LOXL2 Inhibitors and Breast Cancer Progression

Total Page:16

File Type:pdf, Size:1020Kb

LOXL2 Inhibitors and Breast Cancer Progression antioxidants Review LOXL2 Inhibitors and Breast Cancer Progression Sandra Ferreira 1 , Nuno Saraiva 1 , Patrícia Rijo 1,2 and Ana S. Fernandes 1,* 1 CBIOS, Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal; [email protected] (S.F.); [email protected] (N.S.); [email protected] (P.R.) 2 Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal * Correspondence: [email protected]; Tel.: +351-217-515-500 (ext. 627) Abstract: LOX (lysyl oxidase) and lysyl oxidase like-1–4 (LOXL 1–4) are amine oxidases, which catalyze cross-linking reactions of elastin and collagen in the connective tissue. These amine oxidases also allow the cross-link of collagen and elastin in the extracellular matrix of tumors, facilitating the process of cell migration and the formation of metastases. LOXL2 is of particular interest in cancer biology as it is highly expressed in some tumors. This protein also promotes oncogenic transformation and affects the proliferation of breast cancer cells. LOX and LOXL2 inhibition have thus been suggested as a promising strategy to prevent metastasis and invasion of breast cancer. BAPN (β-aminopropionitrile) was the first compound described as a LOX inhibitor and was obtained from a natural source. However, novel synthetic compounds that act as LOX/LOXL2 selective inhibitors or as dual LOX/LOX-L inhibitors have been recently developed. In this review, we describe LOX enzymes and their role in promoting cancer development and metastases, with a special focus on LOXL2 and breast cancer progression. Moreover, the recent advances in the development of LOXL2 inhibitors are also addressed. Overall, this work contextualizes and explores the importance of LOXL2 inhibition as a promising novel complementary and effective therapeutic Citation: Ferreira, S.; Saraiva, N.; approach for breast cancer treatment. Rijo, P.; Fernandes, A.S. LOXL2 Inhibitors and Breast Cancer Keywords: BAPN; breast cancer; cell invasion; EMT; lysyl-oxidase; lysyl-oxidase like 2; metas- Progression. Antioxidants 2021, 10, tases; inhibitors 312. https://doi.org/10.3390/ antiox10020312 Academic Editor: Cinzia Domenicotti 1. Introduction Received: 29 December 2020 LOX (lysyl oxidase or protein lysine 6-oxidase) and lysyl oxidase like-1 through 4 Accepted: 16 February 2021 (LOXL1–LOXL4) are copper-dependent amine oxidases that covalently cross-link collagen Published: 19 February 2021 and elastin in the extracellular matrix (ECM) [1,2]. These enzymes are expressed in various tissues and organs, such as skin, aorta, heart, lung, liver, cartilage, kidney, stomach, Publisher’s Note: MDPI stays neutral small intestine, colon, retina, ovary, testis, and brain [3]. LOX/LOXL proteins have been with regard to jurisdictional claims in implicated in the pathogenesis of various diseases, including cancer. Therefore, inhibitors published maps and institutional affil- of these enzymes have been developed for therapeutic purposes. In this work, the impact iations. of LOX/LOXL enzymes in cancer progression and the state of the art of the development of inhibitors are reviewed. 2. Historical Perspective Copyright: © 2021 by the authors. The discovery of LOX enzymes was initially associated with the toxic effects described Licensee MDPI, Basel, Switzerland. for the inhibitor β-aminopropionitrile (BAPN; Figure1). Reports on BAPN can be found in This article is an open access article the literature since the 1950s [4]. BAPN is a potent irreversible inhibitor of LOX enzymes distributed under the terms and that severely disrupts cross-linkage of collagen and elastin [5]. This natural compound was conditions of the Creative Commons originally found in sweet peas, Lathyrus odoratus L. The ingestion of seeds or food products Attribution (CC BY) license (https:// of these genus spp. is associated with toxic effects, namely with lathyrism. This condition creativecommons.org/licenses/by/ is characterized by skeletal and tissue deformities, growth malformations, and vascular 4.0/). Antioxidants 2021, 10, 312. https://doi.org/10.3390/antiox10020312 