Axiomatic Analyticity Properties and Representations of Particles in Thermal Quantum field Theory Annales De L’I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Perturbative Versus Non-Perturbative Quantum Field Theory: Tao’S Method, the Casimir Effect, and Interacting Wightman Theories
universe Review Perturbative versus Non-Perturbative Quantum Field Theory: Tao’s Method, the Casimir Effect, and Interacting Wightman Theories Walter Felipe Wreszinski Instituto de Física, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil; [email protected] Abstract: We dwell upon certain points concerning the meaning of quantum field theory: the problems with the perturbative approach, and the question raised by ’t Hooft of the existence of the theory in a well-defined (rigorous) mathematical sense, as well as some of the few existent mathematically precise results on fully quantized field theories. Emphasis is brought on how the mathematical contributions help to elucidate or illuminate certain conceptual aspects of the theory when applied to real physical phenomena, in particular, the singular nature of quantum fields. In a first part, we present a comprehensive review of divergent versus asymptotic series, with qed as background example, as well as a method due to Terence Tao which conveys mathematical sense to divergent series. In a second part, we apply Tao’s method to the Casimir effect in its simplest form, consisting of perfectly conducting parallel plates, arguing that the usual theory, which makes use of the Euler-MacLaurin formula, still contains a residual infinity, which is eliminated in our approach. In the third part, we revisit the general theory of nonperturbative quantum fields, in the form of newly proposed (with Christian Jaekel) Wightman axioms for interacting field theories, with applications to “dressed” electrons in a theory with massless particles (such as qed), as well as Citation: Wreszinski, W.F. unstable particles. Various problems (mostly open) are finally discussed in connection with concrete Perturbative versus Non-Perturbative models. -
Renormalisation Circumvents Haag's Theorem
Some no-go results & canonical quantum fields Axiomatics & Haag's theorem Renormalisation bypasses Haag's theorem Renormalisation circumvents Haag's theorem Lutz Klaczynski, HU Berlin Theory seminar DESY Zeuthen, 31.03.2016 Lutz Klaczynski, HU Berlin Renormalisation circumvents Haag's theorem Some no-go results & canonical quantum fields Axiomatics & Haag's theorem Renormalisation bypasses Haag's theorem Outline 1 Some no-go results & canonical quantum fields Sharp-spacetime quantum fields Interaction picture Theorems by Powers & Baumann (CCR/CAR) Schrader's result 2 Axiomatics & Haag's theorem Wightman axioms Haag vs. Gell-Mann & Low Haag's theorem for nontrivial spin 3 Renormalisation bypasses Haag's theorem Renormalisation Mass shift wrecks unitary equivalence Conclusion Lutz Klaczynski, HU Berlin Renormalisation circumvents Haag's theorem Sharp-spacetime quantum fields Some no-go results & canonical quantum fields Interaction picture Axiomatics & Haag's theorem Theorems by Powers & Baumann (CCR/CAR) Renormalisation bypasses Haag's theorem Schrader's result The quest for understanding canonical quantum fields 1 1 Constructive approaches by Glimm & Jaffe : d ≤ 3 2 2 Axiomatic quantum field theory by Wightman & G˚arding : axioms to construe quantum fields in terms of operator theory hard work, some results (eg PCT, spin-statistics theorem) interesting: triviality results (no-go theorems) 3 other axiomatic approaches, eg algebraic quantum field theory General form of no-go theorems φ quantum field with properties so-and-so ) φ is trivial. 3 forms -
275 – Quantum Field Theory
Quantum eld theory Lectures by Richard Borcherds, notes by Søren Fuglede Jørgensen Math 275, UC Berkeley, Fall 2010 Contents 1 Introduction 1 1.1 Dening a QFT . 1 1.2 Constructing a QFT . 2 1.3 Feynman diagrams . 4 1.4 Renormalization . 4 1.5 Constructing an interacting theory . 6 1.6 Anomalies . 6 1.7 Infrared divergences . 6 1.8 Summary of problems and solutions . 7 2 Review of Wightman axioms for a QFT 7 2.1 Free eld theories . 8 2.2 Fixing the Wightman axioms . 10 2.2.1 Reformulation in terms of distributions and states . 10 2.2.2 Extension of the Wightman axioms . 12 2.3 Free eld theory revisited . 12 2.4 Propagators . 13 2.5 Review of properties of distributions . 13 2.6 Construction of a massive propagator . 14 2.7 Wave front sets . 17 Disclaimer These are notes from the rst 4 weeks of a course given by Richard Borcherds in 2010.1 They are discontinued from the 7th lecture due to time constraints. They have been written and TeX'ed during the lecture and some parts have not been completely proofread, so there's bound to be a number of typos and mistakes that should be attributed to me rather than the lecturer. Also, I've made these notes primarily to be able to look back on what happened with more ease, and to get experience with TeX'ing live. That being said, feel very free to send any comments and or corrections to [email protected]. 1st lecture, August 26th 2010 1 Introduction 1.1 Dening a QFT The aim of the course is to dene a quantum eld theory, to nd out what a quantum eld theory is, and to dene Feynman measures, renormalization, anomalies, and regularization. -
