(Aradidae), Selected European True Bugs (Heteroptera), and Transfer of Principles Onto Technical Surfaces
Total Page:16
File Type:pdf, Size:1020Kb
Investigation of surface-liquid-interaction on flat bugs (Aradidae), selected European true bugs (Heteroptera), and transfer of principles onto technical surfaces Untersuchung der Oberflächen-Flüssigkeitsinteraktion von Rindenwanzen (Aradidae), ausgewählten europäischen Wanzen (Heteroptera), und Übertragung der Prinzipien auf technische Oberflächen Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologe Florian Hischen aus Hannover Berichter: Universitätsprofessor Dr. Peter Bräunig Universitätsprofessor Dr. Werner Baumgartner Tag der mündlichen Prüfung: 13.10.2017 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar. Abstract The present work investigates surface-liquid-interactions that occur on neotropical flat bugs from the genus Dysodius (Aradidae) and selected European true bugs (Heteroptera). In case of Dysodius water- as well as oil- based interaction are researched. The former enabling the fascinating phenomenon called “adaptive camouflage” on these bugs, the latter concerning directional, passive fluid transport in the external scent efferent system (defense secretion system). European bugs are investigated with regard to comparable functionality of their scent efferent system only. Morphological studies are carried out by means of scanning- and transmission electron microscopy in order to extract fluid-interaction relevant body features. Chemical studies, like GC-MS and HPLC-MS, are used as means to figure chemical composition of surface waxes. Fluid- flow studies are carried out via high-speed video capturing, followed by custom algorithm analysis with the goal of understanding the surface-fluid-interaction dynamics. By means of laser ablation and casting, different materials (like steel and polymers) are provided with artificial fluid-transport channels, biomimetically abstracted from the bugs and their performance is analyzed by above mentioned techniques. In the end of this work a novel approach for the fabrication of thermal conductive all-metal replicas of biological samples is presented that will enable even more sophisticated investigation ways for phenomena like evaporation and condensation in the future. Zusammenfassung Die vorliegende Arbeit untersucht die Oberflächen-Flüssigkeits-Interaktion, die auf neotropischen Rindenwanzen der Gattung Dysodius (Aradidae) und ausgewählten europäischen Wanzen (Heteroptera) zu beobachten ist. Im Falle von Dysodius werden sowohl wasser-, wie auch öl-basierte Interaktionen untersucht. Erstere ermöglichen diesen Wanzen die faszienierende Fähigkeit der „adaptiven Tarnung“, letzere betreffen den Flüssigkeitstransport im sog. „external scent efferent system“. Europäische Vertreter werden nur in Hinblick auf dieses System untersucht. Morphologische Untersuchungen von Körpermerkmalen, die relevant für Flüssigkeitsinteraktion sind, werden mittels Raster- und Transelektronenmikroskopie durchgeführt. Analysemethoden wie GC-MS und HPLC-MS dienen der Entschlüsselung der chemischen Zusammensetzung von Öberflächenwachsen. Mittels Hochgeschwindigkeits-Videoaufnahmen wird das Flüssigkeitsverhalten aufgezeichnet, gefolgt von der Auswertung mit selbstgenerierten Algorithm, mit dem Ziel die Dynamik der Flüssigkeits-Oberflächen-Interaktion zu verstehen. Durch Lasergravur und Abformung werden verschiedene Materialen (wie Stahl und Polymere) mit einem künstlichen, bionisch inspiriertem Kanal nach Vorbild der Wanzen versehen und mit zuvor genannten Methoden in Hinblick auf Leistungsfähigkeit untersucht. Am Ende der Arbeit wird eine neuartige Methode zur Herstellung von temperaturleitenden Vollmetalrepliken biologischer Oberflächen vorgestellt, die künftig tiefergehende Untersuchungen von Phänomenen wie Verdunstung und Kondensation ermöglichen wird. List of abbreviations 2PPL two-photon-polymerization AS abdominal segment BSTFA N,O-bis(trimethylsilyl)trifluoroacetamide C/Ca capillary Ca caput (head) CAM computer-aided manufacturing Cla clavus Co corium DAG dorsal abdominal gland DC direct current En endocuticula Ep/Epi epicuticula ESI electrospray ionization Ev/Eva evaporium Ex exocuticula FFT fast-Fourier-transformation GC gas chromatography Gla glabrous area HPLC High-performance liquid chromatography HRC Hardness Rockwell, scale C Hy hypodermis IPT Institute for Production Technology LED light emitting diode Me membranous part of the wing Me metal Met metanotum MS mass spectrometry Ms microstructures MTG metapleural scent gland system O ostiole, or orifice OCT optical coherence tomography P/Pe peritreme PC personal computer PDMS poly(dimethylsiloxzane) PET poly(ethylene terephthalate) PMMA poly(methylmetacrylate) Pro pronotum PVD physical vapor deposition Ro rostrum Scu scutellum Se setae SEM scanning electron microscopy SES scent efferent system So hemelytra socket STD standard deviation TEM transmission electron microscopy UV ultraviolet Wg wax glands Wi wings For my family and friends. Table of Contents 1. Introduction ................................................................................................................................... 1 1.1 Motivation and Goal ............................................................................................................................ 1 2. State of the Art ............................................................................................................................... 2 2.1 Bugs (Hemiptera: Heteroptera) ........................................................................................................... 4 2.2 Surface-Liquid-Interaction ................................................................................................................. 10 3. Surface-Water-Interaction of Dysodius magnus and D. lunatus ...................................................... 15 3.1 Adaptive camouflage ......................................................................................................................... 15 3.1.1 Materials and Methods .............................................................................................................. 15 3.1.2 Results ........................................................................................................................................ 17 3.1.3 Discussion ................................................................................................................................... 20 3.2 Wettability of Dysodius: Morphological and chemical investigation ................................................ 24 3.2.1 Materials and Methods .............................................................................................................. 24 3.2.2 Results ........................................................................................................................................ 27 3.2.3 Discussion ................................................................................................................................... 44 3.3 Wettability of Dysodius: Liquid spread analysis ................................................................................ 50 3.3.1 Materials and Methods .............................................................................................................. 50 3.3.2 Results ........................................................................................................................................ 54 3.3.3 Discussion ................................................................................................................................... 59 4. Surface-Oil-Interaction: The scent efferent system of bugs ............................................................ 66 4.1 Materials and methods ..................................................................................................................... 67 4.2 Results ............................................................................................................................................... 74 4.3 Discussion .......................................................................................................................................... 89 5. Abstracting the scent efferent system and technical application .................................................... 95 5.1 Materials and Methods ..................................................................................................................... 95 5.2 Results ............................................................................................................................................. 101 5.3 Discussion ........................................................................................................................................ 111 6. A novel approach for the replication of biological surfaces .......................................................... 119 6.1 Materials and Methods ................................................................................................................... 120 6.2 Results ............................................................................................................................................. 128 6.3 Discussion ........................................................................................................................................ 139 7. Summary ...................................................................................................................................