Circularly Polarised Colour of the Scarab Beetle Chalcothea Smaragdina: Light Scattering by a Dual Photonic Structure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mass Emergence of the Tropical Swallowtail Moth Lyssa Zampa (Lepidoptera: Uraniidae: Uraniinae) in Singapore, with Notes on Its Partial Life History
20 TROP. LEPID. RES., 30(1): 20-27, 2020 JAIN & TEA: Mass emergence of Lyssa zampa Mass emergence of the tropical swallowtail moth Lyssa zampa (Lepidoptera: Uraniidae: Uraniinae) in Singapore, with notes on its partial life history Anuj Jain1,2, †,‡ and Yi-Kai Tea1,3,4 1Nature Society (Singapore), 510 Geylang Road, Singapore. 2Department of Biological Sciences, National University of Singapore, Singapore. 3School of Life and Environmental Sciences, University of Sydney, Sydney, Australia. 4Australian Museum Research Institute, 1 William Street, Sydney, New South Wales 2010, Australia. †Corresponding author: [email protected]; ‡Current affiliation: BirdLife International (Asia), #01-16/17, 354Tanglin Road, Singapore Date of issue online: 5 May 2020 Electronic copies (ISSN 2575-9256) in PDF format at: http://journals.fcla.edu/troplep; https://zenodo.org; archived by the Institutional Repository at the University of Florida (IR@UF), http://ufdc.ufl.edu/ufir;DOI : 10.5281/zenodo.3764165. © The author(s). This is an open access article distributed under the Creative Commons license CC BY-NC 4.0 (https://creativecommons.org/ licenses/by-nc/4.0/). Abstract: The tropical swallowtail uraniid moth Lyssa zampa is known to exhibit seasonal patterns of mass emergence throughout its range. These cyclical patterns of emergences are thought to correlate closely with oscillating host plant availability, as well as with interactions between herbivory and host plant defences. Because little has been reported concerning the biology of this species, the purpose of this paper is intended to serve as a starting point addressing the natural history of L. zampa in Singapore. Here we report on an instance of mass emergence of L. -
Circularly Polarized Reflection from the Scarab Beetle Chalcothea Smaragdina: Rsfs.Royalsocietypublishing.Org Light Scattering by a Dual Photonic Structure
Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: rsfs.royalsocietypublishing.org light scattering by a dual photonic structure Luke T. McDonald1,2, Ewan D. Finlayson1, Bodo D. Wilts3 and Pete Vukusic1 Research 1Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK 2School of Biological, Earth and Environmental Sciences, University College Cork, North Mall Campus, Cork, Cite this article: McDonald LT, Finlayson ED, Republic of Ireland Wilts BD, Vukusic P. 2017 Circularly polarized 3Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland reflection from the scarab beetle Chalcothea LTM, 0000-0003-0896-1415; EDF, 0000-0002-0433-5313; BDW, 0000-0002-2727-7128 smaragdina: light scattering by a dual photonic structure. Interface Focus 7: 20160129. Helicoidal architectures comprising various polysaccharides, such as chitin http://dx.doi.org/10.1098/rsfs.2016.0129 and cellulose, have been reported in biological systems. In some cases, these architectures exhibit stunning optical properties analogous to ordered cholesteric liquid crystal phases. In this work, we characterize the circularly One contribution of 17 to a theme issue polarized reflectance and optical scattering from the cuticle of the beetle ‘Growth and function of complex forms in Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical biological tissue and synthetic self-assembly’. experiments, simulations and structural analysis. The selective reflection of left-handed circularly polarized light is attributed to a Bouligand-type Subject Areas: helicoidal morphology within the beetle’s exocuticle. Using electron microscopy to inform electromagnetic simulations of this anisotropic strati- biomaterials fied medium, the inextricable connection between the colour appearance of C. -
Amphiesmeno- Ptera: the Caddisflies and Lepidoptera