The Renormalization Group in Quantum Field Theory
COARSE-GRAINING AS A ROUTE TO MICROSCOPIC PHYSICS: THE RENORMALIZATION GROUP IN QUANTUM FIELD THEORY BIHUI LI DEPARTMENT OF HISTORY AND PHILOSOPHY OF SCIENCE UNIVERSITY OF PITTSBURGH [email protected] ABSTRACT. The renormalization group (RG) has been characterized as merely a coarse-graining procedure that does not illuminate the microscopic content of quantum field theory (QFT), but merely gets us from that content, as given by axiomatic QFT, to macroscopic predictions. I argue that in the constructive field theory tradition, RG techniques do illuminate the microscopic dynamics of a QFT, which are not automatically given by axiomatic QFT. RG techniques in constructive field theory are also rigorous, so one cannot object to their foundational import on grounds of lack of rigor. Date: May 29, 2015. 1 Copyright Philosophy of Science 2015 Preprint (not copyedited or formatted) Please use DOI when citing or quoting 1. INTRODUCTION The renormalization group (RG) in quantum field theory (QFT) has received some attention from philosophers for how it relates physics at different scales and how it makes sense of perturbative renormalization (Huggett and Weingard 1995; Bain 2013). However, it has been relatively neglected by philosophers working in the axiomatic QFT tradition, who take axiomatic QFT to be the best vehicle for interpreting QFT. Doreen Fraser (2011) has argued that the RG is merely a way of getting from the microscopic principles of QFT, as provided by axiomatic QFT, to macroscopic experimental predictions. Thus, she argues, RG techniques do not illuminate the theoretical content of QFT, and we should stick to interpreting axiomatic QFT. David Wallace (2011), in contrast, has argued that the RG supports an effective field theory (EFT) interpretation of QFT, in which QFT does not apply to arbitrarily small length scales. -
Preprint Pdf File
Unspecified Book Proceedings Series Scaling algebras for charge carrying quantum fields and superselection structure at short distances Claudio D’Antoni, Gerardo Morsella, and Rainer Verch Dedicated to Detlev Buchholz, on the occasion of his 60th birthday. Abstract. We report on a recent work on the extension to the case of fields carrying superselection charges of the method of scaling algebras, which has been introduced earlier as a means for analysing the short-distance behaviour of quantum field theories in the setting of the algebraic approach. This gen- eralization is used to study the relation between the superselection structures of the underlying theory and the one of its scaling limit, and, in particular, to propose a physically motivated criterion for the preservation of superselection charges in the scaling limit. This allows the formulation of an intrinsic notion of charge confinement as proposed by D. Buchholz. 1. Introduction A great deal of information about the short distance properties of quantum field theory can be obtained through the use of renormalization group (RG) methods (consider, just to mention one example, the parton distributions in deep inelastic scattering processes). From a conceptual point of view, however, such applications are not completely satisfactory, as they always rely on a description of the theory in terms of (unobservable) fields, which, as is well known, is in general not unique (think for instance of Borchers classes, of bosonization in two dimensional models or of the more recent discoveries of dualities in supersymmetric d = 4 gauge theories). In order to overcome these problems, a framework for a model-independent, canonical analysis of the short distance behaviour of QFT was developed in [3] in the context of the algebraic approach to QFT [13], in which a theory is defined only in terms of its algebras of local observables, and therefore the ambiguities inherent to the use of unobservable fields completely disappear. -
Quantum Field Theory a Tourist Guide for Mathematicians
