Parasites Leishmania Modulation of Dendritic Cell Function By

Total Page:16

File Type:pdf, Size:1020Kb

Parasites Leishmania Modulation of Dendritic Cell Function By Modulation of Dendritic Cell Function by Leishmania Parasites Lynn Soong This information is current as J Immunol 2008; 180:4355-4360; ; of September 28, 2021. doi: 10.4049/jimmunol.180.7.4355 http://www.jimmunol.org/content/180/7/4355 Downloaded from References This article cites 68 articles, 26 of which you can access for free at: http://www.jimmunol.org/content/180/7/4355.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 28, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. THE JOURNAL OF IMMUNOLOGY BRIEF REVIEWS Modulation of Dendritic Cell Function by Leishmania Parasites1 Lynn Soong2 The interactions between Leishmania parasites and den- form that replicates within the acidified parasitophorous vacu- dritic cells (DCs) are complex and involve paradoxical oles (1). The promastigotes interact with mammalian hosts very functions that can stimulate or halt T cell responses, lead- briefly without causing clinical manifestations, whereas amasti- ing to the control of infection or progression of disease. The gotes persist in their hosts for years or for a lifetime and are magnitude and profile of DC activation vary greatly, de- hence responsible for clinical diseases. Those working in this pending upon the Leishmania species/strains, develop- field have focused on gaining a better understanding of the pro- mental stages, DC subsets, serum opsonization, and exog- cesses by which the promastigotes establish the infection and Downloaded from enous DC stimuli involved in the study. In general, the the amastigotes modulate or take advantage of their host’s im- uptake of Leishmania parasites alone can trigger rela- mune system. However, investigation into the molecular details tively weak and transient DC activation; however, the in- of the means by which the host cell interacts with amastigotes tracellular parasites (amastigotes) are capable of down- has been partially hampered by the limited availability of amas- modulating LPS/IFN-␥-stimulated DC activation via tigotes for some Leishmania species. Although axenically cul- http://www.jimmunol.org/ multiple mechanisms. This review will highlight current tured amastigotes are readily available for some species (e.g., data regarding the initial interaction of DC subsets with Leishmania amazonensis and Leishmania mexicana), other amas- invading parasites, the alterations of DC signaling path- tigote species need to be freshly prepared from mouse/hamster ways and function by amastigotes, and the impact of lesions or generated from cultured promastigotes (via reduction of culture pH and increase of temperature). DC functions on protective immunity and disease Another challenge in defining the molecular details of the pathogenesis. Available information provides insight host-Leishmania interaction is the complex regulation of spe- into the mechanisms by which DCs discriminate be- cies- and stage-specific genes. The Leishmania genome is spread tween the types of pathogens and regulate appropriate over 34ϳ36 chromosome pairs containing ϳ8,160 genes. by guest on September 28, 2021 immune responses. The Journal of Immunology, Global analyses of gene expression indicate that the vast major- 2008, 180: 4355–4360. ity (Ͼ95%) of genes are constitutively expressed in all life stages and that for the few dozen of the amastigote-specific genes iden- eishmaniasis is a vector-transmitted disease distributed tified, they are relatively specific for a given Leishmania species throughout the world’s tropical and subtropical re- (2). Therefore, information learned from one Leishmania spe- L gions. At least 20 Leishmania species can give rise to a cies may not be applicable to other species. For example, there is wide spectrum of clinical manifestations, ranging from self- a great need for comparative studies of Leishmania major and healing skin ulcers to disfiguring mucosal lesions and fatal vis- Leishmania donovani (etiological agents of the Old World cu- ceral infections. Although the determinants of parasite tissue taneous and visceral leishmaniasis, respectively), as well as of L. tropism remain unclear, the diverse clinical forms are believed amazonensis and Leishmania braziliensis (etiological agents of to be attributable to the host immune status and the species of diffuse cutaneous and mucosal leishmaniasis in South