Planet Formation Phil Armitage

Colorado è Stony Brook / Simons CCA overview

• stone age formation – formation of planetary systems from a smooth radial distribution of km-scale planetesimals embedded in gas, with no migration

• planetesimal • planetesimals formation or pebbles?

• migration • gas accretion

How do we form observed systems? Is there a timing problem? classical planet formation

Adopt effective initial conditions: radially smooth distribution of small (100m – km) planetesimals embedded in gas, which acts to damp {e,i} but does not cause migration

• growth phases: runaway, oligarchic final assembly / giant impacts • if fast enough final outcome is ~determined by stability M 1/3 r = p a Hill 3M ✓ ⇤ ◆ 1/4 tinstability = f(a/Mp )

• collisions make a small-N system more stable classical planet formation t / Myr 100 Ratio of collisions to scatterings is 10 f(vK / vesc), favors collisions for MSun at a ~ AU and less 1

“in situ” formation

e

1 AU 2 AU 3 AU

• disk with a few ME / AU at 1 AU will work • requirement of stability can hide a multitude of sins • many important but lesser constraints (small of Mars…) classical planet formation

quasi-static envelope extends to rHill, rBondi core grows from accretion of planetesimals cooling is limited by grain opacity in radiative zone in the envelope

“success” requires reaching

Menv ~ Mcore ~ 5-20 ME within gas disk lifetime possible at few AU if the gravitational focusing factor 2 [1 + (vesc / σ) ] is large (small planetesimals) and κ low what’s wrong with this story?

• major physical problem in omission of migration torque for ’s core • BUT internally consistent model for Solar System terrestrial

and ~1 ME planets at ~1 AU around Solar-type … final assembly >> gas disk lifetime

• DOES NOT scale to ~1 ME planets in habitable zone of low mass stars, or to 5-10 ME super-Earths • Solar System occupies an unusual corner of parameter space? getting to planetesimals

• experimental / modeling evidence that we can reach mm-cm scales in inner disk • ice physics promotes higher

vf and possibly larger sizes if drift is ignored (Gundlach & Blum 2015; Wada+ 2009)

Birnstiel+ 2010

Very high confidence that we attain conditions linearly unstable to streaming instability (Youdin & Goodman 2005) getting to planetesimals

For gravitational collapse particle density needs to reach Roche density: M ⇢ ⇤ p ⇠ a3

Extremely strong, non- linear clustering

Yang+ 2017

• best determinations require dust / gas ratios > 10-2 • sweet spot at dimensionless stopping time τ ~ 0.1 getting to planetesimals

data: Zhaohuan Zhu, Jake Simon

When collapse occurs, moderately high confidence: • top-heavy mass function dN 1.6 Mp (Simon+ 16; Schafer+ 17) dMp / • universal: no measured dependence on the aerodynamic properties of the participating particles (Simon+ 17) • implies large planetesimals dominate (~102 km) how to attain conditions for planetesimal formation, pick your poison especially Z > 10-2

• radial drift leading to particle pile-up in inner disk (Youdin & Chiang 2004)

• local concentration in pressure maxima (Pinilla+ 2012)

• “unique” processes at ice lines (Stevenson & Lunine 1988; Ros & Johansen 2013)

observational constraints on the size and radial distribution of solids in disks of different ages are key (e.g. Tazzari+ 2016) next steps… 2D slice of a 3 or 4D parameter space: key physics input for model building {τ,Z,η,α}

p = -1.6 is not p = -2 in current simulations, but are there conditions where mass function is not top-heavy?

role for other flavors of gas-dust instability (Squire & Hopkins 18) pebble accretion

aerodynamically assisted accretion of radially drifting small solids can be efficient growth channel (Ormel & Klahr 2010; Lambrechts & Johansen 2012)

Hill limited Hill radius r accretion Drift limited H accretion

Keplerian shear

Particle radial drift

-1/2 Accretion radius (tB/tf) rB

Bondi radius rB pebble accretion physically entirely independent of streaming instability / planetesimal formation

n BUT for a disk with a power-law pressure profile: P r “optimal” sized pebbles have, / 6 8 Mp h ⌧ = n3 M r ✓ ⇤ ◆✓ ◆ …very roughly τ ~ 1 solids can do double duty in first forming planetesimals and then accreting rapidly onto proto-planets

MOREOVER if planetesimals form with a top-heavy mass function gravitational focusing is reduced, relative efficiency of pebble vs planetesimal accretion is higher migration • Lindblad torque, whose asymmetry is a weak function of disk structure (Ward 1997) circulating librating streamlines streamlines • co-orbital torque, low low entropy density dependent on disk gradients in entropy, high high horseshoe region density entropy surface density, and disk r

net torque φ diffusion (Paardekooper+ on planet 2011)

• further modification due to thermal effects for luminous planets (Lega+ 14; Benitez-Llambay+ 15; Masset 17)

migration • possible but not very plausible to construct disk models where Type I migration torques are generically zero

Bitsch+ 2013 • more likely a discrete set of null points for migration, where giant planet cores would accumulate • where these are depends on disk structure, second Zhaohuan’s polite request that you measure it for us J envelope accretion

quasi-static envelope extends to rHill, rBondi

Simulations: disk gas can circulate into and out of Hill sphere (D’Angelo & Bodenheimer 13; Ormel+ 15; Fung+ Lambrechts 15; Lambrechts & Lega 17) & Lega 2017

Key physics relevant to the distinction between mini-Neptunes, Neptunes, and gas giants forming Kepler planetary systems

growth timescales for ~10 ME very fast at sub-AU scales

migration timescales for > ME very short at sub-AU scales

no physical analog of “Solar System-like” in situ formation – these planets must have had significant gravitational interactions with the gas disk

“in situ” formation from migration of ~fully-formed planetesimals formed planets from significantly from radially drifting larger orbital radii (e.g. solids (Chatterjee & Izidoro+ 17; Hands & Tan 2014) Alexander 18…) is there a timing problem?

• Time = 0 for growth determined by collision velocities in young disks and (possibly) particle concentration in spiral arms and gravitational excitation of σ (Rice+ 06; Booth & Clarke 16)

• rapid sequestration of large of solids into planetesimals is not just possible but expected

è planetesimal formation action could be largely Ansdell+ 2017 complete during Class I is there a timing problem?

• can massive enough planets form early enough and far enough out to explain observed disk structure?

Levison+ 2010

• rapid planetesimal formation • growth in inner disk • planetesimal migration to observed scales modeling of HD 142527

Price+ 2018 Avenhaus+ 2017 • WYSIWYG disk – observed components (including a companion) generate observed structure • unquestionably some disks with large-scale structure contain planets • remains theoretical prior against most disks having planet-generated structures on > 10 AU scales questions?