CY501-C13[548-606].qxd 2/16/05 12:17 AM Page 548 quark11 27B:CY501:Chapters:Chapter-13: 13Amphiesmeno-Amphiesmenoptera: The ptera:Caddisflies The and Lepidoptera With very few exceptions the life histories of the orders Tri- from Old English traveling cadice men, who pinned bits of choptera (caddisflies)Caddisflies and Lepidoptera (moths and butter- cloth to their and coats to advertise their fabrics. A few species flies) are extremely different; the former have aquatic larvae, actually have terrestrial larvae, but even these are relegated to and the latter nearly always have terrestrial, plant-feeding wet leaf litter, so many defining features of the order concern caterpillars. Nonetheless, the close relationship of these two larval adaptations for an almost wholly aquatic lifestyle (Wig- orders hasLepidoptera essentially never been disputed and is supported gins, 1977, 1996). For example, larvae are apneustic (without by strong morphological (Kristensen, 1975, 1991), molecular spiracles) and respire through a thin, permeable cuticle, (Wheeler et al., 2001; Whiting, 2002), and paleontological evi- some of which have filamentous abdominal gills that are sim- dence. Synapomorphies linking these two orders include het- ple or intricately branched (Figure 13.3). Antennae and the erogametic females; a pair of glands on sternite V (found in tentorium of larvae are reduced, though functional signifi- Trichoptera and in basal moths); dense, long setae on the cance of these features is unknown. Larvae do not have pro- wing membrane (which are modified into scales in Lepi- legs on most abdominal segments, save for a pair of anal pro- doptera); forewing with the anal veins looping up to form a legs that have sclerotized hooks for anchoring the larva in its double “Y” configuration; larva with a fused hypopharynx case. -
A Revision of the Genus Nyctalemon Dalman (Lepidoptera, Uraniidae) with Notes on the Biology, Distribution, and Evolution of Its Species
A REVISION OF THE GENUS NYCTALEMON DALMAN (LEPIDOPTERA, URANIIDAE) WITH NOTES ON THE BIOLOGY, DISTRIBUTION, AND EVOLUTION OF ITS SPECIES by C. O. VAN REGTEREN ALTENA (Rijksmuseum van Natuurlijke Historie, Leiden) Contents ι. Introduction I 2. Systematics (a, The correct name of the genus p. 4; b, Diagnostic characters of the species and subspecies p. 6; c, Abbreviations p. 9; d, Key to the species and subspecies p. 10; e, Survey of the species and subspecies p. 11; f, Disregarded specimens p. 30; g, Wilcoxon tests for the difference between certain measurements in allied subspecies p. 31; h, Early stages p. 36; i, The species concept in Nyctalemon p. 37) 3. Biology 38 4. Distribution 43 5. Evolution 46 6. Bibliography 52 1. INTRODUCTION In November 1949 the late Professor Dr. L. J. Toxopeus of Bandung, Java, sent me a specimen of Nyctalemon for identification, but neither with the help of our collection, nor with the current literature did I succeed in ascertaining the correct name of this insect. On the contrary it appeared that, though the described forms of this genus clearly were of different value, viz., partly good species, partly geographical subspecies representing these species in restricted areas, no satisfactory division of the genus into species and subspecies had been given. Thus, Seitz' classification of the known forms into four species of which three are polytypic proved to make no sense. Therefore I resolved to study the genus more closely. In the ensuing correspondence Toxopeus gave me the benefit of his experience by providing references to relevant literature and quotations from his own notes. -
Biological Growth and Synthetic Fabrication of Structurally Colored Materials
Biological growth and synthetic fabrication of structurally colored materials The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation McDougal, Anthony et al. "Biological growth and synthetic fabrication of structurally colored materials." Journal of Optics 21, 7 (June 2019): 073001 © 2019 IOP Publishing Ltd As Published http://dx.doi.org/10.1088/2040-8986/aaff39 Publisher IOP Publishing Version Final published version Citable link https://hdl.handle.net/1721.1/126616 Terms of Use Creative Commons Attribution 3.0 unported license Detailed Terms https://creativecommons.org/licenses/by/3.0/ Journal of Optics TOPICAL REVIEW • OPEN ACCESS Recent citations Biological growth and synthetic fabrication of - Stability and Selective Vapor Sensing of Structurally Colored Lepidopteran Wings structurally colored materials Under Humid Conditions Gábor Piszter et al To cite this article: Anthony McDougal et al 2019 J. Opt. 21 073001 - Iridescence and