https://www.mdpi.com/journal/antioxidants AntioxidantsAntioxidants 20212021,, 1010,, 312312 22 of 1618 alterationsespecially by that inhibition result from of collagen connective and tissue elastin disruption, cross-linking especially [5]. Hippocrates by inhibition was of collagenthe first andto describe elastin the cross-linking deleterious [5 effect]. Hippocrates of lathyrism, was which the first caused to describe paralysis the of deleterious the legs after effect the ofconsumption lathyrism, whichof certain caused species paralysis of peas. of the In legs 1883, after the the phenomenon consumption of of certainlathyrism species was ofdescribed peas. In 1883,by Louis the phenomenon Astier. Since of lathyrism then, several was described researchers by Louis have Astier. described Since then,the severalconsequences researchers of the have ingestion described of certain the consequences plants on connective of the ingestion tissue disorders, of certain especially plants on connectiveon collagen tissue and elastin disorders, cross-linking especially [5]. on collagen and elastin cross-linking [5]. Figure 1. Chemical structure of β-aminopropionitrile (BAPN). In the latelate 1960s,1960s, LOXLOX enzymesenzymes werewere identifiedidentified whilewhile studyingstudying thethe rolerole ofof collagencollagen and elastin elastin cross-link cross-link associated associated with with bone bone loss loss [6,7]. [6, 7Pinnell]. Pinnell and andMartin, Martin, 1968 1968[7] detected [7] de- tectedan enzyme an enzyme that converts that converts peptide-bound peptide-bound lysine lysine to allysine to allysine in embryonic in embryonic chick chick bone. bone. The Theauthors authors demonstrated demonstrated that that the theenzyme enzyme was was inhibited inhibited by by the the lathyrogen lathyrogen BAPN. ThisThis compound showed showed inin vitro vitro andand inin vivo vivo inhibitioninhibition of of collagen collagen and and elastin elastin cross-linking cross-linking by Antioxidants 2021, 10, 312 byblocking blocking the the lysine-to-allysi lysine-to-allysinene conversion. conversion. The The authors authors concluded concluded that that this enzymaticenzymatic 3 of 18 inactivation promotedpromoted the the primary primary lesion lesion of lathyrism.of lathyrism. It was It thewas first the time first that time the that enzyme the responsibleenzyme responsible for converting for converting lysyl residues lysyl toresidues allysyl to residues allysyl was residues identified was [identified7,8]. Although [7,8]. LOXAlthough is known LOX since is known the late since 1960s, the thelate 3D 1960s, crystalline the 3D structure crystalline of humanstructure lysyl of human oxidase-like lysyl 2oxidase-like (Figure2A) 2 was (Figure only 2A) obtained was only in 2018 obtained [9]. in 2018 [9]. A LOXL2 SRCR3 Ca SRCR4 Zn Catalytic Domain B FigureFigure 2. 2. StructureStructure of LOXLOX proteins. proteins. (A ()A Crystal) Crystal structure structure of human of human LOXL2 LOXL2 in a precursor in a precursor state state obtainedobtained by by Zhang Zhang etet al.al. (2018)(2018) [ 9[9].]. The The SRCR SRCR domains domains 3 and 3 and 4 are 4 coloredare colored in red in and red orange, and orange, respectively;respectively; the the catalytic domain domain is is colored colored in blue.in blue. The The glycosyl glycosyl groups groups at Asn-644 at Asn-644 are shown. are shown. Zinc Zinc andand calcium calcium ionsions are are represented represented as purple, as purple, blue and bl greenue and spheres, green respectively. spheres, Imagerespectively. was prepared Image was preparedwith PDB with (PDBID PDB 5ZE3) (PDBID [10]. 