A Study of Protoplanetary Disk Evolution in Infrared
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Mid-Infrared Imaging Constraints on Companions and Protoplanetary Disks Around Six Young Stars? D
Astronomy & Astrophysics manuscript no. main ©ESO 2021 February 26, 2021 New mid-infrared imaging constraints on companions and protoplanetary disks around six young stars? D. J. M. Petit dit de la Roche1, N. Oberg2, M. E. van den Ancker1, I. Kamp2, R. van Boekel3, D. Fedele4, V. D. Ivanov1, M. Kasper1, H. U. Käufl1, M. Kissler-Patig5, P. A. Miles-Páez1, E. Pantin6, S. P. Quanz7, Ch. Rab2; 8, R. Siebenmorgen1, and L. B. F. M. Waters9; 10 1 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany e-mail: [email protected] 2 Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands 3 Max-Planck Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 4 INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy 5 European Space Agency, Camino Bajo del Castillo, s/n., Urb. Villafranca del Castillo, 28692 Villanueva de la Cañada, Madrid, Spain 6 CEA, IRFU, DAp, AIM, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, CNRS, F-91191 Gif-sur-Yvette, France 7 Institute for Particle Physics and Astrophysics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland 8 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany 9 Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O.Box 9010, 6500 GL Nijmegen, The Netherlands 10 SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands Received XXXX; accepted XXXX ABSTRACT Context. Mid-infrared (mid-IR) imaging traces the sub-micron and micron-sized dust grains in protoplanetary disks and it offers constraints on the geometrical properties of the disks and potential companions, particularly if those companions have circumplanetary disks. -
Arxiv:1808.00476V1 [Astro-Ph.SR] 1 Aug 2018 Big Ae Stars but Not for Several Herbig Be Stars (Fairlamb Et Al
Astronomy & Astrophysics manuscript no. Vioque_et_al_2018 c ESO 2018 August 3, 2018 Gaia DR2 study of Herbig Ae/Be stars M. Vioque1; 2?, R. D. Oudmaijer1, D. Baines3, I. Mendigutía4, and R. Pérez-Martínez2 1 School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. 2 Ingeniería de Sistemas para la Defensa de España (Isdefe), XMM/Newton Science Operations Centre, ESA-ESAC Campus, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain. 3 Quasar Science Resources for ESA-ESAC, ESAC Science Data Center, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain. 4 Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, ESA-ESAC Campus, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain. Accepted for publication in Astronomy & Astrophysics. ABSTRACT Aims. We use Gaia Data Release 2 (DR2) to place 252 Herbig Ae/Be stars in the HR diagram and investigate their characteristics and properties. Methods. For all known Herbig Ae/Be stars with parallaxes in Gaia DR2, we collected their atmospheric parameters and photometric and extinction values from the literature. To these data we added near- and mid-infrared photometry, collected Hα emission line properties such as equivalent widths and line profiles, and their binarity status. In addition, we developed a photometric variability indicator from Gaia’s DR2 information. Results. We provide masses, ages, luminosities, distances, photometric variabilities and infrared excesses homogeneously derived for the most complete sample of Herbig Ae/Be stars to date. We find that high mass stars have a much smaller infrared excess and have much lower optical variabilities compared to lower mass stars, with the break at around 7M .Hα emission is generally correlated with infrared excess, with the correlation being stronger for infrared emission at wavelengths tracing the hot dust closest to the star. -
Arxiv:1101.3707V1 [Astro-Ph.SR] 19 Jan 2011 E Eg,Cretre L 09 Ee 09.Tesignature the Pro 2009)
