Database SQL Call Level Interface 7.1

Total Page:16

File Type:pdf, Size:1020Kb

Database SQL Call Level Interface 7.1 IBM IBM i Database SQL call level interface 7.1 IBM IBM i Database SQL call level interface 7.1 Note Before using this information and the product it supports, read the information in “Notices,” on page 321. This edition applies to IBM i 7.1 (product number 5770-SS1) and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models. © Copyright IBM Corporation 1999, 2010. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents SQL call level interface ........ 1 SQLExecute - Execute a statement ..... 103 What's new for IBM i 7.1 .......... 1 SQLExtendedFetch - Fetch array of rows ... 105 PDF file for SQL call level interface ....... 1 SQLFetch - Fetch next row ........ 107 Getting started with DB2 for i CLI ....... 2 SQLFetchScroll - Fetch from a scrollable cursor 113 | Differences between DB2 for i CLI and embedded SQLForeignKeys - Get the list of foreign key | SQL ................ 2 columns .............. 115 Advantages of using DB2 for i CLI instead of SQLFreeConnect - Free connection handle ... 120 embedded SQL ............ 5 SQLFreeEnv - Free environment handle ... 121 Deciding between DB2 for i CLI, dynamic SQL, SQLFreeHandle - Free a handle ...... 122 and static SQL ............. 6 SQLFreeStmt - Free (or reset) a statement handle 123 Writing a DB2 for i CLI application ....... 6 SQLGetCol - Retrieve one column of a row of Initialization and termination tasks in a DB2 for i the result set ............ 125 CLI application ............ 7 SQLGetConnectAttr - Get the value of a Transaction processing task in a DB2 for i CLI connection attribute .......... 131 application ............. 10 SQLGetConnectOption - Return current setting Diagnostics in a DB2 for i CLI application ... 16 of a connect option .......... 132 Data types and data conversion in DB2 for i CLI SQLGetCursorName - Get cursor name.... 134 functions .............. 17 SQLGetData - Get data from a column .... 138 Working with the XML data type ...... 19 SQLGetDescField - Get descriptor field .... 139 Working with string arguments in DB2 for i CLI SQLGetDescRec - Get descriptor record ... 142 functions .............. 21 SQLGetDiagField - Return diagnostic DB2 for i CLI functions .......... 22 information (extensible) ......... 144 Categories of DB2 for i CLI functions..... 23 SQLGetDiagRec - Return diagnostic information SQLAllocConnect - Allocate connection handle 26 (concise) .............. 147 SQLAllocEnv - Allocate environment handle .. 29 SQLGetEnvAttr - Return current setting of an SQLAllocHandle - Allocate handle...... 32 environment attribute ......... 150 SQLAllocStmt - Allocate a statement handle .. 33 SQLGetFunctions - Get functions ...... 151 SQLBindCol - Bind a column to an application SQLGetInfo - Get general information .... 154 variable............... 35 SQLGetLength - Retrieve length of a string SQLBindFileToCol - Bind LOB file reference to value ............... 166 LOB column ............. 40 SQLGetPosition - Return starting position of SQLBindFileToParam - Bind LOB file reference to string ............... 168 LOB parameter ............ 43 SQLGetStmtAttr - Get the value of a statement SQLBindParam - Bind a buffer to a parameter attribute .............. 171 marker ............... 46 SQLGetStmtOption - Return current setting of a SQLBindParameter - Bind a parameter marker to statement option ........... 173 a buffer............... 51 SQLGetSubString - Retrieve portion of a string SQLCancel - Cancel statement ....... 60 value ............... 175 SQLCloseCursor - Close cursor statement ... 61 SQLGetTypeInfo - Get data type information 178 SQLColAttribute - Return a column attribute .. 62 SQLLanguages - Get SQL dialect or SQLColAttributes - Obtain column attributes .. 68 conformance information ........ 183 SQLColumnPrivileges - Get privileges associated SQLMoreResults - Determine whether there are with the columns of a table ........ 69 more result sets ........... 185 SQLColumns - Get column information for a SQLNativeSql - Get native SQL text ..... 187 table................ 72 SQLNextResult - Process the next result set .. 189 SQLConnect - Connect to a data source .... 