5ZE3) (B) Schematic [10]. (B representation) Schematic representation of the structure of and the homology structure of and human homology ofLOX human isoenzymes. LOX isoenzymes. Due to similarities Due to in thesimilarities domain arrangement,in the domain LOX arrangement, and LOXL1 represent LOX and one LOXL1 representLOX subfamily, one LOX whereas subfamily, LOXL2-4 whereas constitute LOXL another2-4 constitute LOX subfamily. another LOX subfamily. Antioxidants 2021, 10, 312 4 of 18 3. LOX Enzymes Antioxidants 2021, 10, 312 3 of 16 The mammalian lysyl oxidase family of proteins is encoded by five genes: LOX, LOXL1, LOXL2, LOXL3, and LOXL4. These genes encode proteins with the conserved C- terminal region that includes a copper binding site, lysine tyrosylquinone (LTQ) cofactor 3.residues, LOX Enzymes and a cytokine receptor-like (CRL) domain [1,11]. The diverse N-terminal pro- peptideThe mammalianregions determine lysyl oxidase the classification family of proteins intois two encoded subfamilies by five genes:consistingLOX ,of LOX and LOXL1, LOXL2, LOXL3, and LOXL4. These genes encode proteins with the conserved C-terminalLOXL1, and region LOXL2–LOXL4. that includes a copperThe prodomains binding site, lysinein LOX tyrosylquinone and LOXL1 (LTQ) enable cofac- their secretion toras residues,pro-enzymes, and a cytokinewhich receptor-likeare then activated (CRL) domain extracellularly [1,11]. The diversein a process N-terminal that involves pro-peptideproteolytic regionscleavage. determine LOXL2, the classificationLOXL3, and into LOXL4 two subfamilies contain consisting four scavenger of LOX receptor andcysteine-rich LOXL1, and domains LOXL2–LOXL4. (SRCR) The that prodomains are
Recommended publications
  • Lysyl Oxidase Family Members in Urological Tumorigenesis and Fibrosis
    www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 28), pp: 20156-20164 Review Lysyl oxidase family members in urological tumorigenesis and fibrosis Tao Li1,2, Changjing Wu1, Liang Gao3, Feng Qin1, Qiang Wei2 and Jiuhong Yuan1,2 1The Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China 2Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China 3Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China Correspondence to: Jiuhong Yuan, email: [email protected] Keywords: lysyl oxidase; tumorigenesis; fibrosis; urological cancer; collagen Received: September 29, 2017 Accepted: March 11, 2018 Published: April 13, 2018 Copyright: Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Lysyl oxidase (LOX) is an extracellular copper-dependent monoamine oxidase that catalyzes crosslinking of soluble collagen and elastin into insoluble, mature fibers. Lysyl oxidase-like proteins (LOXL), LOX isozymes with partial structural homology, exhibit similar catalytic activities. This review summarizes recent findings describing the roles of LOX family members in urological cancers and fibrosis. LOX/ LOXL play key roles in extracellular matrix stability and integrity, which is essential for normal female pelvic floor function. LOX/LOXL inhibition may reverse kidney fibrosis and ischemic priapism. LOX and LOXL2 reportedly promote kidney carcinoma tumorigenesis, while LOX, LOXL1 and LOXL4 suppress bladder cancer growth. Multiple studies agree that the LOX propeptide may suppress tumor growth, but the role of LOX in prostate cancer remains controversial.
    [Show full text]
  • High Resolution Profile of Body Wide Pathological Changes Induced by Abnormal Elastin Metabolism in Loxl1 Knockout Mice
    bioRxiv preprint doi: https://doi.org/10.1101/353169; this version posted June 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. High resolution profile of body wide pathological changes induced by abnormal elastin metabolism in Loxl1 knockout mice Bingbing Wu1,2,3,#, Yu Li1,2,3,#, Chengrui An2,3, Deming Jiang1,2,3, Lin Gong1,2,3, Yanshan Liu1,2,3, Yixiao Liu1,2,3,Jun Li2,3, HongWei Ouyang2,3,4*, XiaoHui Zou1,2,3,* 1 Clinical Research Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China 2Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China 3Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China 4Zhejiang University-University of Edinburgh Institute, Hangzhou, 310058, PR China #Co-first author *Corresponding author Correspondence and requests for materials should be addressed to X.H.Z. (Email: [email protected]) Corresponding address: Clinical Research Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang, P.R. China, 310003, Fax/Phone: +086-0571-88208262 bioRxiv preprint doi: https://doi.org/10.1101/353169; this version posted June 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: Abnormal ECM caused serious body wide diseases and elastin is one of the important ECM components.