America, parasite involved. Leishmania parasites have a dimorphic life cy- respectively). In this regard, animal studies have clearly indi- cle. Initially, the infectious promastigote form of the parasite is cated that L. major can cause a Th2-mediated, lethal infection transmitted to the mammalian host by the bite of sand flies. in BALB/c mice but a Th1-mediated, self-healing infection in Once phagocytosed by cells in the macrophage (M⌽)3 lineage, C57BL/6 and C3H mice, whereas L. amazonensis often causes the promastigotes differentiate into a nonmotile amastigote progressive, nonhealing lesions in all of these mouse strains (3) Departments of Microbiology & Immunology and Pathology, Center for Biodefense and ing 3.142, 301 University Boulevard, Galveston, TX 77555-1070. E-mail address: Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute for Hu- [email protected] man Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555 3 Abbreviations used in this paper: M⌽, macrophage; DC, dendritic cell; DC-SIGN, den- Received for publication September 11, 2007. Accepted for publication January 31, 2008. dritic cell-specific ICAM-3-grabbing nonintegrin; LC, Langerhans cell; LN, lymph node; LPG, lipophosphoglycan; mDC, myeloid DC; pDC, plasmacytoid DC; PMN, polymor- The costs of publication of this article were defrayed in part by the payment of page charges. phonuclear neutrophil. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Copyright © 2008 by The American Association of Immunologists, Inc. 0022-1767/08/$2.00 1 This work was supported by National Institutes of Health Grants AI043003 and AI039540). 2 Address correspondence and reprint requests to Dr. Lynn Soong, Department of Micro- biology and Immunology, University of Texas Medical Branch, Medical Research Build- www.jimmunol.org 4356 BRIEF REVIEWS: MODULATING DC FUNCTION BY LEISHMANIA PARASITES due to an IL-4/IL-10-independent impairment in innate and acquired immunity (4, 5). This review will highlight available evidence at the DC level that may explain the diverse outcomes of Leishmania infection. M⌽s are the main host cells for Leishmania replication and the effector cell for parasite killing. Leishmania infection does not trigger inflammatory M⌽s to produce IL-12 (6), and par- ϩ asite-carrying M⌽s are incompetent in priming naive CD4 T ϩ cells or stimulating Ag-specific CD4 T cells (7). The molecu- lar details have been reviewed elsewhere with respect to how promastigotes and amastigotes bind to M⌽ surface receptors and interfere with their effector functions (8, 9). The recent ad- FIGURE 1. A schematic view of the hierarchy within different cell types, vancements in the biology of DC subsets, as well as in the re- receptors, and cytokines in activating innate and adaptive immunity at the ini- tial stages of infection with Leishmania promastigotes. Following the initial in- agents used, have greatly enhanced our understanding of DC- fection with Leishmania promastigotes, PMNs are recruited within hours to the Leishmania interactions, and several reviews have summarized site of infection and constitute the majority of the cellular infiltrates in the first the critical role of myeloid DCs (mDCs) in generating protec- day of infection. Parasite infection in PMNs may trigger the expression of tive immunity against L. major infection (10–12). New data TLR2, 7, and 9, as well as the production of some IL-12. Although pDCs do also call for re-evaluation of the accepted paradigm in L. major not endocytose promastigotes, they can be activated via released Leishmania Downloaded from ␣␤ infection (13, 14). This review will focus on recent data related genomic DNA (gDNA) to produce appreciable amounts of IFN- and some IL-12 in a TLR9-dependent manner. mDCs and monocyte-derived DCs can to the initial interactions of DC subsets with promastigote in- efficiently engulf promastigotes, serving as a critical source of early IL-12 pro- fection in vivo, alterations of DC signaling pathways by amas- duction. Activated DCs can migrate to draining LNs, activate resting NK cells tigotes, the impact of these alterations on disease outcomes, and via cell contact-dependent manner, and trigger NK cells to produce IFN-␥. The the potential of DC-based vaccines in animal models of cuta- cognate interactions among multiple
Recommended publications
  • Regulatory Mechanisms of Leishmania Aquaglyceroporin AQP1 Mansi Sharma Florida International University, [email protected]