76 SQLNumParams - Get number of parameters in SQLCopyDesc - Copy description statement .. 79 an SQL statement ........... 191 SQLDataSources - Get list of data sources ... 80 SQLNumResultCols - Get number of result SQLDescribeCol - Describe column attributes .. 84 columns .............. 193 SQLDescribeParam - Return description of a SQLParamData - Get next parameter for which parameter marker ........... 88 a data value is needed ......... 195 SQLDisconnect - Disconnect from a data source 90 SQLParamOptions - Specify an input array for a SQLDriverConnect - Connect to a data source .. 92 parameter ............. 197 SQLEndTran - Commit or roll back a transaction 96 SQLPrepare - Prepare a statement ..... 199 SQLError - Retrieve error information .... 98 SQLPrimaryKeys - Get primary key columns of SQLExecDirect - Execute a statement directly 101 a table............... 203 © Copyright IBM Corp. 1999, 2010 iii SQLProcedureColumns - Get input/output SQLTransact - Commit or roll back a transaction 267 parameter information for a procedure .... 205 DB2 for i CLI include file ......... 268 SQLProcedures - Get list of procedure names 211 Running DB2 for i CLI in server mode ..... 303 SQLPutData - Pass data value for a parameter 214 Starting DB2 for i CLI in SQL server mode .. 303 SQLReleaseEnv - Release all environment Restrictions for running DB2 for i CLI in server resources .............. 216 mode ............... 304 SQLRowCount - Get row count ...... 217 Unicode in DB2 for iCLI.......... 305 SQLSetConnectAttr - Set a connection attribute 219 Examples: DB2 for i CLI applications ..... 306 SQLSetConnectOption - Set connection option 231 Example: Embedded SQL and the equivalent SQLSetCursorName - Set cursor name .... 233 DB2 for i CLI function calls ....... 306 SQLSetDescField - Set a descriptor field ... 235 Example: Using the CLI XA transaction SQLSetDescRec - Set a descriptor record ... 237 connection attributes .......... 309 SQLSetEnvAttr - Set environment attribute .. 239 Example: Interactive SQL and the equivalent SQLSetParam - Set parameter ....... 244 DB2 for i CLI function calls ....... 312 SQLSetStmtAttr - Set a statement attribute... 245 SQLSetStmtOption - Set statement option ... 251 Appendix. Notices ......... 321 SQLSpecialColumns - Get special (row Programming interface information ...... 323 identifier) columns .......... 253 Trademarks .............. 323 SQLStatistics - Get index and statistics Terms and conditions........... 323 information for a base table ....... 257 SQLTablePrivileges - Get privileges associated Index ............... 325 with a table ............. 261 SQLTables - Get table information ..... 264 iv IBM i: Database SQL call level interface SQL call level interface | DB2® for i call level interface (CLI) is a callable Structured Query Language (SQL) programming interface | that is supported in all DB2 environments. A callable SQL interface is a programming interface (API) for database access that uses function calls to run dynamic SQL statements. DB2 for i CLI is an alternative to embedded dynamic SQL. The important difference between embedded dynamic SQL and DB2 for i CLI is how the SQL statements are run. On the IBM® i operating system, this interface is available to any of the Integrated Language Environment® (ILE) languages. DB2 for i CLI also provides full Level 1 Microsoft Open Database Connectivity (ODBC) support, plus many Level 2 functions. For the most part, ODBC is a superset of the American National Standards Institute (ANSI) and ISO SQL CLI standard. Note: By using the code examples, you agree to the terms of the “Code license and disclaimer information” on page 319. What's new for IBM i 7.1 | Read about new or significantly changed information for the SQL CLI topic collection. v Support for the XML data type. Columns defined with the XML data type can be bound in and out to character, wide character or binary data types depending on the column definition. See SQLBindCol() and SQLBindParameter() functions for more information on binding the XML data type in a CLI application. In addition, there are two new connection attributes that provide configuration settings related to XML. See SQLSetConnectAttr() for more information on these new