Astronomy & Astrophysics manuscript no. 15622 c ESO 2011 January 20, 2011 Searching for gas emission lines in Spitzer Infrared Spectrograph (IRS) spectra of young stars in Taurus Baldovin-Saavedra, C.1,2, Audard, M.1,2, G¨udel, M.3, Rebull, L. M.4, Padgett, D. L.4, Skinner, S. L.5, Carmona, A.1,2, Glauser, A. M.6,7, and Fajardo-Acosta, S. B.8 1 ISDC Data Centre for Astrophysics, Universit´ede Gen`eve, 16 Chemin d’Ecogia, CH-1290 Versoix, Switzerland 2 Observatoire Astronomique de l’Universit´ede Gen`eve, 51 Chemin de Maillettes, CH-1290 Sauverny, Switzerland 3 University of Vienna, Department of Astronomy, T¨urkenschanzstrasse 17, A-1180 Vienna, Austria 4 Spitzer Science Center, California Institute of Technology, 220-6 1200 East California Boulevard, Pasadena, CA 91125 USA 5 Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389, USA 6 ETH Z¨urich, 27 Wolfgang-Pauli-Str., CH-8093 Z¨urich, Switzerland 7 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, EH3 9HJ Edinburgh, UK 8 IPAC, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125, USA Received August 2010; accepted January 2011 ABSTRACT Context. Our knowledge of circumstellar disks has traditionally been based on studies of dust. However, gas dominates the disk mass and its study is key to our understanding of accretion, outflows, and ultimately planet formation. The Spitzer Space Telescope provides access to gas emission lines in the mid-infrared, providing crucial new diagnostics of the physical conditions in accretion disks and outflows. Aims. We seek to identify gas emission lines in mid-infrared spectra of 64 pre-main-sequence stars in Taurus. -
Planet Formation Phil Armitage
Planet Formation Phil Armitage Colorado è Stony Brook / Simons CCA overview • stone age planet formation – formation of planetary systems from a smooth radial distribution of km-scale planetesimals embedded in gas, with no migration • planetesimal • planetesimals formation or pebbles? • migration • gas accretion How do we form observed systems? Is there a timing problem? classical planet formation Adopt effective initial conditions: radially smooth distribution of small (100m – km) planetesimals embedded in gas, which acts to damp {e,i} but does not cause migration • growth phases: runaway, oligarchic final assembly / giant impacts • if fast enough final outcome is ~determined by stability M 1/3 r = p a Hill 3M ✓ ⇤ ◆ 1/4 tinstability = f(∆a/Mp ) • collisions make a small-N system more stable classical planet formation t / Myr 100 Ratio of collisions to scatterings is 10 f(vK / vesc), favors collisions for MSun at a ~ AU and less 1 “in situ” formation e 1 AU 2 AU 3 AU • disk with a few ME / AU at 1 AU will work • requirement of stability can hide a multitude of sins • many important but lesser constraints (small mass of Mars…) classical planet formation quasi-static envelope extends to rHill, rBondi core grows from accretion of planetesimals cooling is limited by grain opacity in radiative zone in the envelope “success” requires reaching Menv ~ Mcore ~ 5-20 ME within gas disk lifetime possible at few AU if the gravitational focusing factor 2 [1 + (vesc / σ) ] is large (small planetesimals) and κ low what’s wrong with this story? • major -
Searching for Gas Emission Lines in Spitzer Infrared Spectrograph \(IRS
A&A 528, A22 (2011) Astronomy DOI: 10.1051/0004-6361/201015622 & c ESO 2011 Astrophysics Searching for gas emission lines in Spitzer Infrared Spectrograph (IRS) spectra of young stars in Taurus C. Baldovin-Saavedra1,2, M. Audard1,2, M. Güdel3,L.M.Rebull4,D.L.Padgett4, S. L. Skinner5, A. Carmona1,2,A.M.Glauser6,7, and S. B. Fajardo-Acosta8 1 ISDC Data Centre for Astrophysics, Université de Genève, 16 chemin d’Ecogia, 1290 Versoix, Switzerland e-mail: [email protected] 2 Observatoire Astronomique de l’Université de Genève, 51 chemin de Maillettes, 1290 Sauverny, Switzerland 3 University of Vienna, Department of Astronomy, Türkenschanzstrasse 17, 1180 Vienna, Austria 4 Spitzer Science Center, California Institute of Technology, 220-6 1200 East California Boulevard, CA 91125 Pasadena, USA 5 Center for Astrophysics and Space Astronomy, University of Colorado, CO 