Mathematical Surveys and Monographs Volume 149 Quantum Field Theory A Tourist Guide for Mathematicians Gerald B. Folland American Mathematical Society http://dx.doi.org/10.1090/surv/149 Mathematical Surveys and Monographs Volume 149 Quantum Field Theory A Tourist Guide for Mathematicians Gerald B. Folland American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jerry L. Bona Michael G. Eastwood Ralph L. Cohen Benjamin Sudakov J. T. Stafford, Chair 2010 Mathematics Subject Classification. Primary 81-01; Secondary 81T13, 81T15, 81U20, 81V10. For additional information and updates on this book, visit www.ams.org/bookpages/surv-149 Library of Congress Cataloging-in-Publication Data Folland, G. B. Quantum field theory : a tourist guide for mathematicians / Gerald B. Folland. p. cm. — (Mathematical surveys and monographs ; v. 149) Includes bibliographical references and index. ISBN 978-0-8218-4705-3 (alk. paper) 1. Quantum electrodynamics–Mathematics. 2. Quantum field theory–Mathematics. I. Title. QC680.F65 2008 530.1430151—dc22 2008021019 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. -
An Introduction to Rigorous Formulations of Quantum Field Theory
An introduction to rigorous formulations of quantum field theory Daniel Ranard Perimeter Institute for Theoretical Physics Advisors: Ryszard Kostecki and Lucien Hardy May 2015 Abstract No robust mathematical formalism exists for nonperturbative quantum field theory. However, the attempt to rigorously formulate field theory may help one understand its structure. Multiple approaches to axiomatization are discussed, with an emphasis on the different conceptual pictures that inspire each approach. 1 Contents 1 Introduction 3 1.1 Personal perspective . 3 1.2 Goals and outline . 3 2 Sketches of quantum field theory 4 2.1 Locality through tensor products . 4 2.2 Schr¨odinger(wavefunctional) representation . 6 2.3 Poincar´einvariance and microcausality . 9 2.4 Experimental predictions . 12 2.5 Path integral picture . 13 2.6 Particles and the Fock space . 17 2.7 Localized particles . 19 3 Seeking rigor 21 3.1 Hilbert spaces . 21 3.2 Fock space . 23 3.3 Smeared fields . 23 3.4 From Hilbert space to algebra . 25 3.5 Euclidean path integral . 30 4 Axioms for quantum field theory 31 4.1 Wightman axioms . 32 4.2 Haag-Kastler axioms . 32 4.3 Osterwalder-Schrader axioms . 33 4.4 Consequences of the axioms . 34 5 Outlook 35 6 Acknowledgments 35 2 1 Introduction 1.1 Personal perspective What is quantum field theory? Rather than ask how nature truly acts, simply ask: what is this theory? For a moment, strip the physical theory of its interpretation. What remains is the abstract mathematical arena in which one performs calculations. The theory of general relativity becomes geometry on a Lorentzian manifold; quantum theory becomes the analysis of Hilbert spaces and self-adjoint operators. -
Ed Nelson's Work in Quantum Theory 1
ED NELSON’S WORK IN QUANTUM THEORY BARRY SIMON¤ Abstract. We review Edward Nelson’s contributions to nonrel- ativistic quantum theory and to quantum field theory. 1. Introduction It is a pleasure to contribute to this celebration of Ed Nelson’s scien- tific work, not only because of the importance of that work but because it allows me an opportunity to express my gratitude and acknowledge my enormous debt to Ed. He and Arthur Wightman were the key for- mulative influences on my education, not only as a graduate student but during my early postdoctoral years. Thanks, Ed! I was initially asked to talk about Ed’s work in quantum field theory (QFT), but I’m going to exceed my assignment by also discussing Ed’s impact on conventional nonrelativistic quantum mechanics (NRQM). There will be other talks on his work on unconventional quantum the- ory. After discussion of NRQM and the Nelson model, I’ll turn to the truly great contributions: the first control of a renormalization, albeit the Wick ordering that is now regarded as easy, and the seminal work on Euclidean QFT. Many important ideas I’ll discuss below involve crucial remarks of Ed that — in his typically generous fashion — he allowed others to publish. 2. NRQM Ed has very little published specifically on conventional NRQM but he had substantial impact through his lectures, students, and ideas from his papers that motivated work on NRQM. In particular, two of Date: August 12, 2004. ¤ Mathematics 253-37, California Institute of Technology, Pasadena, CA 91125, USA. E-mail: [email protected]. -
Quantum Field Theory