attributes. v Support for Concurrent Access Resolution through the use of a new connection attribute, SQL_ATTR_CONCURRENT_ACCESS_RESOLUTION. See a description of the new attribute under the SQLSetConnectAttr() function. v Support for multiple-row processing on UPDATE, DELETE, and MERGE statements similar to how it is supported for INSERT statements. v Support for TINYINT data type. CLI applications being ported from other platforms that bind TINYINT types as application data types will now run on IBM i. How to see what's new or changed To help you see where technical changes have been made, this information uses: v The image to mark where new or changed information begins. v The image to mark where new or changed information ends. In PDF files, you might see revision bars (|) in the left margin of new and changed information. To find other information about what's new or changed this release, see the Memo to users. PDF file for SQL call level interface You can view and print a PDF file of this
Recommended publications
  • Select Items from Proc.Sql Where Items>Basics
    Advanced Tutorials SELECT ITEMS FROM PROC.SQL WHERE ITEMS> BASICS Alan Dickson & Ray Pass ASG. Inc. to get more SAS sort-space. Also, it may be possible to limit For those of you who have become extremely the total size of the resulting extract set by doing as much of comfortable and competent in the DATA step, getting into the joining/merging as close to the raw data as possible. PROC SQL in a big wrJ may not initially seem worth it Your first exposure may have been through a training class. a 3) Communications. SQL is becoming a lingua Tutorial at a conference, or a real-world "had-to" situation, franca of data processing, and this trend is likely to continue such as needing to read corporate data stored in DB2, or for some time. You may find it easier to deal with your another relational database. So, perhaps it is just another tool systems department, vendors etc., who may not know SAS at in your PROC-kit for working with SAS datasets, or maybe all, ifyou can explain yourself in SQL tenus. it's your primary interface with another environment 4) Career growth. Not unrelated to the above - Whatever the case, your first experiences usually there's a demand for people who can really understand SQL. involve only the basic CREATE TABLE, SELECT, FROM, Its apparent simplicity is deceiving. On the one hand, you can WHERE, GROUP BY, ORDER BY options. Thus, the do an incredible amount with very little code - on the other, tendency is frequently to treat it as no more than a data extract you can readily generate plausible, but inaccurate, results with tool.
    [Show full text]
  • SQL DELETE Table in SQL, DELETE Statement Is Used to Delete Rows from a Table
    SQL is a standard language for storing, manipulating and retrieving data in databases. What is SQL? SQL stands for Structured Query Language SQL lets you access and manipulate databases SQL became a standard of the American National Standards Institute (ANSI) in 1986, and of the International Organization for Standardization (ISO) in 1987 What Can SQL do? SQL can execute queries against a database SQL can retrieve data from a database SQL can insert records in a database SQL can update records in a database SQL can delete records from a database SQL can create new databases SQL can create new tables in a database SQL can create stored procedures in a database SQL can create views in a database SQL can set permissions on tables, procedures, and views Using SQL in Your Web Site To build a web site that shows data from a database, you will need: An RDBMS database program (i.e. MS Access, SQL Server, MySQL) To use a server-side scripting language, like PHP or ASP To use SQL to get the data you want To use HTML / CSS to style the page RDBMS RDBMS stands for Relational Database Management System. RDBMS is the basis for SQL, and for all modern database systems such as MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access. The data in RDBMS is stored in database objects called tables. A table is a collection of related data entries and it consists of columns and rows. SQL Table SQL Table is a collection of data which is organized in terms of rows and columns.