    [Show full text]
  • Human LOXL2 / Lysyl Oxidase Homolog 2 Protein (His Tag)
    Human LOXL2 / Lysyl oxidase homolog 2 Protein (His Tag) Catalog Number: 11664-H08H General Information SDS-PAGE: Gene Name Synonym: LOR2; Lysyl oxidase-like 2; WS9-14 Protein Construction: A DNA sequence encoding the human LOXL2 (Q9Y4K0) (Met 1-Gln 774) was expressed, fused with a polyhistidine tag at the C-terminus. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 90 % as determined by SDS-PAGE Bio Activity: Protein Description Measured by its ability to produce hydrogen peroxide during the oxidation of benzylamine. The specific activity is > 2 pmoles/min/μg. Lysyl oxidase homolog 2, also known as Lysyl oxidase-like protein 2, Lysyl oxidase-related protein 2, Lysyl oxidase-related protein WS9-14 and Endotoxin: LOXL2, is a secreted protein which belongs to thelysyl oxidase family. LOXL2 contains fourSRCR domains. The lysyl oxidase family is made up < 1.0 EU per μg of the protein as determined by the LAL method of five members: lysyl oxidase (LOX) and lysyl oxidase-like 1-4 ( LOXL1, LOXL2, LOXL3, LOXL4 ). All members share conserved C-terminal Stability: catalytic domains that provide for lysyl oxidase or lysyl oxidase-like enzyme Samples are stable for up to twelve months from date of receipt at -70 ℃ activity; and more divergent propeptide regions. LOX family enzyme activities catalyze the final enzymatic conversion required for the formation Predicted N terminal: Gln 26 of normal biosynthetic collagen and elastin cross-links. LOXL2 is expressed by pre-hypertrophic and hypertrophic chondrocytes in vivo, and Molecular Mass: that LOXL2 expression is regulated in vitro as a function of chondrocyte differentiation.
    [Show full text]
  • The Function and Mechanisms of Action of LOXL2 in Cancer (Review)
    1200 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 36: 1200-1204, 2015 The function and mechanisms of action of LOXL2 in cancer (Review) LINGHONG WU and YING ZHU Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China Received May 31, 2015; Accepted August 26, 2015 DOI: 10.3892/ijmm.2015.2337 Abstract. The lysyl oxidase (LOX) family is comprised of five copper‑dependent amine oxidase, and its main role is to members, and some members have recently emerged as impor- catalyze the covalent cross‑link of collagen and elastin in tant regulators of tumor progression. Among these, at present, the extracellular matrix (ECM). This occurs through the LOX‑like (LOXL)2 is the prototypical LOX and the most oxidative deamination of peptidyl lysine residues in ECM comprehensively studied member. A growing body of evidence components (1,2). Each member of the LOX family has a has implicated LOXL2 in the promotion of cancer cell inva- highly conserved carboxyl (C)‑terminal domain that contains a sion, metastasis and angiogenesis, as well as in the malignant copper‑binding motif, lysine tyrosylquinone (LTQ) residues and transformation of solid tumors. Moreover, a high expression of a cytokine receptor‑like (CRL) domain, which is essential for LOXL2 is associated with a poor prognosis. These data have catalytic activity (3). The amino‑terminal regions are different piqued the interest of a number of researchers and research and are thought to be important in protein‑protein interactions. groups, who have identified LOXL2 as a strong target candidate The prodomains in LOX and LOXL1 enable their secretion in the development of inhibitors for use as functional and effi- as inactive proenzymes, which are then activated extracel- cacious tumor therapeutics.
    [Show full text]
  • Genetic Analyses of Human Fetal Retinal Pigment Epithelium Gene Expression Suggest Ocular Disease Mechanisms
    ARTICLE https://doi.org/10.1038/s42003-019-0430-6 OPEN Genetic analyses of human fetal retinal pigment epithelium gene expression suggest ocular disease mechanisms Boxiang Liu 1,6, Melissa A. Calton2,6, Nathan S. Abell2, Gillie Benchorin2, Michael J. Gloudemans 3, 1234567890():,; Ming Chen2, Jane Hu4, Xin Li 5, Brunilda Balliu5, Dean Bok4, Stephen B. Montgomery 2,5 & Douglas Vollrath2 The retinal pigment epithelium (RPE) serves vital roles in ocular development and retinal homeostasis but has limited representation in large-scale functional genomics datasets. Understanding how common human genetic variants affect RPE gene expression could elu- cidate the sources of phenotypic variability in selected monogenic ocular diseases and pin- point causal genes at genome-wide association study (GWAS) loci. We interrogated the genetics of gene expression of cultured human fetal RPE (fRPE) cells under two metabolic conditions and discovered hundreds of shared or condition-specific expression or splice quantitative trait loci (e/sQTLs). Co-localizations of fRPE e/sQTLs with age-related macular degeneration (AMD) and myopia GWAS data suggest new candidate genes, and mechan- isms by which a common RDH5 allele contributes to both increased AMD risk and decreased myopia risk. Our study highlights the unique transcriptomic characteristics of fRPE and provides a resource to connect e/sQTLs in a critical ocular cell type to monogenic and complex eye disorders. 1 Department of Biology, Stanford University, Stanford, CA 94305, USA. 2 Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. 3 Program in Biomedical Informatics, Stanford University School of Medicine, Stanford 94305 CA, USA. 4 Department of Ophthalmology, Jules Stein Eye Institute, UCLA, Los Angeles 90095 CA, USA.
