Short Course Ii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Automated Sorting of Neuronal Trees in Fluorescent Images of Neuronal
www.nature.com/scientificreports OPEN Automated sorting of neuronal trees in fuorescent images of neuronal networks using Received: 29 August 2017 Accepted: 10 April 2018 NeuroTreeTracer Published: xx xx xxxx Cihan Kayasandik1, Pooran Negi1, Fernanda Laezza2, Manos Papadakis1 & Demetrio Labate 1 Fluorescence confocal microscopy has become increasingly more important in neuroscience due to its applications in image-based screening and profling of neurons. Multispectral confocal imaging is useful to simultaneously probe for distribution of multiple analytes over networks of neurons. However, current automated image analysis algorithms are not designed to extract single-neuron arbors in images where neurons are not separated, hampering the ability map fuorescence signals at the single cell level. To overcome this limitation, we introduce NeuroTreeTracer – a novel image processing framework aimed at automatically extracting and sorting single-neuron traces in fuorescent images of multicellular neuronal networks. This method applies directional multiscale flters for automated segmentation of neurons and soma detection, and includes a novel tracing routine that sorts neuronal trees in the image by resolving network connectivity even when neurites appear to intersect. By extracting each neuronal tree, NeuroTreetracer enables to automatically quantify the spatial distribution of analytes of interest in the subcellular compartments of individual neurons. This software is released open-source and freely available with the goal to facilitate applications in neuron screening and profling. Neuronal reconstruction is critical in a variety of neurobiological studies. During the last two decades, a large number of algorithms and sofware toolkits were developed aiming at providing digital reconstruction of neurons from images acquired using bright feld or fuorescent microscopy1. -
Nadder: a Scale-Space Approach for the 3D Analysis of Neuronal Traces
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.127035; this version posted December 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. nAdder: A scale-space approach for the 3D analysis of neuronal traces Minh Son Phan1, Katherine Matho2, Emmanuel Beaurepaire1, Jean Livet2, and Anatole Chessel1 1Laboratory for Optics and Biosciences, CNRS, INSERM, Ecole Polytechnique, IP Paris, Palaiseau, France 2Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France December 4, 2020 1 ABSTRACT 2 Tridimensional microscopy and algorithms for automated segmentation and tracing are revolutionizing 3 neuroscience through the generation of growing libraries of neuron reconstructions. Innovative 4 computational methods are needed to analyze these neural traces. In particular, means to analyse the 5 geometric properties of traced neurites along their trajectory have been lacking. Here, we propose 6 a local tridimensional (3D) scale metric derived from differential geometry, which is the distance 7 in micrometers along which a curve is fully 3D as opposed to being embedded in a 2D plane or 1D 8 line. We apply this metric to various neuronal traces ranging from single neurons to whole brain data. 9 By providing a local readout of the geometric complexity, it offers a new mean of describing and 10 comparing axonal and dendritic arbors from individual neurons or the behavior of axonal projections 11 in different brain regions. -
Amygdaloid Projections to the Ventral Striatum in Mice: Direct and Indirect Chemosensory Inputs to the Brain Reward System
ORIGINAL RESEARCH ARTICLE published: 22 August 2011 NEUROANATOMY doi: 10.3389/fnana.2011.00054 Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system Amparo Novejarque1†, Nicolás Gutiérrez-Castellanos2†, Enrique Lanuza2* and Fernando Martínez-García1* 1 Departament de Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, València, Spain 2 Departament de Biologia Cel•lular, Facultat de Ciències Biològiques, Universitat de València, València, Spain Edited by: Rodents constitute good models for studying the neural basis of sociosexual behavior. Agustín González, Universidad Recent findings in mice have revealed the molecular identity of the some pheromonal Complutense de Madrid, Spain molecules triggering intersexual attraction. However, the neural pathways mediating this Reviewed by: Daniel W. Wesson, Case Western basic sociosexual behavior remain elusive. Since previous work indicates that the dopamin- Reserve University, USA ergic tegmento-striatal pathway is not involved in pheromone reward, the present report James L. Goodson, Indiana explores alternative pathways linking the vomeronasal system with the tegmento-striatal University, USA system (the limbic basal ganglia) by means of tract-tracing experiments studying direct *Correspondence: and indirect projections from the chemosensory amygdala to the ventral striato-pallidum. Enrique Lanuza, Departament de Biologia Cel•lular, Facultat de Amygdaloid projections to the nucleus accumbens, olfactory tubercle, and adjoining struc- Ciències Biològiques, Universitat de tures are studied by analyzing the retrograde transport in the amygdala from dextran València, C/Dr. Moliner, 50 ES-46100 amine and fluorogold injections in the ventral striatum, as well as the anterograde labeling Burjassot, València, Spain. found in the ventral striato-pallidum after dextran amine injections in the amygdala. -