    [Show full text]
  • Database Foundations 6-8 Sorting Data Using ORDER BY
    Database Foundations 6-8 Sorting Data Using ORDER BY Copyright © 2015, Oracle and/or its affiliates. All rights reserved. Roadmap Data Transaction Introduction to Structured Data Definition Manipulation Control Oracle Query Language Language Language (TCL) Application Language (DDL) (DML) Express (SQL) Restricting Sorting Data Joining Tables Retrieving Data Using Using ORDER Using JOINS Data Using WHERE BY SELECT You are here DFo 6-8 Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 3 Sorting Data Using ORDER BY Objectives This lesson covers the following objectives: • Use the ORDER BY clause to sort SQL query results • Identify the correct placement of the ORDER BY clause within a SELECT statement • Order data and limit row output by using the SQL row_limiting_clause • Use substitution variables in the ORDER BY clause DFo 6-8 Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4 Sorting Data Using ORDER BY Using the ORDER BY Clause • Sort the retrieved rows with the ORDER BY clause: – ASC: Ascending order (default) – DESC: Descending order • The ORDER BY clause comes last in the SELECT statement: SELECT last_name, job_id, department_id, hire_date FROM employees ORDER BY hire_date ; DFo 6-8 Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5 Sorting Data Using ORDER BY Sorting • Sorting in descending order: SELECT last_name, job_id, department_id, hire_date FROM employees 1 ORDER BY hire_date DESC ; • Sorting by column alias: SELECT employee_id, last_name, salary*12 annsal 2 FROM employees ORDER BY annsal ; DFo 6-8 Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6 Sorting Data Using ORDER BY Sorting • Sorting by using the column's numeric position: SELECT last_name, job_id, department_id, hire_date FROM employees 3 ORDER BY 3; • Sorting by multiple columns: SELECT last_name, department_id, salary FROM employees 4 ORDER BY department_id, salary DESC; DFo 6-8 Copyright © 2015, Oracle and/or its affiliates.
    [Show full text]
  • How Mysql Handles ORDER BY, GROUP BY, and DISTINCT
    How MySQL handles ORDER BY, GROUP BY, and DISTINCT Sergey Petrunia, [email protected] MySQL University Session November 1, 2007 Copyright 2007 MySQL AB The World’s Most Popular Open Source Database 1 Handling ORDER BY • Available means to produce ordered streams: – Use an ordered index • range access – not with MyISAM/InnoDB's DS-MRR – not with Falcon – Has extra (invisible) cost with NDB • ref access (but not ref-or-null) results of ref(t.keypart1=const) are ordered by t.keypart2, t.keypart3, ... • index access – Use filesort Copyright 2007 MySQL AB The World’s Most Popular Open Source Database 2 Executing join and producing ordered stream There are three ways to produce ordered join output Method EXPLAIN shows Use an ordered index Nothing particular Use filesort() on 1st non-constant table “Using filesort” in the first row Put join result into a temporary table “Using temporary; Using filesort” in the and use filesort() on it first row EXPLAIN is a bit counterintuitive: id select_type table type possible_keys key key_len ref rows Extra Using where; 1 SIMPLE t2 range a a 5 NULL 10 Using temporary; Using filesort 1 SIMPLE t2a ref a a 5 t2.b 1 Using where Copyright 2007 MySQL AB The World’s Most Popular Open Source Database 3 Using index to produce ordered join result • ORDER BY must use columns from one index • DESC is ok if it is present for all columns • Equality propagation: – “a=b AND b=const” is detected – “WHERE x=t.key ORDER BY x” is not • Cannot use join buffering – Use of matching join order disables use of join buffering.