thermal properties of Urosaurus ornatus lizard skin described by a model of coupled photonic structures José G Murillo et al - Biological Material Interfaces as Inspiration View the article online for updates and enhancements. for Mechanical and Optical Material Designs Jing Ren et al This content was downloaded from IP address 137.83.219.59 on 29/07/2020 at 14:27 Journal of Optics J. Opt. 21 (2019) 073001 (51pp) https://doi.org/10.1088/2040-8986/aaff39 Topical Review Biological growth and synthetic fabrication of structurally colored materials Anthony McDougal , Benjamin Miller, Meera Singh and Mathias Kolle Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States of America E-mail: [email protected] Received 9 January 2018, revised 29 May 2018 Accepted for publication 16 January 2019 Published 11 June 2019 Abstract Nature’s light manipulation strategies—in particular those at the origin of bright iridescent colors —have fascinated humans for centuries. -
Cultural Significance of Lepidoptera in Sub-Saharan Africa Arnold Van Huis
van Huis Journal of Ethnobiology and Ethnomedicine (2019) 15:26 https://doi.org/10.1186/s13002-019-0306-3 RESEARCH Open Access Cultural significance of Lepidoptera in sub-Saharan Africa Arnold van Huis Abstract Background: The taxon Lepidoptera is one of the most widespread and recognisable insect orders with 160,000 species worldwide and with more than 20,000 species in Africa. Lepidoptera have a complete metamorphosis and the adults (butterflies and moths) are quite different from the larvae (caterpillars). The purpose of the study was to make an overview of how butterflies/moths and caterpillars are utilised, perceived and experienced in daily life across sub-Saharan Africa. Method: Ethno-entomological information on Lepidoptera in sub-Saharan Africa was collected by (1) interviews with more than 300 people from about 120 ethnic groups in 27 countries in the region; and (2) library studies in Africa, London, Paris and Leiden. Results: Often the interviewees indicated that people from his or her family or ethnic group did not know that caterpillars turn into butterflies and moths (metamorphosis). When known, metamorphosis may be used as a symbol for transformation, such as in female puberty or in literature regarding societal change. Vernacular names of the butterfly/moth in the Muslim world relate to religion or religious leaders. The names of the caterpillars often refer to the host plant or to their characteristics or appearance. Close to 100 caterpillar species are consumed as food. Wild silkworm species, such as Borocera spp. in Madagascar and Anaphe species in the rest of Africa, provide expensive textiles. Bagworms (Psychidae) are sometimes used as medicine. -
Un Changement Probable De Plante-Hôte Chez Chrysiridia Rhipheus (Drury, 1773) De Madagascar (Lepidoptera : Uraniidae) Claude Marcel Hladik
Un changement probable de plante-hôte chez Chrysiridia rhipheus (Drury, 1773) de Madagascar (Lepidoptera : Uraniidae) Claude Marcel Hladik To cite this version: Claude Marcel Hladik. Un changement probable de plante-hôte chez Chrysiridia rhipheus (Drury, 1773) de Madagascar (Lepidoptera : Uraniidae). Lépidoptères, 2014, 23 (59), pp.135-136. hal- 01111182 HAL Id: hal-01111182 https://hal.archives-ouvertes.fr/hal-01111182 Submitted on 29 Jan 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Un changement probable de plante-hôte chez Chrysiridia rhipheus (Drury, 1773) de Madagascar (Lepidoptera : Uraniidae) par Claude Marcel HLADIK Eco-Anthropologie et Ethnobiologie, CNRS et Muséum National d’Histoire Naturelle E-mail : [email protected] n changement de plante-hôte qui sem- localement et, lorsque nous avons présenté des U blerait exceptionnel pour la chenille photos du papillon Chrysiridia rhipheus, nommé de Chrysiridia rhipheus m’avait été signalé lors lolonandriana, il était le plus souvent considéré de mon dernier séjour à Madagascar, organisé comme un animal agréable et favorablement éva- avec des collègues du Muséum national d’Histoi- lué sur les échelles des préférences pour les espè- re naturelle et dont l’un des objectifs était de sui- ces animales locales. -
| Education Program
