about 0.57-0.97) and and LiCl solutions (2,6), and H2S04 solutions (13). at different temperatures. It is the purpose of the present work to compile all these results in such a way that they can be safely used as reference sources for aw determinations in the range Adjustment of the water activity (aw) of foods is an of microbial growth (i.e.
    [Show full text]
  • WATER ACTIVITY PRINCIPLES By: Douglas Wright, President
    December 2018 WATER ACTIVITY PRINCIPLES By: Douglas Wright, President Water and Food Safety One of the oldest forms of preserving foods is drying or desiccation. When first applied there was little understanding of why removing moisture from food had the effect of extending its shelf life. The table below shows the typical (TOTAL) water content of certain food products and categories: Over time, an understanding emerged and today we have a solid scientific understanding of how water impacts on product quality and safety. We now know that the water content is less important than the specific behaviour of the water or Water Activity. Water activity is related to water content in a non-linear relationship which is represented using as a moisture sorption isotherm curve. So while there can be a correlation between Water Activity and Total Moisture it is more critical for food safety to know the Water Activity. However for processing it can be equally critical to know the Total moisture. Water Activity (Aw) This is the most important parameter of water in terms of food safety. Water activity or Aw is the partial vapor pressure of water in a substance divided by the standard state partial vapor pressure of water. In the field of food science, the standard state is most often defined as the partial vapor pressure of pure water at the same temperature. Using this particular definition, pure distilled water has a water activity of exactly one. To understand this more fully, we must recognise that much of the water in food is bound water, i.e.
    [Show full text]
  • 13504-00 AN, Water Activity the Key to Pet Food Quality and Safety
    Application Note Water Activity: The Key to Pet Food Quality and Safety By: Brady Carter & Anthony Fontana, Jr. Ph.D. Decagon Devices, Inc. Introduction Moisture Analysis Pet food safety is an important issue in the Pet Food Traditionally, discussions on controlling the water and Feed Industries as a result of several high in pet food products have focused on moisture profile product recalls that have recently occurred. content or the total amount of water in a system. With the anticipation of new government Moisture content provides valuable information regulations and a need to ensure consumer about product quality, but it is only one part of a confidence, manufacturers need tools to ensure complete moisture analysis. Water activity is product safety and quality. Microbial spoilage is another important moisture measurement that one of the most common reasons for product defines the energy or ‘availability’ of water in a recalls. Water activity has been used in food product. While both measurements are important, production for decades as an effective way of water activity provides the most valuable determining if a food is safe from microbial growth. information about product safety and quality. It is used effectively in the Pet Food Industry and should be an integral part of manufacturing and any Water activity represents the energy status of the future regulations (Lowe and Kershaw, 1995). water in a product. It is based in thermodynamics and is defined as the vapor pressure of water (p) In fact, water activity has been an important over a sample divided by the vapor pressure of pure parameter in commercial pet foods since the late water (po) at a given temperature.
    [Show full text]
  • Assessing and Evaluating Recreational Uses of Water Resources: Implications for an Integrated Management Framework
    United States Department of Assessing and Evaluating Agriculture Forest Service Recreational Uses of Water Pacific Northwest Research Station Resources: Implications for an General Technical Report Integrated Management Framework PNW-GTR-536 September 2002 Christina Kakoyannis and George H. Stankey Authors Christina Kakoyannis is a Ph.D. candidate, Department of Forest Resources, Oregon State University, Corvallis, OR 97331; George H. Stankey is a research social scientist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 SW. Jefferson Way, Corvallis, OR 97331. Final report on cooperative agreement PNW-753-0880-228 between U.S. Department of Agriculture, Forest Service and Oregon State University. Cover photo courtesy of Bo Shelby. Abstract Kakoyannis, Christina; Stankey, George H. 2002. Assessing and evaluating recreational uses of water resources: implications for an integrated management framework. Gen. Tech. Rep. PNW-GTR-536. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 59 p. To resolve conflicts over water, we need an understanding of human uses and values for water. In this study, we explore how water-based recreation affects and is affected by the water regime and water management and how key social trends might influence future water-based recreation. We found that although water is a critical component of many recreational experiences, our failure to understand current and anticipated water-based recreation use trends hampers our ability to effectively manage for recreation. Furthermore, we examined certain key drivers of social change, including population growth and migration, that will likely alter future recreation trends in the Pacific Northwest.