    [Show full text]
  • LOXL1 Confers Antiapoptosis and Promotes Gliomagenesis Through Stabilizing BAG2
    Cell Death & Differentiation (2020) 27:3021–3036 https://doi.org/10.1038/s41418-020-0558-4 ARTICLE LOXL1 confers antiapoptosis and promotes gliomagenesis through stabilizing BAG2 1,2 3 4 3 4 3 1 1 Hua Yu ● Jun Ding ● Hongwen Zhu ● Yao Jing ● Hu Zhou ● Hengli Tian ● Ke Tang ● Gang Wang ● Xiongjun Wang1,2 Received: 10 January 2020 / Revised: 30 April 2020 / Accepted: 5 May 2020 / Published online: 18 May 2020 © The Author(s) 2020. This article is published with open access Abstract The lysyl oxidase (LOX) family is closely related to the progression of glioma. To ensure the clinical significance of LOX family in glioma, The Cancer Genome Atlas (TCGA) database was mined and the analysis indicated that higher LOXL1 expression was correlated with more malignant glioma progression. The functions of LOXL1 in promoting glioma cell survival and inhibiting apoptosis were studied by gain- and loss-of-function experiments in cells and animals. LOXL1 was found to exhibit antiapoptotic activity by interacting with multiple antiapoptosis modulators, especially BAG family molecular chaperone regulator 2 (BAG2). LOXL1-D515 interacted with BAG2-K186 through a hydrogen bond, and its lysyl 1234567890();,: 1234567890();,: oxidase activity prevented BAG2 degradation by competing with K186 ubiquitylation. Then, we discovered that LOXL1 expression was specifically upregulated through the VEGFR-Src-CEBPA axis. Clinically, the patients with higher LOXL1 levels in their blood had much more abundant BAG2 protein levels in glioma tissues. Conclusively, LOXL1 functions as an important mediator that increases the antiapoptotic capacity of tumor cells, and approaches targeting LOXL1 represent a potential strategy for treating glioma.
    [Show full text]
  • Matrix Stiffness-Upregulated LOXL2 Promotes Fibronectin Production
    Wu et al. Journal of Experimental & Clinical Cancer Research (2018) 37:99 https://doi.org/10.1186/s13046-018-0761-z RESEARCH Open Access Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation Sifan Wu1, Qiongdan Zheng1, Xiaoxia Xing1, Yinying Dong1, Yaohui Wang2, Yang You1, Rongxin Chen1, Chao Hu3, Jie Chen1, Dongmei Gao1, Yan Zhao1, Zhiming Wang4, Tongchun Xue1, Zhenggang Ren1 and Jiefeng Cui1* Abstract Background: Higher matrix stiffness affects biological behavior of tumor cells, regulates tumor-associated gene/ miRNA expression and stemness characteristic, and contributes to tumor invasion and metastasis. However, the linkage between higher matrix stiffness and pre-metastatic niche in hepatocellular carcinoma (HCC) is still largely unknown. Methods: We comparatively analyzed the expressions of LOX family members in HCC cells grown on different stiffness substrates, and speculated that the secreted LOXL2 may mediate the linkage between higher matrix stiffness and pre- metastatic niche. Subsequently, we investigated the underlying molecular mechanism by which matrix stiffness induced LOXL2 expression in HCC cells, and explored the effects of LOXL2 on pre-metastatic niche formation, such as BMCs recruitment, fibronectin production, MMPs and CXCL12 expression, cell adhesion, etc. Results: Higher matrix stiffness significantly upregulated LOXL2 expression in HCC cells, and activated JNK/c-JUN signaling pathway. Knockdown of integrin β1andα5 suppressed LOXL2 expression and reversed the activation of above signaling pathway. Additionally, JNK inhibitor attenuated the expressions of p-JNK, p-c-JUN, c-JUN and LOXL2, and shRNA-c-JUN also decreased LOXL2 expression. CM-LV-LOXL2-OE and rhLOXL2 upregulated MMP9 expression and fibronectin production obviously in lung fibroblasts.