| Education Program Pantone 871 C Metallic = C-0 M-15 Y-78 K-36 + Black San Francisco International Airport | International Terminal Main Hall | May – August 2019 Self-Guided Tour and Supplemental Teaching Materials for K-12 Teachers Thank you for visiting our exhibition, The Intriguing World of Insects. International Terminal Main Hall A2 20 Cases Pre-Security | Level 3, Departures This PDF provides parents and teachers with a self-guided tour of the exhibition. Begin at the large introductory text panel that appears at the start of the exhibition gallery, then work your way through the twenty cases. A2 The Intriguing World of Insects | Education Program 1 Neostylopyga rhombifolia 2018 Photograph by David Garnick (b. 1955) Courtesy of the artist R2019.0409.037 Insects are the most diverse macroscopic organisms on the planet. Researchers have identified over one million species of insects and estimate that five to thirty million more are waiting to be discovered. In fact, there are more species of ants than species of birds, and more species of beetles than all species of plants combined. In the United States, about 91,000 species of insects are known. Insects are everywhere—from shoreline to mountaintop, deserts to ponds, deep in the soil to the tips of the tallest redwoods, and they inhabit some of the most extreme environments on Earth. Insects, spiders, lobsters, and their cousins are arthropods, meaning they have jointed legs and an external skeleton. In order to grow, arthropods must molt or shed their old exoskeleton to allow their new exoskeleton to expand. This is often accompanied by metamorphosis—a change in appearance from one life stage to another. -
Sematuridae & Uraniidae
Cornell University Insect Collection Sematuridae & Uraniidae Ryan St. Laurent Updated: May, 2015 Cornell University Insect Collection Sematuridae Ryan St. Laurent Determined species: 11 Updated: May, 2015 Genus Species Author Zoogeography Anurapteryx interlineata (Walker) NEO Coronidia erecthea Westwood NEO orithea Cramer NEO Homidiana anilina Bryk NEO briseis (Westwood) NEO canace (Hopffer) NEO evenus (Boisduval) NEO leachi (Godart) NEO subpicta (Walker) NEO Sematura diana Guenée NEO lunus (Linnaeus) NEO Cornell University Insect Collection Uraniidae Ryan St. Laurent Determined species: 128 Updated: May, 2015 Subfamily Genus Species Author Zoogeography Auzeinae Auzea rufifrontata (Walker) ORI Decetia arenosa Butler ORI dichromata Walker AUS subobscurata Walker AUS torridaria Moore ORI Paradecetia albistellaria (Walker) ORI Epipleminae Antiplecta cinerascens Warren NEO ineptaria (Möschler) NEO Calledapteryx dryopterata Grote NEA Callizzia amorata Packard NEA certiorara Pearshall NEA Capnophylla albiceps Warren NEO Coelura transversata Warren NEO Dirades adjutaria (Walker) ORI formosibia Strand ORI kosemponicola Strand ORI leucocephala (Walker) ORI mutans Butler AUS rhagavata Walker ORI theclata (Guenée) ORI Epiplema acutangularia Herrich-Schäffer NEO albiocellata Warren NEO arcuata Warren ORI coeruleotincta Warren AUS columbicolor Warren NEO conflictaria Walker AUS/ORI cretacea Butler ORI demptaria Walker NEO desistaria Walker ORI exornata (Eversmann) PAL ignefumata Warren NEO incolorata Guenée NEO moza Butler PAL obvallataria Möschler -
Estimating Time and Space in the Evolution of the Lepidoptera
Estimating time and space in the evolution of the Lepidoptera Rienk de Jong Several aspects of estimating what happened when and where in the evolution of the Lepidoptera are discussed. Because of their scarcity and often poor preservation, fossils are not very helpful, but at least they demonstrate that, in the Oligocene some taxa of butterflies, perhaps at tribal level or higher, did occur in the Northern as well as in the Southern Hemisphere. The concept of a molecular clock is seen as a most needed test for vicariance explanations of disjunct distributions. Special emphasis is laid on the importance of calibration of the clock. The use of geological vicariance events as calibration points is rejected, because of circularity when vicariance explanations are to be tested. Fossils as calibration points should ideally be replaced by the minimum age of an apomorphous character state demonstrated by the fossil rather than a supposed identity on the basis of overall similarity. Some conditions that directed the evolution of Lepidoptera (called constraints here) are discussed for their possible use as calibration points. Estimation of the evolution in space through time (palaeobiogeography) as found in recent literature is discussed, the often supposed role (of the break-up) of Gondwana in the evolution of the butterflies is challenged, and an alternative hypothesis is given. R. de Jong, National Museum of Natural History, P.O. Box 9517, 2300 RA Leiden, The Netherlands. E-mail: [email protected] Introduction extrapolate the data to far back in history and to Estimating time and space of events in the evolu- make use of (reputed) circumstantial evidence. -