Automated Sorting of Neuronal Trees in Fluorescent Images of Neuronal
Automated sorting of neuronal trees in fluorescent images of neuronal networks using NeuroTreeTracer Cihan Kayasandik1,+, Pooran Negi1,+, Fernanda Laezza2, Manos Papadakis1, and Demetrio Labate1,* 1University of Houston, Department of Mathematics, Houston, Texas, United States of America 2University of Texas Medical Branch, Department of Pharmacology and Toxicology, Galveston, Texas, United States of America *corresponding author: [email protected] +these authors contributed equally to this work ABSTRACT Fluorescence confocal microscopy has become increasingly more important in neuroscience due to its applications in image- based screening and profiling of neurons. Multispectral confocal imaging is useful to simultaneously probe for distribution of multiple analytes over networks of neurons. However, current automated image analysis algorithms are not designed to extract single-neuron arbors in images where neurons are not separated, hampering the ability map fluorescence signals at the single cell level. To overcome this limitation, we introduce NeuroTreeTracer – a novel image processing framework aimed at automatically extracting and sorting single-neuron traces in fluorescent images of multicellular neuronal networks. This method applies directional multiscale filters for automated segmentation of neurons and soma detection, and includes a novel tracing routine that sorts neuronal trees in the image by resolving network connectivity even when neurites appear to intersect. By extracting each neuronal tree, NeuroTreetracer enables to automatically -
Raav-Based Retrograde Trans-Synaptic Labeling, Expression and Perturbation
bioRxiv preprint doi: https://doi.org/10.1101/537928; this version posted February 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. rAAV-based retrograde trans-synaptic tracing retroLEAP: rAAV-based retrograde trans-synaptic labeling, expression and perturbation Janine K Reinert1,#,* & Ivo Sonntag1,#,*, Hannah Sonntag2, Rolf Sprengel2, Patric Pelzer1, 1 1 1 Sascha Lessle , Michaela Kaiser , Thomas Kuner 1 Department Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany 2 Max Planck Research Group at the Institute for Anatomy and Cell Biology, at Heidelberg University, Heidelberg, Germany #These authors contributed equally to this work * Correspondence: Janine K Reinert: [email protected] Ivo Sonntag: [email protected] 1 out of 11 bioRxiv preprint doi: https://doi.org/10.1101/537928; this version posted February 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. rAAV-based retrograde trans-synaptic tracing Abstract Identifying and manipulating synaptically connected neurons across brain regions remains a core challenge in understanding complex nervous systems. RetroLEAP is a novel approach for retrograde trans-synaptic Labelling, Expression And Perturbation. GFP-dependent recombinase (Flp-DOG) detects trans-synaptic transfer of GFP-tetanus toxin heavy chain fusion protein (GFP-TTC) and activates expression of any gene of interest in synaptically connected cells. RetroLEAP overcomes existing limitations, is non-toxic, highly flexible, efficient, sensitive and easy to implement. Keywords: trans-synaptic, tracing, TTC, Cre-dependent, GFP-dependent flippase. -
Methods to Investigate the Structure and Connectivity of the Nervous System
University of Massachusetts Medical School eScholarship@UMMS GSBS Student Publications Graduate School of Biomedical Sciences 2017-02-16 Methods to investigate the structure and connectivity of the nervous system Donghyung Lee California Institute of Technology Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_sp Part of the Neuroscience and Neurobiology Commons Repository Citation Lee D, Huang T, De La Cruz A, Callejas A, Lois C. (2017). Methods to investigate the structure and connectivity of the nervous system. GSBS Student Publications. https://doi.org/10.1080/ 19336934.2017.1295189. Retrieved from https://escholarship.umassmed.edu/gsbs_sp/2000 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Student Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Fly ISSN: 1933-6934 (Print) 1933-6942 (Online) Journal homepage: http://www.tandfonline.com/loi/kfly20 Methods to investigate the structure and connectivity of the nervous system Donghyung Lee, Ting-Hao Huang, Aubrie De La Cruz, Antuca Callejas & Carlos Lois To cite this article: Donghyung Lee, Ting-Hao Huang, Aubrie De La Cruz, Antuca Callejas & Carlos Lois (2017): Methods to investigate the structure and connectivity of the nervous system, Fly, DOI: 10.1080/19336934.2017.1295189 To link to this article: http://dx.doi.org/10.1080/19336934.2017.1295189 © 2017 The Author(s). Published with license by Taylor & Francis© Donghyung Lee, Ting-Hao Huang, Aubrie De La Cruz, Antuca Callejas, and Carlos Lois Accepted author version posted online: 16 Feb 2017. -