1 3 4 ,"3-)&//*/(3&)3&/ */45*565&'035)&03&5*$"-1): 4*$4 "45301):4*$4"/%&-&.&/5"3:1"35*$-&1):4*$4 Quantum Field Theory Quantum field theory (QFT) is the „language“ describing the fundamental physics in the relativistic mi- crocosmos, notably the elementary particles. In a continuous endeavor, the quantum field theory group in Göttingen (previously led by Max Planck medalists Gerhart Lüders, Hans-Jürgen Borchers, and Detlev Buchholz) pursues a mathematical approach in which the strong internal constraints imposed by the interplay between the principles of relativity, Einstein causality, and the stability of quantum systems are explored. It turns out that notions like „particle“, „charge“, and their fundamental interactions are far more subtle in QFT than in the more familiar setting of quantum mechanics. A careful analysis of these structures leads to insights that bear fruit in many applications. Charges and symmetries Particles Apart from the electric charge, particle physicists have be- The fundamental observables in relativistic quantum physics come familiar with many different charges, including „fla- are neutral fields. Particles arise as excitations in certain sta- vor“ and „color“ of leptons and quarks. The traditional un- tes in which these fields can be measured. As such they may derstanding of charge quantum numbers as characteristic possess properties depending on the state. For instance, their eigenvalues in representations of internal symmetry groups mass can be temperature dependent, if it can be sharply defi- involves unobservable entities. An intrinsic characterization ned at all. Defining the mass of a particle in interaction is not in terms of observable data has confirmed this picture, but it an easy task. -
SCIENTIFIC REPORT for the YEAR 1999 ESI, Boltzmanngasse 9, A-1090 Wien, Austria
The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the Year 1999 Vienna, ESI-Report 1999 March 1, 2000 Supported by Federal Ministry of Science and Transport, Austria ESI–Report 1999 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE YEAR 1999 ESI, Boltzmanngasse 9, A-1090 Wien, Austria March 1, 2000 Honorary President: Walter Thirring, Tel. +43-1-3172047-15. President: Jakob Yngvason: +43-1-31367-3406. [email protected] Director: Peter W. Michor: +43-1-3172047-16. [email protected] Director: Klaus Schmidt: +43-1-3172047-14. [email protected] Administration: Ulrike Fischer, Doris Garscha, Ursula Sagmeister. Computer group: Andreas Cap, Gerald Teschl, Hermann Schichl. International Scientific Advisory board: Jean-Pierre Bourguignon (IHES), Giovanni Gallavotti (Roma), Krzysztof Gawedzki (IHES), Vaughan F.R. Jones (Berkeley), Viktor Kac (MIT), Elliott Lieb (Princeton), Harald Grosse (Vienna), Harald Niederreiter (Vienna), ESI preprints are available via ‘anonymous ftp’ or ‘gopher’: FTP.ESI.AC.AT and via the URL: http://www.esi.ac.at. Table of contents Statement on Austria’s current political situation . 2 General remarks . 2 Winter School in Geometry and Physics . 2 ESI - Workshop Geometrical Aspects of Spectral Theory . 3 PROGRAMS IN 1999 . 4 Functional Analysis . 4 Nonequilibrium Statistical Mechanics . 7 Holonomy Groups in Differential Geometry . 9 Complex Analysis . 10 Applications of Integrability . 11 Continuation of programs from 1998 and earlier . 12 Guests via Director’s shares . 13 List of Preprints . 14 List of seminars and colloquia outside of conferences . 25 List of all visitors in the year 1999 . -
October 1983 Table of Contents
Fairfield Meeting (October 28-29)- Page 614 San Luis Obispo Meeting (November 11-12)-Page 622 Evanston Meeting (November 11-12)-Page 630 Notices of the American Mathematical Society October 1983, Issue 228 Volume 30, Number 6, Pages 569- 712 Providence, Rhode Island USA ISSN 0002-9920 Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet· ing. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. -
Quantum Scalar Field Theory in Ads and the Ads/CFT Correspondence
Quantum Scalar Field Theory in AdS and the AdS/CFT Correspondence Igor Bertan Munich, September 2019 Quantum Scalar Field Theory in AdS and the AdS/CFT Correspondence Igor Bertan Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Igor Bertan München, den 2. September 2019 “It is reminiscent of what distinguishes the good theorists from the bad ones. The good ones always make an even number of sign errors, and the bad ones always make an odd number.” – Anthony Zee Erstgutachter: Prof. Dr. Ivo Sachs Zweitgutachter: Prof. Dr. Gerhard Buchalla Tag der mündlichen Prüfung: 11. November 2019 i Contents Zusammenfassung iii Abstract v I Introduction1 1.1 Motivation . .1 1.2 Research statement and results . .7 1.3 Content of the thesis . 10 1.4 List of published papers . 11 1.5 Acknowledgments . 12 II QFT in flat space-time 13 2.1 Axiomatic quantum field theory . 13 2.2 The Wightman functions . 18 2.3 Analytic continuation of correlation functions . 22 2.4 Free scalar quantum field theory . 27 III QFT in curved space-times 41 3.1 Free scalar quantum field theory . 41 3.2 Generalized Wightman axioms . 52 IV The anti–de Sitter space-time 55 4.1 Geometry of AdS . 56 4.2 Symmetries . 61 4.3 Conformal boundary . 62 V Free scalar QFT in (E)AdS 65 5.1 Free scalar quantum field theory . 65 5.2 Correlation functions . 71 5.3 The holographic correlators and the CFT dual . 75 VI Interacting scalar QFT in EAdS 79 6.1 Correlation functions .