Uraniidae) and Their System a Tic, Evolutionary, and Ecological Significance
Journal of the Lepidopterists' SOciety 45(4), 1991, 296-347 FOOD PLANT ASSOCIATIONS OF THE URANIINAE (URANIIDAE) AND THEIR SYSTEM A TIC, EVOLUTIONARY, AND ECOLOGICAL SIGNIFICANCE DAVID C, LEES Flat 6, 23 Normanton Road, South Croydon, Surrey, CR2 7 AE, United Kingdom AND NEAL G. SMITH Smithsonian Tropical Research Institute, Unit 0948, APO AA34002-0948 U.S.A. ABSTRACT. Larval and adult food plant records for the moth subfamily Uraniinae (sensu Sick 1937) are reviewed. Reliable larval food plant records for all seven genera include only the genera Omphalea L., Endospermum Benth., and Suregada Roxb. ex Rottl. (Euphorbiaceae), and this specialization on Euphorbiaceae supports Sick's concept of Uraniinae (based on meta thoracic and tympanal morphology) as a monophyletic group. Whereas Omphalea is known to be fed on only by larvae of the three strictly day-flying genera (Urania Fabricius, Chrysiridia Hiibner, and Alcides Hiibner), Endospermum is a recorded foodplant for Alcides and three primarily nocturnal genera (Lyssa Hiibner, Urapteroides Moore, and Cyphura Warren). The latter two genera have been traditionally included in the Microniinae, as has been Urapteritra Viette, whose larval food plant Suregada is reported here for the first time. Some ecological and evolutionary aspects of uraniine larval foodplant specialization are discussed. A putative phylogeny of Uraniinae based on published hearing organ and larval morphology is presented, and the phylo genetic significance of larval foodplant relationships evaluated. Adult foodplants (nectar resources) for the diurnal uraniines are summarized, and the possibility of their role in the moths' reproductive or predator defense ecology is briefly discussed. Additional key words: Microniinae, Omphalea, Endospermum, Suregada, Euphor biaceae. -
EUPHORBIACEAE) in RESPONSE to DAMAGE by Urania Fulgens WALK ER
ANATOMY, HISTOCHEMISTRY AND PHENOLIC COMPOUNDS CONTENT OF LEAVES FROM Omphalea oleifera Hemsl. (EUPHORBIACEAE) IN RESPONSE TO DAMAGE BY Urania fulgens WALK ER Silvia Espinosa-Matías, Roberto Enrique Llanos-Romero, Álvaro Delfino Campos Villanueva, Blanca Pérez-García, Josefina Herrera-Santoyo and Patricia Guevara-Fefer SUMMARY Leaves of Omphalea oleifera Hemsl. damaged by Urania crystals. The estimated amounts of lignin and cafeic, ferulic fulgens Walker were examined. Leaves were anatomically de- and chlorogenic acids were respectively 11% and 109.65, 16.58 scribed, histochemical tests were performed and the content of and 0.082µg·g-1 dry wt in the damaged leaves, whereas for the lignin and phenolic acids estimated. Morpho-anatomical fea- intact were 7%, 97.65, 5.48 and 0.051µg·g-1 dry wt. The results tures were similar in damaged leaves and the control, but mi- suggest that the insect damage triggers induced responses in nor histochemical differences were observed. The tissues adja- O. oleifera including production and accumulation of phenolic cent to the damage showed lignin deposits and calcium oxalate compounds and calcium oxalate crystals on the leaf tissues. Introducción niidae) primarily feed on stems, mushroom-shaped an- Plants exhibit a wide gamut Omphalea leaves (Lees and droecia, and large fruits (Ru- of induced responses to the Omphalea L. (Euphorbia- Smith, 1991). At the Estación dall, 1994a, b; Gillespie, 1997; damage caused by pathogens ceae) is a genus of canopy li- de Biología Tropical Los Gillespie and Ambruster, and herbivores. Particularly, anas, shrubs and trees, com- Tuxtlas, Veracruz, the larvae 1997). Regarding O. oleifera, the induced responses that prised of ~20 tropical species of Urania fulgens Walker the seedlings content of some currently decrease the nega- with centers of diversity and 1854 feed on O.