Identification of Two Classes of Somatosensory Neurons That Display Resistance to Retrograde Infection by Rabies Virus
This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Systems/Circuits Identification of two classes of somatosensory neurons that display resistance to retrograde infection by rabies virus Gioele W. Albisetti1, Alexander Ghanem2, Edmund Foster1, Karl-Klaus Conzelmann2, Hanns Ulrich Zeilhofer1,3 and Hendrik Wildner1 1Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland 2Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, LMU München, Feodor-Lynen-Str. 25, 81377 München, Germany 3Institute of Pharmaceutical Sciences, Swiss Federal Institute (ETH) Zurich, Wolfgang-Pauli Strasse, CH-8090 Zürich, Switzerland DOI: 10.1523/JNEUROSCI.1277-17.2017 Received: 9 May 2017 Revised: 29 August 2017 Accepted: 11 September 2017 Published: 26 September 2017 Author contributions: GA performed virus injections and performed and analyzed morphological experiments. K.K.C. and A.G. produced and provided the majority of pseudotyped G-deleted rabies viruses used in this study. EF performed virus injections. HW analyzed experiments. H.W. and H.U.Z. designed experiments and wrote the manuscript. All authors have commented on the manuscript. Conflict of Interest: The authors declare no competing financial interests. This work was supported by an ERC Advanced Investigator Grant (DHISP 250128), a grant from the Swiss National Research Foundation (156393) and a Wellcome Trust Collaborative Award in Science (200183/Z/15/ Z) (to H.U.Z.). HW was supported by the Olga Mayenfisch foundation. KKC and AG were supported by DFG SFB870 (KKC) and LMUexcellent and LMU WiFoMed (AG). -
Extraction of Protein Profiles from Primary Neurons Using Active
Journal of Neuroscience Methods 225 (2014) 1–12 Contents lists available at ScienceDirect Journal of Neuroscience Methods jo urnal homepage: www.elsevier.com/locate/jneumeth Extraction of protein profiles from primary neurons using active ଝ contour models and wavelets a,∗ b a a Danny Misiak , Stefan Posch , Marcell Lederer , Claudia Reinke , a b Stefan Hüttelmaier , Birgit Möller a Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Str. 1, 06120 Halle, Germany b Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06099 Halle, Germany h i g h l i g h t s • Extraction of neuron areas using active contours with a new distance based energy. • Location of structural neuron parts by a wavelet based approach. • Automatic extraction of spatial and quantitative data about distributions of proteins. • Extraction of various morphological parameters, in a fully automated manner. • Extraction of a distinctive profile for the Zipcode binding protein (ZBP1/IGF2BP1). a r t i c l e i n f o a b s t r a c t Article history: The function of complex networks in the nervous system relies on the proper formation of neuronal Received 26 October 2013 contacts and their remodeling. To decipher the molecular mechanisms underlying these processes, it is Received in revised form essential to establish unbiased automated tools allowing the correlation of neurite morphology and the 18 December 2013 subcellular distribution of molecules by quantitative means. Accepted 19 December 2013 We developed NeuronAnalyzer2D, a plugin for ImageJ, which allows the extraction of neuronal cell morphologies from two dimensional high resolution images, and in particular their correlation with Keywords: protein profiles determined by indirect immunostaining of primary neurons. -
CLOSE ENOUGH a Thesis Presented to the Graduate Faculty of California State University, Hayward in Partial Fulfillment of the Re
CLOSE ENOUGH A Thesis Presented to the Graduate Faculty of California State University, Hayward In Partial Fulfillment of the Requirements for the Degree Master of Arts in Anthropology By Robert A. Blew May, 1992 Copyright © 1992 by Robert A. Blew ii CLOSE ENOUGH By Robert A. Blew Date: iii ACKNOWLEDGEMENTS It is impossible to thank everyone who helped with this paper, most of whom did not know they had done so. without their help and encouragement this paper would not have been possible: All those who attended the festivals sponsored by South Bay Circles and New Reformed Orthodox Order of the Golden Dawn (NROOGD), these past few years. Leigh Ann Hussey and D. Hudson Frew of the Covenant of the Goddess for their contributions to the original research. Carole Parker of South Bay Circles for technical editing. Carrie Wills and David Matsuda, fellow anthropology graduate students, for conducting the interviews and writing the essays that were the test of the hypothesis. Ellen Perlman, of the Pagan/Occult/Witchcraft Special Interest Group of Mensa, and Tom Johnson, of the Covenant of the Goddess, for being willing to be interviewed. Lastly, Valerie Voigt of the Pagan/Occult/Witchcraft Special Interest Group of Mensa, for laughing at something I said. iv Table of Contents I. Introduction.. .... .. .. 1 II. Fictional Narrative ................ 3 1. Communication............... 3 2. Projection .............. 8 3. Memory and Perception. 13 4. Rumor Theory .... ...• .. 16 5. Compounding and Elaboration .. ...•.. 22 6. Principle of Least Effort .. 24 III. Test of the Hypothesis ... .. 26 1. Collection Methodology .... .. 26 2. Context and Influences . .. 30 3. -