80309-0389 Boulder, USA 6 ETH Zürich, 27 Wolfgang-Pauli-Str., 8093 Zürich, Switzerland 7 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, EH3 9HJ Edinburgh, UK 8 IPAC, California Institute of Technology, 770 South Wilson Avenue, CA 91125 Pasadena, USA Received 19 August 2010 / Accepted 14 January 2011 ABSTRACT Context. Our knowledge of circumstellar disks has traditionally been based on studies of dust. However, gas dominates the disk mass and its study is key to our understanding of accretion, outflows, and ultimately planet formation. The Spitzer Space Telescope provides access to gas emission lines in the mid-infrared, providing crucial new diagnostics of the physical conditions in accretion disks and outflows. Aims. We seek to identify gas emission lines in mid-infrared spectra of 64 pre-main-sequence stars in Taurus. -
Detection of Water Ice Grains on the Surface of the Circumstellar Disk Around Hd 142527∗
The Astrophysical Journal, 690:L110–L113, 2009 January 10 doi:10.1088/0004-637X/690/2/L110 c 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. DETECTION OF WATER ICE GRAINS ON THE SURFACE OF THE CIRCUMSTELLAR DISK AROUND HD 142527∗ M. Honda1,A.K.Inoue2, M. Fukagawa3,A.Oka4, T. Nakamoto4, M. Ishii5, H. Terada5, N. Takato5, H. Kawakita6, Y. K. Okamoto7, H. Shibai3, M. Tamura8,T.Kudo8, and Y. Itoh9 1 Department of Information Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan; [email protected] 2 College of General Education, Osaka Sangyo University, 3-1-1, Nakagaito, Daito, Osaka 574-8530, Japan 3 Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan 4 Department of Earth and Planetary Science, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8551, Japan 5 Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720, USA 6 Department of Physics, Kyoto Sangyo University, Motoyama, Kamogamo, Kita-ku, Kyoto 603-8555, Japan 7 Institute of Astrophysics and Planetary Sciences, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan 8 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 9 Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, Hyogo 657-8501, Japan Received 2008 July 31; accepted 2008 November 18; published 2008 December 19 ABSTRACT Coronagraphic imaging for the Herbig Ae star, HD 142527, was performed using the Coronagraphic Imager with Adaptive Optics (CIAO) on the 8.2 m Subaru Telescope. -
Co Gas Inside the Protoplanetary Disk Cavity in Hd 142527: Disk Structure from Alma
Preprint typeset using LATEX style emulateapj v. 12/16/11 CO GAS INSIDE THE PROTOPLANETARY DISK CAVITY IN HD 142527: DISK STRUCTURE FROM ALMA S. PEREZ1,2 , S. CASASSUS1,2 , F. MENARD´ 2,3,4 , P. ROMAN2,6 , G. VAN DER PLAS1,2 , L. CIEZA2,5 , C. PINTE3,4 , V. CHRISTIAENS1,2 , A. S. HALES2,7 . 1 Departamento de Astronom´ıa, Universidad de Chile, Casilla 36-D, Santiago, Chile 2 Millenium Nucleus “Protoplanetary Disks in ALMA Early Science,” Universidad de Chile, Casilla 36-D, Santiago, Chile 3 UMI-FCA 3386, CNRS/INSU, Casilla 36-D, Santiago, Chile 4 Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France CNRS, IPAG, F-38000 Grenoble, France 5 Universidad Diego Portales, Facultad de Ingenier´ıa, Av. Ejercito´ 441, Santiago, Chile 6 Center of Mathematical Modelling, Universidad de Chile. and 7 Joint ALMA Observatory, Alonso de Cordoba´ 3107, Vitacura 763-0355, Santiago, Chile ABSTRACT Inner cavities and annular gaps in circumstellar disks are possible signposts of giant planet formation. The young star HD 142527 hosts a massive protoplanetary disk with a large cavity that extends up to 140 au from the central star, as seen in continuum images at infrared and millimeter wavelengths. Estimates of the survival of gas inside disk cavities are needed to discriminate between clearing scenarios. We present a spatially and spectrally resolved carbon monoxide isotopologue observations of the gas-rich disk HD 142527, in the J = 2 − 1 line of 12CO, 13CO and C18O, obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). We detect emission coming from inside the dust-depleted cavity in all three isotopologues. -