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-6-2015 Regulatory mechanisms of Leishmania Aquaglyceroporin AQP1 Mansi Sharma Florida International University, [email protected] DOI: 10.25148/etd.FIDC000197 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Parasitology Commons Recommended Citation Sharma, Mansi, "Regulatory mechanisms of Leishmania Aquaglyceroporin AQP1" (2015). FIU Electronic Theses and Dissertations. 2300. https://digitalcommons.fiu.edu/etd/2300 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida REGULATORY MECHANISMS OF LEISHMANIA AQUAGLYCEROPORIN AQP1 A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Mansi Sharma 2015 To: Dean Michael R. Heithaus College of Arts and Sciences This dissertation, written by Mansi Sharma, and entitled, Regulatory Mechanisms of Leishmania Aquaglyceroporin AQP1, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Lidia Kos _____________________________________ Kathleen
    [Show full text]
  • Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity
    microorganisms Review Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity John M. Curtin 1,2,* and Naomi E. Aronson 2 1 Infectious Diseases Service, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA 2 Infectious Diseases Division, Uniformed Services University, Bethesda, MD 20814, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-011-301-295-6400 Abstract: Leishmaniasis, a chronic and persistent intracellular protozoal infection caused by many different species within the genus Leishmania, is an unfamiliar disease to most North American providers. Clinical presentations may include asymptomatic and symptomatic visceral leishmaniasis (so-called Kala-azar), as well as cutaneous or mucosal disease. Although cutaneous leishmaniasis (caused by Leishmania mexicana in the United States) is endemic in some southwest states, other causes for concern include reactivation of imported visceral leishmaniasis remotely in time from the initial infection, and the possible long-term complications of chronic inflammation from asymptomatic infection. Climate change, the identification of competent vectors and reservoirs, a highly mobile populace, significant population groups with proven exposure history, HIV, and widespread use of immunosuppressive medications and organ transplant all create the potential for increased frequency of leishmaniasis in the U.S. Together, these factors could contribute to leishmaniasis emerging as a health threat in the U.S., including the possibility of sustained autochthonous spread of newly introduced visceral disease. We summarize recent data examining the epidemiology and major risk factors for acquisition of cutaneous and visceral leishmaniasis, with a special focus on Citation: Curtin, J.M.; Aronson, N.E.
    [Show full text]
  • Identification of Leishmania Donovani Inhibitors from Pathogen Box Compounds of Medicine for Malaria Venture
    bioRxiv preprint doi: https://doi.org/10.1101/716134; this version posted July 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Identification of Leishmania donovani inhibitors from pathogen box compounds of Medicine for Malaria Venture Markos Tadele1¶, Solomon M. Abay2¶*, Eyasu Makonnen2,4, Asrat Hailu3 1 Ethiopian institute of agricultural research, Animal health research program, Holetta, Ethiopia 2Department of Pharmacology and clinical pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia 3Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia 4Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT Africa), College of Health Sciences, Addis Ababa University * Corresponding author Email: [email protected], [email protected] ¶ These authors contributed equally to this work. Author Contributions Conceptualization and design the experiment: MT, SMA, EM, AH Investigation: MT, SMA, AH Data analysis: MT, SMA Funding acquisition and reagents contribution: SMA, AH Supervision: SMA, EM, AH Writing – original draft: MT Writing – review & editing: MT, SMA, EM, AH 1 | P a g e bioRxiv preprint doi: https://doi.org/10.1101/716134; this version posted July 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Leishmania Species