    [Show full text]
  • SQL Stored Procedures
    Agenda Key:31MA Session Number:409094 DB2 for IBM i: SQL Stored Procedures Tom McKinley ([email protected]) DB2 for IBM i consultant IBM Lab Services 8 Copyright IBM Corporation, 2009. All Rights Reserved. This publication may refer to products that are not currently available in your country. IBM makes no commitment to make available any products referred to herein. What is a Stored Procedure? • Just a called program – Called from SQL-based interfaces via SQL CALL statement • Supports input and output parameters – Result sets on some interfaces • Follows security model of iSeries – Enables you to secure your data – iSeries adopted authority model can be leveraged • Useful for moving host-centric applications to distributed applications 2 © 2009 IBM Corporation What is a Stored Procedure? • Performance savings in distributed computing environments by dramatically reducing the number of flows (requests) to the database engine – One request initiates multiple transactions and processes R R e e q q u u DB2 for i5/OS DB2DB2 for for i5/OS e e AS/400 s s t t SP o o r r • Performance improvements further enhanced by the option of providing result sets back to ODBC, JDBC, .NET & CLI clients 3 © 2009 IBM Corporation Recipe for a Stored Procedure... 1 Create it CREATE PROCEDURE total_val (IN Member# CHAR(6), OUT total DECIMAL(12,2)) LANGUAGE SQL BEGIN SELECT SUM(curr_balance) INTO total FROM accounts WHERE account_owner=Member# AND account_type IN ('C','S','M') END 2 Call it (from an SQL interface) over and over CALL total_val(‘123456’, :balance) 4 © 2009 IBM Corporation Stored Procedures • DB2 for i5/OS supports two types of stored procedures 1.
    [Show full text]
  • Firebird 3 Windowing Functions
    Firebird 3 Windowing Functions Firebird 3 Windowing Functions Author: Philippe Makowski IBPhoenix Email: pmakowski@ibphoenix Licence: Public Documentation License Date: 2011-11-22 Philippe Makowski - IBPhoenix - 2011-11-22 Firebird 3 Windowing Functions What are Windowing Functions? • Similar to classical aggregates but does more! • Provides access to set of rows from the current row • Introduced SQL:2003 and more detail in SQL:2008 • Supported by PostgreSQL, Oracle, SQL Server, Sybase and DB2 • Used in OLAP mainly but also useful in OLTP • Analysis and reporting by rankings, cumulative aggregates Philippe Makowski - IBPhoenix - 2011-11-22 Firebird 3 Windowing Functions Windowed Table Functions • Windowed table function • operates on a window of a table • returns a value for every row in that window • the value is calculated by taking into consideration values from the set of rows in that window • 8 new windowed table functions • In addition, old aggregate functions can also be used as windowed table functions • Allows calculation of moving and cumulative aggregate values. Philippe Makowski - IBPhoenix - 2011-11-22 Firebird 3 Windowing Functions A Window • Represents set of rows that is used to compute additionnal attributes • Based on three main concepts • partition • specified by PARTITION BY clause in OVER() • Allows to subdivide the table, much like GROUP BY clause • Without a PARTITION BY clause, the whole table is in a single partition • order • defines an order with a partition • may contain multiple order items • Each item includes
    [Show full text]
  • SQL Version Analysis
    Rory McGann SQL Version Analysis Structured Query Language, or SQL, is a powerful tool for interacting with and utilizing databases through the use of relational algebra and calculus, allowing for efficient and effective manipulation and analysis of data within databases. There have been many revisions of SQL, some minor and others major, since its standardization by ANSI in 1986, and in this paper I will discuss several of the changes that led to improved usefulness of the language. In 1970, Dr. E. F. Codd published a paper in the Association of Computer Machinery titled A Relational Model of Data for Large shared Data Banks, which detailed a model for Relational database Management systems (RDBMS) [1]. In order to make use of this model, a language was needed to manage the data stored in these RDBMSs. In the early 1970’s SQL was developed by Donald Chamberlin and Raymond Boyce at IBM, accomplishing this goal. In 1986 SQL was standardized by the American National Standards Institute as SQL-86 and also by The International Organization for Standardization in 1987. The structure of SQL-86 was largely similar to SQL as we know it today with functionality being implemented though Data Manipulation Language (DML), which defines verbs such as select, insert into, update, and delete that are used to query or change the contents of a database. SQL-86 defined two ways to process a DML, direct processing where actual SQL commands are used, and embedded SQL where SQL statements are embedded within programs written in other languages. SQL-86 supported Cobol, Fortran, Pascal and PL/1.