Searching for Gas Emission Lines in Spitzer Infrared Spectrograph (IRS
Astronomy & Astrophysics manuscript no. 15622 c ESO 2018 February 7, 2018 Searching for gas emission lines in Spitzer Infrared Spectrograph (IRS) spectra of young stars in Taurus Baldovin-Saavedra, C.1,2, Audard, M.1,2, G¨udel, M.3, Rebull, L. M.4, Padgett, D. L.4, Skinner, S. L.5, Carmona, A.1,2, Glauser, A. M.6,7, and Fajardo-Acosta, S. B.8 1 ISDC Data Centre for Astrophysics, Universit´ede Gen`eve, 16 Chemin d’Ecogia, CH-1290 Versoix, Switzerland 2 Observatoire Astronomique de l’Universit´ede Gen`eve, 51 Chemin de Maillettes, CH-1290 Sauverny, Switzerland 3 University of Vienna, Department of Astronomy, T¨urkenschanzstrasse 17, A-1180 Vienna, Austria 4 Spitzer Science Center, California Institute of Technology, 220-6 1200 East California Boulevard, Pasadena, CA 91125 USA 5 Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389, USA 6 ETH Z¨urich, 27 Wolfgang-Pauli-Str., CH-8093 Z¨urich, Switzerland 7 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, EH3 9HJ Edinburgh, UK 8 IPAC, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125, USA Received August 2010; accepted January 2011 ABSTRACT Context. Our knowledge of circumstellar disks has traditionally been based on studies of dust. However, gas dominates the disk mass and its study is key to our understanding of accretion, outflows, and ultimately planet formation. The Spitzer Space Telescope provides access to gas emission lines in the mid-infrared, providing crucial new diagnostics of the physical conditions in accretion disks and outflows. Aims. We seek to identify gas emission lines in mid-infrared spectra of 64 pre-main-sequence stars in Taurus. -
A Study of Herbig Ae Be Star HD 163296: Variability in CO and OH Diana Lyn Hubis Yoder Clemson University, [email protected]
Clemson University TigerPrints All Theses Theses 5-2016 A Study of Herbig Ae Be Star HD 163296: Variability in CO and OH Diana Lyn Hubis Yoder Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Hubis Yoder, Diana Lyn, "A Study of Herbig Ae Be Star HD 163296: Variability in CO and OH" (2016). All Theses. 2348. https://tigerprints.clemson.edu/all_theses/2348 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. A Study of Herbig Ae Be Star HD 163296 Variability in CO and OH A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Physics and Astronomy by Diana Lyn Hubis Yoder May 2016 Accepted by: Dr. Sean Brittain, Committee Chair Dr. Mark Leising Dr. Jeremy King Dr. Chad Sosolik Abstract Spectra of the Herbig Ae Be star HD 163296 show variability in the CO and OH ro-vibrational emission lines. Documented here is the variance of OH emission lines between measurements separated by a period of three years. By comparing this variability to the variability of CO, we aim to determine whether the two are linked through an event such as disk winds. We find the profiles of OH and CO taken within three months of each other to have exceedingly similar profile shapes. However, the variability seen between the OH data sets needs further work to verify whether the changes we see are reproducible. -
Download This Article in PDF Format
A&A 631, A133 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935910 & © ESO 2019 Astrophysics Probing planet formation and disk substructures in the inner disk of Herbig Ae stars with CO rovibrational emission Arthur D. Bosman1, Andrea Banzatti2,3, Simon Bruderer4, Alexander G. G. M. Tielens1, Geoffrey A. Blake5, and Ewine F. van Dishoeck1,4 1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] 2 Department of Physics, Texas State University, 749 N Comanche Street, San Marcos, TX 78666, USA 3 Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721, USA 4 Max-Planck-Institut für Extraterrestrische Physik, Gießenbachstrasse 1, 85748 Garching, Germany 5 Division of Geological & Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA Received 17 May 2019 / Accepted 4 September 2019 