    APPENDIX 2 Leishmania Species • Fewer than 15 probable or confirmed cases of trans- mission by blood transfusion and 10 reported cases of Disease Agent: congenital transmission worldwide • Leishmania species At-Risk Populations: Disease Agent Characteristics: • Residents of and travelers to endemic areas Vector and Reservoir Involved: • Protozoan, 2.5 ¥ 5.0 mm • Order: Kinetoplastida • Phlebotomine sandflies: Phlebotomus genus (Old • Family: Trypanosomatidae World) and Lutzomyia genus (New World) • Intracellular pathogen of macrophages/monocytes • Only the amastigote stage is found in humans. Blood Phase: • Leishmania parasites survive and multiply in mono- Disease Name: nuclear phagocytes. Parasite circulation in peripheral • Leishmaniasis blood has been reported in asymptomatic L. dono- • Visceral leishmaniasis is called kala-azar in India and vani, L. tropica, and L. infantum infections, and in various names elsewhere. treated and inapparent L. braziliensis infections. • Cutaneous forms have a variety of colloquial names Survival/Persistence in Blood Products: around the world. • Leishmania species are known to survive in human Priority Level: RBCs under blood bank storage conditions for as long as 15 days and longer in experimental animal models. • Scientific/Epidemiologic evidence regarding blood safety: Low Transmission by Blood Transfusion: • Public perception and/or regulatory concern regard- ing blood safety: Low • Transfusion transmission has been documented in at • Public concern regarding disease agent: Low, but least three cases
    [Show full text]
  • New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery
    G C A T T A C G G C A T genes Review Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery Arijit Bhattacharya 1 , Audrey Corbeil 2, Rubens L. do Monte-Neto 3 and Christopher Fernandez-Prada 2,* 1 Department of Microbiology, Adamas University, Kolkata, West Bengal 700 126, India; [email protected] 2 Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; [email protected] 3 Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte MG 30190-009, Brazil; rubens.monte@fiocruz.br * Correspondence: [email protected]; Tel.: +1-450-773-8521 (ext. 32802) Received: 4 June 2020; Accepted: 26 June 2020; Published: 29 June 2020 Abstract: Leishmaniasis (Leishmania species), sleeping sickness (Trypanosoma brucei), and Chagas disease (Trypanosoma cruzi) are devastating and globally spread diseases caused by trypanosomatid parasites. At present, drugs for treating trypanosomatid diseases are far from ideal due to host toxicity, elevated cost, limited access, and increasing rates of drug resistance. Technological advances in parasitology, chemistry, and genomics have unlocked new possibilities for novel drug concepts and compound screening technologies that were previously inaccessible. In this perspective, we discuss current models used in drug-discovery cascades targeting trypanosomatids (from in vitro to in vivo approaches), their use and limitations in a biological context, as well as different
    [Show full text]
  • Modeling Post-Kala-Azar Dermal
    ⃝c REVISTA DE MATEMÁTICA:TEORÍA Y APLICACIONES 2020 27(1) : 221–239 CIMPA – UCR ISSN: 1409-2433 (PRINT), 2215-3373 (ONLINE) DOI: https://doi.org/10.15517/rmta.v27i1.39973 MODELING POST-KALA-AZAR DERMAL LEISHMANIASIS AS AN INFECTION RESERVOIR FOR VISCERAL LEISHMANIASIS LEISHMANIASIS DÉRMICA POST-KALA-AZAR COMO RESERVORIO DE INFECCIÓN PARA LA LEISHMANIASIS VISCERAL ∗ y z ANDREA CALDERON RYAN LANDRITH NHAN LE { ILEANA MUÑOZ§ CHRISTOPHER M. KRIBS Received: 16/May/2019; Revised: 6/Jun/2019; Accepted: 13/Sep/2019 ∗University of Texas at Arlington, Department of Biology, Arlington TX, United States. E- Mail: [email protected] yMisma dirección que/Same address as: A Calderon. E-Mail: [email protected] zUniversity of Texas at Arlington, Department of Computer Science and Engineering, Arling- ton TX, United States. E-Mail: [email protected] §University of Texas at Arlington, Department of Mathematics, Arlington TX, United States. E-Mail: [email protected] {University of Texas at Arlington, Departments of Mathematics and Curriculum & Instruction, Arlington TX, United States. E-Mail: [email protected] 221 222 A. CALDERON – R. LANDRITH – N. LE – I. MUÑOZ – C. KRIBS Abstract Visceral Leishmaniasis (VL) is a potentially fatal disease caused by the protozoan parasite Leishmania donovani. This disease is a health problem for the very poor because it results in thousands of deaths and illnesses every year. Some countries, such as India and Bangladesh, have started programs to reduce the occurrences of VL by focusing on early diagno- sis and complete treatment of VL. Post-Kala-azar Dermal Leishmaniasis (PKDL) is a cutaneous manifestation of Leishmaniasis that can occur fol- lowing the incomplete treatment of VL.