    [Show full text]
  • LOXL3 Function Beyond Amino Oxidase and Role in Pathologies, Including Cancer
    International Journal of Molecular Sciences Review LOXL3 Function Beyond Amino Oxidase and Role in Pathologies, Including Cancer Talita de S. Laurentino * , Roseli da S. Soares, Suely K. N. Marie and Sueli M. Oba-Shinjo Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP 01246-903, Brazil * Correspondence: [email protected]; Tel.: +55-11-3061-8310 Received: 19 June 2019; Accepted: 15 July 2019; Published: 23 July 2019 Abstract: Lysyl oxidase like 3 (LOXL3) is a copper-dependent amine oxidase responsible for the crosslinking of collagen and elastin in the extracellular matrix. LOXL3 belongs to a family including other members: LOX, LOXL1, LOXL2, and LOXL4. Autosomal recessive mutations are rare and described in patients with Stickler syndrome, early-onset myopia and non-syndromic cleft palate. Along with an essential function in embryonic development, multiple biological functions have been attributed to LOXL3 in various pathologies related to amino oxidase activity. Additionally, various novel roles have been described for LOXL3, such as the oxidation of fibronectin in myotendinous junction formation, and of deacetylation and deacetylimination activities of STAT3 to control of inflammatory response. In tumors, three distinct roles were described: (1) LOXL3 interacts with SNAIL and contributes to proliferation and metastasis by inducing epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma cells; (2) LOXL3 is localized predominantly in the nucleus associated with invasion and poor gastric cancer prognosis; (3) LOXL3 interacts with proteins involved in DNA stability and mitosis completion, contributing to melanoma progression and sustained proliferation. Here we review the structure, function and activity of LOXL3 in normal and pathological conditions and discuss the potential of LOXL3 as a therapeutic target in various diseases.
    [Show full text]
  • Identification of the Involvement of LOXL4 in Generation of Keratocystic Odontogenic Tumors by RNA-Seq Analysis
    International Journal of Oral Science (2013) 6, 31–38 ß 2013 WCSS. All rights reserved 1674-2818/13 www.nature.com/ijos ORIGINAL ARTICLE Identification of the involvement of LOXL4 in generation of keratocystic odontogenic tumors by RNA-Seq analysis Wei-Peng Jiang1, Zi-Han Sima1, Hai-Cheng Wang1, Jian-Yun Zhang1, Li-Sha Sun2, Feng Chen2 and Tie-Jun Li1 Keratocystic odontogenic tumors (KCOT) are benign, locally aggressive intraosseous tumors of odontogenic origin. KCOT have a higher stromal microvessel density (MVD) than dentigerous cysts (DC) and normal oral mucosa. To identify genes in the stroma of KCOT involved in tumor development and progression, RNA sequencing (RNA-Seq) was performed using samples from KCOT and primary stromal fibroblasts isolated from gingival tissues. Seven candidate genes that possess a function potentially related to KCOT progression were selected and their expression levels were confirmed by quantitative PCR, immunohistochemistry and enzyme-linked immunosorbent assay. Expression of lysyl oxidase-like 4 (LOXL4), the only candidate gene that encodes a secreted protein, was enhanced at both the mRNA and protein levels in KCOT stromal tissues and primary KCOT stromal fibroblasts compared to control tissues and primary fibroblasts (P,0.05). In vitro, high expression of LOXL4 could enhance proliferation and migration of the human umbilical vein endothelial cells (HUVECs). There was a significant, positive correlation between LOXL4 protein expression and MVD in stroma of KCOT and control tissues (r50.882). These data suggest that abnormal expression of LOXL4 of KCOT may enhance angiogenesis in KCOT, which may help to promote the locally aggressive biological behavior of KCOT.