ABSTRACT Context. CO rovibrational lines are efficient probes of warm molecular gas and can give unique insights into the inner 10 AU of proto- planetary disks, effectively complementing ALMA observations. Recent studies find a relation between the ratio of lines originating from the second and first vibrationally excited state, denoted as v2=v1, and the Keplerian velocity or emitting radius of CO. Counterin- tuitively, in disks around Herbig Ae stars the vibrational excitation is low when CO lines come from close to the star, and high when lines only probe gas at large radii (more than 5 AU). The v2=v1 ratio is also counterintuitively anti-correlated with the near-infrared (NIR) excess, which probes hot and warm dust in the inner disk. -
Herbig Ae/Be Stars the Missing Link in Star Formation
Herbig Ae/Be stars The missing link in star formation Program and Abstract Book Santiago, Chile, April 7-11, 2014 The ESO 2014 Herbig Ae/Be workshop will take place in commemoration of the life and works of George H. Herbig (January 2, 1920 – October 12, 2013). Program Monday, April 7 Time Speaker Title 08:30{08:40 W.J. de Wit Welcome 08:40{09:20 R. Waters Herbig Ae/Be stars in perspective \Overture": Star formation 09:20{10:00 K. Kratter Introduction to the theory of star formation 10:00{10:40 M. Beltran Observational perspective of the youngest phases of intermediate mass stars 10:40{11:10 Coffee Break SESSION 1: Inner disk - accretion tracers dynamics 11:10{11:50 S. Brittain High resolution spectroscopy and spectro-astrometry of HAeBes 11:50{12:10 J. Ilee Investigating inner gaseous discs around Herbig Ae/Be stars 12:10{12:30 J. Fairlamb Large Spectroscopic Investigation of Over 90 Herbig Ae/Be Objects with X-Shooter 12:30{12:50 Poster presentations (1st half) 12:50{14:30 Lunch 14:30{15:10 C. Dougados Accretion-ejection processes in Herbig Ae/Be stars 15:10{15:30 A. Aarnio Herbig Ae/Be spectral line variability 15:30{15:50 P. Abrah´am´ Time-variable phenomena in Herbig Ae/Be stars 15:50{16:10 Poster presentations (2nd half) 16:10{16:40 Poster session with tea 16:40{17:00 C. Schneider High energy emission from the HD 163296 jet: Clues to magnetic jet launching 17:00{17:20 I. -
A Family Portrait of Disk Inner Rims Around Herbig Ae/Be Stars Hunting for Warps, Rings, Self Shadowing, and Misalignments in the Inner Astronomical Units?,?? J
A&A 636, A116 (2020) Astronomy https://doi.org/10.1051/0004-6361/201833774 & © ESO 2020 Astrophysics A family portrait of disk inner rims around Herbig Ae/Be stars Hunting for warps, rings, self shadowing, and misalignments in the inner astronomical units?,?? J. Kluska1,2, J.-P. Berger3, F. Malbet3, B. Lazareff3, M. Benisty4,3, J.-B. Le Bouquin3, O. Absil5,???, F. Baron6, A. Delboulbé3, G. Duvert3, A. Isella7, L. Jocou3, A. Juhasz8, S. Kraus2, R. Lachaume9,10, F. Ménard3, R. Millan-Gabet11, J. D. Monnier12, T. Moulin3, K. Perraut3, S. Rochat3, C. Pinte13,3, F. Soulez14, M. Tallon14, W.-F. Thi15, E. Thiébaut14, W. Traub16, and G. Zins17 (Affiliations can be found after the references) Received 4 July 2018 / Accepted 15 March 2020 ABSTRACT Context. The innermost astronomical unit (au) in protoplanetary disks is a key region for stellar and planet formation, as exoplanet searches have shown a large occurrence of close-in planets that are located within the first au around their host star. Aims. We aim to reveal the morphology of the disk inner rim using near-infrared interferometric observations with milli-arcsecond resolution provided by near-infrared multitelescope interferometry. Methods. We provide model-independent reconstructed images of 15 objects selected from the Herbig AeBe survey carried out with PIONIER at the Very Large Telescope Interferometer, using the semi-parametric approach for image reconstruction of chromatic objects. We propose a set of methods to reconstruct and analyze the images in a consistent way. Results. We find that 40% of the systems (6/15) are centrosymmetric at the angular resolution of the observations.