    [Show full text]
  • CHECKLIST of PROTOZOA RECORDED in AUSTRALASIA O'donoghue P.J. 1986
    1 PROTOZOAN PARASITES IN ANIMALS Abbreviations KINGDOM PHYLUM CLASS ORDER CODE Protista Sarcomastigophora Phytomastigophorea Dinoflagellida PHY:din Euglenida PHY:eug Zoomastigophorea Kinetoplastida ZOO:kin Proteromonadida ZOO:pro Retortamonadida ZOO:ret Diplomonadida ZOO:dip Pyrsonymphida ZOO:pyr Trichomonadida ZOO:tri Hypermastigida ZOO:hyp Opalinatea Opalinida OPA:opa Lobosea Amoebida LOB:amo Acanthopodida LOB:aca Leptomyxida LOB:lep Heterolobosea Schizopyrenida HET:sch Apicomplexa Gregarinia Neogregarinida GRE:neo Eugregarinida GRE:eug Coccidia Adeleida COC:ade Eimeriida COC:eim Haematozoa Haemosporida HEM:hae Piroplasmida HEM:pir Microspora Microsporea Microsporida MIC:mic Myxozoa Myxosporea Bivalvulida MYX:biv Multivalvulida MYX:mul Actinosporea Actinomyxida ACT:act Haplosporidia Haplosporea Haplosporida HAP:hap Paramyxea Marteilidea Marteilida MAR:mar Ciliophora Spirotrichea Clevelandellida SPI:cle Litostomatea Pleurostomatida LIT:ple Vestibulifera LIT:ves Entodiniomorphida LIT:ent Phyllopharyngea Cyrtophorida PHY:cyr Endogenida PHY:end Exogenida PHY:exo Oligohymenophorea Hymenostomatida OLI:hym Scuticociliatida OLI:scu Sessilida OLI:ses Mobilida OLI:mob Apostomatia OLI:apo Uncertain status UNC:sta References O’Donoghue P.J. & Adlard R.D. 2000. Catalogue of protozoan parasites recorded in Australia. Mem. Qld. Mus. 45:1-163. 2 HOST-PARASITE CHECKLIST Class: MAMMALIA [mammals] Subclass: EUTHERIA [placental mammals] Order: PRIMATES [prosimians and simians] Suborder: SIMIAE [monkeys, apes, man] Family: HOMINIDAE [man] Homo sapiens Linnaeus,
    [Show full text]
  • WO 2016/033635 Al 10 March 2016 (10.03.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2016/033635 Al 10 March 2016 (10.03.2016) P O P C T (51) International Patent Classification: AN, Martine; Epichem Pty Ltd, Murdoch University Cam Λ 61Κ 31/155 (2006.01) C07D 249/14 (2006.01) pus, 70 South Street, Murdoch, Western Australia 6150 A61K 31/4045 (2006.01) C07D 407/12 (2006.01) (AU). ABRAHAM, Rebecca; School of Animal and A61K 31/4192 (2006.01) C07D 403/12 (2006.01) Veterinary Science, The University of Adelaide, Adelaide, A61K 31/341 (2006.01) C07D 409/12 (2006.01) South Australia 5005 (AU). A61K 31/381 (2006.01) C07D 401/12 (2006.01) (74) Agent: WRAYS; Groud Floor, 56 Ord Street, West Perth, A61K 31/498 (2006.01) C07D 241/20 (2006.01) Western Australia 6005 (AU). A61K 31/44 (2006.01) C07C 211/27 (2006.01) A61K 31/137 (2006.01) C07C 275/68 (2006.01) (81) Designated States (unless otherwise indicated, for every C07C 279/02 (2006.01) C07C 251/24 (2006.01) kind of national protection available): AE, AG, AL, AM, C07C 241/04 (2006.01) A61P 33/02 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C07C 281/08 (2006.01) A61P 33/04 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07C 337/08 (2006.01) A61P 33/06 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C07C 281/18 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/AU20 15/000527 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 28 August 2015 (28.08.2015) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • The Absence of C-5 DNA Methylation in Leishmania Donovani Allows DNA Enrichment from Complex Samples
    microorganisms Article The Absence of C-5 DNA Methylation in Leishmania donovani Allows DNA Enrichment from Complex Samples 1,2, 1, , 2 2 Bart Cuypers y, Franck Dumetz y z , Pieter Meysman , Kris Laukens , Géraldine De Muylder 1, Jean-Claude Dujardin 1,3 and Malgorzata Anna Domagalska 1,* 1 Molecular Parasitology, Institute of Tropical Medicine, 2000 Antwerp, Belgium; [email protected] (B.C.); [email protected] (F.D.); [email protected] (J.