    [Show full text]
  • Best Water Activity Meters 2019 the Definitive Guide Who Makes the Best Water Activity Meter?
    Best Water Activity Meters 2019 The Definitive Guide Who makes the Best Water Activity Meter? Some people measure water activity because they have to. They’re just looking for a number and they don’t really care what it is. Those people should head straight for Amazon, pay their 600 bucks, and pray that no one gets sick. But if you’re a food, pharmaceutical, or personal care product manufacturer that takes safety seriously, a high accuracy water activity meter can be critical for your operation. And if you spend the time to pick the right instrument, you will enjoy its benefits for quite a while, because the best can last a decade or more. Is it an instrument? Or is it a sensor? There’s a confusing array of instruments to choose from when you’re shopping for a water activity meter, but essentially you’re choosing between four different sensor types:chilled mirror, capacitance, tunable laser, and resistive electrolytic. It’s important to consider the sensor type, because this determines the speed, accuracy, longevity, and reliability of your instrument. Sensors that measure water activity directly (chilled mirror and laser) are faster and more accurate than sensors that measure a secondary property like resistance or capacitance and convert it to water activity (resistive electrolytic and capacitance). Chilled Mirror Capacitance Tunable Laser Resistive Electrolytic BEST WATER ACTIVITY METERS 2019 1 Do you need to measure volatiles? If you’re measuring chemicals or solvents, you probably know you’ll have to look for a specialized sensor. But other ingredients that volatilize in air, such as ethanol, alcohol, vinegars, propylene glycol, and certain spices can also cause problems with a sensor.
    [Show full text]
  • An Overview of the Principles and Effects of Intermediate Moisture
    International Journal of Chemical Studies 2019; SP6: 848-855 P-ISSN: 2349–8528 E-ISSN: 2321–4902 (Special Issue -6) IJCS 2019; SP6: 848-855 3rd National Conference Payel Panja On Department of Post-Harvest PROMOTING & REINVIGORATING AGRI-HORTI, Technology of Horticultural Crops, Faculty of Horticulture, TECHNOLOGICAL INNOVATIONS Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, [PRAGATI-2019] Nadia, West Bengal, India (14-15 December, 2019) Deepika Department of Post-Harvest Technology of Horticultural An overview of the principles and effects of Crops, Faculty of Horticulture, Bidhan Chandra Krishi intermediate moisture fruits and vegetables Viswavidyalaya, Mohanpur, Nadia, West Bengal, India Payel Panja, Deepika and Donal Bhattacharjee Donal Bhattacharjee Department of Post-Harvest Technology of Horticultural Abstract Crops, Faculty of Horticulture, Intermediate moisture foods are semi-moist foods that have some of their water bound by the addition of Bidhan Chandra Krishi glycerol, sorbitol, salt or organic acids, thus preventing the growth of many microorganisms. It is now Viswavidyalaya, Mohanpur, well recognized that fruits and vegetables are dehydrated to an intermediate moisture level (20-50%), that Nadia, West Bengal, India have enough moisture content to permit easy chewing with low water content to prevent spoilage. Production of IMF is based on an increased scientific understanding of chemical reactions involved in traditional food preservation methods. A number of humectants are available to reduce water activity to acceptable level without imparting any adverse effect on product quality. They are preserved by restricting the amount of water available for microbial growth, while retaining sufficient water to give the food a soft texture and can be eaten without further preparation.
    [Show full text]