    [Show full text]
  • Prognostic Significance of Abnormal Matrix Collagen Remodeling in Colorectal Cancer Based on Histologic and Bioinformatics Analysis
    ONCOLOGY REPORTS 44: 1671-1685, 2020 Prognostic significance of abnormal matrix collagen remodeling in colorectal cancer based on histologic and bioinformatics analysis YUQI LIANG1,2, ZHIHAO LV3, GUOHANG HUANG4, JINGCHUN QIN1,2, HUIXUAN LI1,2, FEIFEI NONG1,2 and BIN WEN1,2 1Department of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine; 2Department of PI-WEI Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000; 3Department of Anorectal Surgery, Zhongshan Hospital Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528400; 4Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P.R. China Received February 25, 2020; Accepted July 20, 2020 DOI: 10.3892/or.2020.7729 Abstract. As the major component of the tumor matrix, CRC. Furthermore, the results of Gene Ontology (GO) and collagen greatly influences tumor invasion and prognosis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis The present study compared the remodeling of collagen and suggest that collagen may promote tumor development by collagenase in 56 patients with colorectal cancer (CRC) using activating platelets. Collectively, the abnormal collagen Sirius red stain and immunohistochemistry, exploring the remodeling, including associated protein and coding genes is relationship between collagen remodeling and the prognosis associated with the tumorigenesis and metastasis, affecting the of CRC. Weak or strong changes in collagen fiber arrange- prognosis of patients with CRC. ment in birefringence were observed. With the exception of a higher density, weak changes equated to a similar Introduction arrangement in normal collagen, while strong changes facilitated cross-linking into bundles. Compared with normal Colorectal cancer (CRC) has a high global incidence and tissues, collagen I (COL I) and III (COL III) deposition was mortality rate (1).
    [Show full text]
  • Cell-Deposited Matrix Improves Retinal Pigment Epithelium Survival on Aged Submacular Human Bruch’S Membrane
    Retinal Cell Biology Cell-Deposited Matrix Improves Retinal Pigment Epithelium Survival on Aged Submacular Human Bruch’s Membrane Ilene K. Sugino,1 Vamsi K. Gullapalli,1 Qian Sun,1 Jianqiu Wang,1 Celia F. Nunes,1 Noounanong Cheewatrakoolpong,1 Adam C. Johnson,1 Benjamin C. Degner,1 Jianyuan Hua,1 Tong Liu,2 Wei Chen,2 Hong Li,2 and Marco A. Zarbin1 PURPOSE. To determine whether resurfacing submacular human most, as cell survival is the worst on submacular Bruch’s Bruch’s membrane with a cell-deposited extracellular matrix membrane in these eyes. (Invest Ophthalmol Vis Sci. 2011;52: (ECM) improves retinal pigment epithelial (RPE) survival. 1345–1358) DOI:10.1167/iovs.10-6112 METHODS. Bovine corneal endothelial (BCE) cells were seeded onto the inner collagenous layer of submacular Bruch’s mem- brane explants of human donor eyes to allow ECM deposition. here is no fully effective therapy for the late complications of age-related macular degeneration (AMD), the leading Control explants from fellow eyes were cultured in medium T cause of blindness in the United States. The prevalence of only. The deposited ECM was exposed by removing BCE. Fetal AMD-associated choroidal new vessels (CNVs) and/or geo- RPE cells were then cultured on these explants for 1, 14, or 21 graphic atrophy (GA) in the U.S. population 40 years and older days. The explants were analyzed quantitatively by light micros- is estimated to be 1.47%, with 1.75 million citizens having copy and scanning electron microscopy. Surviving RPE cells from advanced AMD, approximately 100,000 of whom are African explants cultured for 21 days were harvested to compare bestro- American.1 The prevalence of AMD increases dramatically with phin and RPE65 mRNA expression.
    [Show full text]
  • LOXL3 Antibody (C-Term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap12837b
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 LOXL3 Antibody (C-term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP12837b Specification LOXL3 Antibody (C-term) - Product Information Application WB, IHC-P,E Primary Accession P58215 Other Accession Q9Z175, NP_115992.1 Reactivity Human Predicted Mouse Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Antigen Region 715-744 LOXL3 Antibody (C-term) - Additional Information Gene ID 84695 Other Names Anti-LOXL3 Antibody (C-term) at 1:2000 Lysyl oxidase homolog 3, 143-, Lysyl dilution + human heart lysate oxidase-like protein 3, LOXL3, LOXL Lysates/proteins at 20 µg per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Target/Specificity Peroxidase conjugated at 1/10000 dilution. This LOXL3 antibody is generated from Predicted band size : 83 kDa rabbits immunized with a KLH conjugated Blocking/Dilution buffer: 5% NFDM/TBST. synthetic peptide between 715-744 amino acids from the C-terminal region of human LOXL3. Dilution WB~~1:2000 IHC-P~~1:10~50 Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. All lanes : Anti-LOXL3 Antibody (C-term) at 1:2000 dilution Lane 1: human lung lysate Precautions Lane 2: human spleen lysate Lysates/proteins LOXL3 Antibody (C-term) is for research use at 20 µg per lane.
    [Show full text]