Hypothesis-Driven Structural Connectivity Analysis Supports Network Over Hierarchical Model of Brain Architecture
Hypothesis-driven structural connectivity analysis supports network over hierarchical model of brain architecture Richard H. Thompson and Larry W. Swanson1 Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 Contributed by Larry W. Swanson, June 30, 2010 (sent for review May 14, 2010) The brain is usually described as hierarchically organized, although (9) and a massive input from the SUBv (10). Only two major an alternative network model has been proposed. To help distin- brainstem inputs were identified: the dorsal raphé (DR), the guish between these two fundamentally different structure-function presumptive source of ACBdmt serotonin (11), and the inter- hypotheses, we developed an experimental circuit-tracing strategy fascicular nucleus (IF), the presumptive source of ACBdmt do- that can be applied to any starting point in the nervous system and pamine (12) that is medial to the expected ventral tegmental area then systematically expanded, and applied it to a previously obscure (VTA) itself (13). Thus, the ACBdmt receives direct inputs from dorsomedial corner of the nucleus accumbens identified functionally three massively interconnected cerebral regions implicated in as a “hedonic hot spot.” A highly topographically organized set of stress and depression, as well as restricted brainstem sites pro- connections involving expected and unexpected gray matter regions viding dopaminergic and serotonergic terminals. was identified that prominently features regions associated with Only one ACBdmt axonal output was labeled with PHAL (Fig. appetite, stress, and clinical depression. These connections are 1A; the filled purple area is a representative injection site): a arranged as a longitudinal series of circuits (closed loops). Thus, the descending pathway through the medial forebrain bundle with two results do not support a rigidly hierarchical model of nervous system clear terminal fields. -
A Scale-Space Approach for 3D Neuronal Traces Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.127035; this version posted June 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A SCALE-SPACE APPROACH FOR 3D NEURONAL TRACES ANALYSIS Minh Son Phan1, Katherine Matho2, Jean Livet2, Emmanuel Beaurepaire1, and Anatole Chessel1 1Laboratory for Optics and Biosciences, CNRS, INSERM, Ecole Polytechnique, IP Paris, Palaiseau, France 2Sorbonne Université, Institut de la Vison, INSERM, CNRS, Paris, France June 1, 2020 ABSTRACT 1 The advent of large-scale microscopy along with advances in automated image analysis algorithms 2 is currently revolutionizing neuroscience. These approaches result in rapidly increasing libraries 3 of neuron reconstructions requiring innovative computational methods to draw biological insight 4 from. Here, we propose a framework from differential geometry based on scale-space representation 5 to extract a quantitative structural readout of neurite traces seen as tridimensional (3D) curves 6 within the anatomical space. We define and propose algorithms to compute a multiscale hierarchical 7 decomposition of traced neurites according to their intrinsic dimensionality, from which we deduce 8 a local 3D scale, i.e. the scale in microns at which the curve is fully 3D as opposed to being 9 embedded in a 2D plane or a 1D line. We applied our scale-space analysis to recently published 10 data including zebrafish whole brain traces to demonstrate the importance of the computed local 3D 11 scale for description and comparison at the single arbor levels and as a local spatialized information 12 characterizing axons populations at the whole brain level. -
Ritual Supplies
Ritual Supplies 1 Ankh 3 1/2” x 6 1/2” brass Ankh brass 2 3/8” x4 “ Made of solid brass, this A celebrated mystical sym- ankh is an ancient Egyptian bol, the ankh is the ancient symbol of eternal life, and symbol of eternal life. In has come to be a symbol modern times, the ankh has Ritual Items & for wholeness, vitality, and become a symbol of whole- health. ness, vitality, and health to Spell Supplies many. $8.95 FANKL $5.95 FANKS Church Resin Kit 4oz 4 Thieves Vinegar Adam & Eve Roots/pair Used within magical rites, Intended to be used in heal- Use the Adam and Eve religious worship, and ing magick, or in keeping roots to keep lovers true otherwise treasured for enemies and undesirable and faithful, or to bring love their wonderful fragrance, people out of your life. Use and marriage to you. Frankincense, Myrrh, and for reversing magic too. The Copal have been burned for mix will separate, so shake thousands of years. well before using. 4oz $15.95 IKCHU $5.95 R4TV $3.95 RADAR Alligator Claw Bats Head Root Bat Eye Kept in your pocket, purse, Bat’s Head Root, bearing an The charm of a Bat Eye is a or mojo bag as a token of uncanny resemblance to the powerful source of protec- good luck, this Alligator head of a bat, is said to be of tion against evil forces and claw is particularly useful if great use in obtaining your harm. Use it in your rituals you are going to be gam- wishes.