    [Show full text]
  • Aggregate Order by Clause
    Aggregate Order By Clause Dialectal Bud elucidated Tuesdays. Nealy vulgarizes his jockos resell unplausibly or instantly after Clarke hurrah and court-martial stalwartly, stanchable and jellied. Invertebrate and cannabic Benji often minstrels some relator some or reactivates needfully. The default order is ascending. Have exactly match this assigned stream aggregate functions, not work around with security software development platform on a calculation. We use cookies to ensure that we give you the best experience on our website. Result output occurs within the minimum time interval of timer resolution. It is not counted using a table as i have group as a query is faster count of getting your browser. Let us explore it further in the next section. If red is enabled, when business volume where data the sort reaches the specified number of bytes, the collected data is sorted and dumped into these temporary file. Kris has written hundreds of blog articles and many online courses. Divides the result set clock the complain of groups specified as an argument to the function. Threat and leaves only return data by order specified, a human agents. However, this method may not scale useful in situations where thousands of concurrent transactions are initiating updates to derive same data table. Did you need not performed using? If blue could step me first what is vexing you, anyone can try to explain it part. It returns all employees to database, and produces no statements require complex string manipulation and. Solve all tasks to sort to happen next lesson. Execute every following query access GROUP BY union to calculate these values.
    [Show full text]
  • Hive Where Clause Example
    Hive Where Clause Example Bell-bottomed Christie engorged that mantids reattributes inaccessibly and recrystallize vociferously. Plethoric and seamier Addie still doth his argents insultingly. Rubescent Antin jibbed, his somnolency razzes repackages insupportably. Pruning occurs directly with where and limit clause to store data question and column must match. The ideal for column, sum of elements, the other than hive commands are hive example the terminator for nonpartitioned external source table? Cli to hive where clause used to pick tables and having a column qualifier. For use of hive sql, so the source table csv_table in most robust results yourself and populated using. If the bucket of the sampling is created in this command. We want to talk about which it? Sql statements are not every data, we should run in big data structures the. Try substituting synonyms for full name. Currently the where at query, urban private key value then prints the where hive table? Hive would like the partitioning is why the. In hive example hive data types. For the data, depending on hive will also be present in applying the example hive also widely used. The electrician are very similar to avoid reading this way, then one virtual column values in data aggregation functionalities provided below is sent to be expressed. Spark column values. In where clause will print the example when you a script for example, it will be spelled out of subquery must produce such hash bucket level of. After copy and collect_list instead of the same type is only needs to calculate approximately percentiles for sorting phase in keyword is expected schema.
    [Show full text]
  • SQL from Wikipedia, the Free Encyclopedia Jump To: Navigation
    SQL From Wikipedia, the free encyclopedia Jump to: navigation, search This article is about the database language. For the airport with IATA code SQL, see San Carlos Airport. SQL Paradigm Multi-paradigm Appeared in 1974 Designed by Donald D. Chamberlin Raymond F. Boyce Developer IBM Stable release SQL:2008 (2008) Typing discipline Static, strong Major implementations Many Dialects SQL-86, SQL-89, SQL-92, SQL:1999, SQL:2003, SQL:2008 Influenced by Datalog Influenced Agena, CQL, LINQ, Windows PowerShell OS Cross-platform SQL (officially pronounced /ˌɛskjuːˈɛl/ like "S-Q-L" but is often pronounced / ˈsiːkwəl/ like "Sequel"),[1] often referred to as Structured Query Language,[2] [3] is a database computer language designed for managing data in relational database management systems (RDBMS), and originally based upon relational algebra. Its scope includes data insert, query, update and delete, schema creation and modification, and data access control. SQL was one of the first languages for Edgar F. Codd's relational model in his influential 1970 paper, "A Relational Model of Data for Large Shared Data Banks"[4] and became the most widely used language for relational databases.[2][5] Contents [hide] * 1 History * 2 Language elements o 2.1 Queries + 2.1.1 Null and three-valued logic (3VL) o 2.2 Data manipulation o 2.3 Transaction controls o 2.4 Data definition o 2.5 Data types + 2.5.1 Character strings + 2.5.2 Bit strings + 2.5.3 Numbers + 2.5.4 Date and time o 2.6 Data control o 2.7 Procedural extensions * 3 Criticisms of SQL o 3.1 Cross-vendor portability * 4 Standardization o 4.1 Standard structure * 5 Alternatives to SQL * 6 See also * 7 References * 8 External links [edit] History SQL was developed at IBM by Donald D.
    [Show full text]
  • Relational Calculus Introduction • Contrived by Edgar F
    Starting with SQL Server and Azure SQL Database Module 5: Introducing the relational model Lessons • Introduction to the relational model • Domains • Relational operators • Relational algebra • Relational calculus Introduction • Contrived by Edgar F. Codd, IBM, 1969 • Background independent • A simple, yet rigorously defined concept of how users perceive data – The relational model represents data in the form of two- dimension tables, i.e. relations – Each table represents some real-world entity (person, place, thing, or event) about which information is collected – Information principle: all information is stored in relations A Logical Point of View • A relational database is a collection of tables – The organization of data into relational tables is known as the logical view of the database – The way the database software physically stores the data on a computer disk system is called the internal view – The internal view differs from product to product – Interchangeability principle: a physical relation can always be replaced by a virtual one (e.g., a view can replace a table) Tuples • A tuple is a set of ordered triples of attributes – A triple consists of attribute name, attribute type and attribute value – Every attribute of a tuple contains exactly one value of appropriate type – The order of the attributes is insignificant • Every attribute must have unique name – A subset of attributes of tuple is a tuple Relations • A relation is a variable consisting of a set of tuples – The order of the attributes is insignificant – Every attribute
    [Show full text]
  • Session 5 – Main Theme
    Database Systems Session 5 – Main Theme Relational Algebra, Relational Calculus, and SQL Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Presentation material partially based on textbook slides Fundamentals of Database Systems (6th Edition) by Ramez Elmasri and Shamkant Navathe Slides copyright © 2011 and on slides produced by Zvi Kedem copyight © 2014 1 Agenda 1 Session Overview 2 Relational Algebra and Relational Calculus 3 Relational Algebra Using SQL Syntax 5 Summary and Conclusion 2 Session Agenda . Session Overview . Relational Algebra and Relational Calculus . Relational Algebra Using SQL Syntax . Summary & Conclusion 3 What is the class about? . Course description and syllabus: » http://www.nyu.edu/classes/jcf/CSCI-GA.2433-001 » http://cs.nyu.edu/courses/fall11/CSCI-GA.2433-001/ . Textbooks: » Fundamentals of Database Systems (6th Edition) Ramez Elmasri and Shamkant Navathe Addition Wesley ISBN-10: 0-1360-8620-9, ISBN-13: 978-0136086208 6th Edition (04/10) 4 Icons / Metaphors Information Common Realization Knowledge/Competency Pattern Governance Alignment Solution Approach 55 Agenda 1 Session Overview 2 Relational Algebra and Relational Calculus 3 Relational Algebra Using SQL Syntax 5 Summary and Conclusion 6 Agenda . Unary Relational Operations: SELECT and PROJECT . Relational Algebra Operations from Set Theory . Binary Relational Operations: JOIN and DIVISION . Additional Relational Operations . Examples of Queries in Relational Algebra . The Tuple Relational Calculus . The Domain Relational Calculus 7 The Relational Algebra and Relational Calculus . Relational algebra . Basic set of operations for the relational model . Relational algebra expression . Sequence of relational algebra operations . Relational calculus . Higher-level declarative language for specifying relational queries 8 Unary Relational Operations: SELECT and PROJECT (1/3) .
    [Show full text]