-C.D.) 2 ADReM Data Lab, Department of Computer Science, University of Antwerp, 2000 Antwerp, Belgium; [email protected] (P.M.); [email protected] (K.L.) 3 Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium * Correspondence: [email protected] These authors contributed equally to this work. y Present address: Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK. z Received: 11 July 2020; Accepted: 12 August 2020; Published: 18 August 2020 Abstract: Cytosine C5 methylation is an important epigenetic control mechanism in a wide array of eukaryotic organisms and generally carried out by proteins of the C-5 DNA methyltransferase family (DNMTs). In several protozoans, the status of this mechanism remains elusive, such as in Leishmania, the causative agent of the disease leishmaniasis in humans and a wide array of vertebrate animals. In this work, we showed that the Leishmania donovani genome contains a C-5 DNA methyltransferase (DNMT) from the DNMT6 subfamily, whose function is still unclear, and verified its expression at the RNA level. We created viable overexpressor and knock-out lines of this enzyme and characterized their genome-wide methylation patterns using whole-genome bisulfite sequencing, together with promastigote and amastigote control lines.
    [Show full text]
  • Current Perspectives on Leishmaniasis
    Editorial | Reddy KR. Current Perspectives on Leishmaniasis Current Perspectives on Leishmaniasis Reddy KR Professor & Head Microbiology Department Gandaki Medical College & Teaching Hospital, Pokhara, Nepal Sir William Boog Leishman Leishmania donovani parasite in spleen smear of English soldier from London, who died of Dum Dum fever or kala first demonstrated azar Sir Donovan contracted at Dum-Dum in Kolkata, India, in 1903. In the same year, Leishmania donovani also reported the same parasite in spleen smear of a patient from Madras (Chennai), TheirIndia. Thesimultaneous name discovery of Leishmania was therefore donovani given firstto this alerted parasite. the scientific community to the life threatening disease of visceral Leishmania Journal of leishmaniasis. Now a century later, millions are still afflicted by . It is a disease known for its complexity and diversity. It is endemic in regions ranging from the rainforests of South America GANDAKI 21 different species of Leishmania to the deserts of Asia, and afflicts both rural and urban communities. A host of about cutaneous, mucocutaneos and visceral, which result from parasite multiplication in MEDICAL are classified under its primary syndromes; COLLEGE- phlebotomine sand flies. macrophages in the skin, nasal-oral mucosa and internal organs, respectively. These Charles Nicolle, a 1928 Nobel laureate, at the Pasteur Institute of Tunis, characterized protozoan species are transmitted by over 30 species of NEPAL the (J-GMC-N) Whilenew most World modes visceral of leishmaniasistransmission andare cultivatedvector borne, the etiologic some areagent. congenital and J-GMC-N | Volume 12| Issue 01| increases in travel and international migration have brought this disease to the January-June 2019 parenteral (i.e.
    [Show full text]
  • Insights Into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite
    veterinary sciences Review Insights into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite Ehab Kotb Elmahallawy 1,* and Abdulsalam A. M. Alkhaldi 2,* 1 Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt 2 Biology Department, College of Science, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia * Correspondence: [email protected] (E.K.E.); [email protected] (A.A.M.A.) Abstract: Neglected parasitic diseases affect millions of people worldwide, resulting in high mor- bidity and mortality. Among other parasitic diseases, leishmaniasis remains an important public health problem caused by the protozoa of the genus Leishmania, transmitted by the bite of the female sand fly. The disease has also been linked to tropical and subtropical regions, in addition to being an endemic disease in many areas around the world, including the Mediterranean basin and South America. Although recent years have witnessed marked advances in Leishmania-related research in various directions, many issues have yet to be elucidated. The intention of the present review is to give an overview of the major virulence factors contributing to the pathogenicity of the parasite. We aimed to provide a concise picture of the factors influencing the reaction of the parasite in its host that might help to develop novel chemotherapeutic and vaccine strategies. Keywords: Leishmania; parasite; virulence; factors Citation: Elmahallawy, E.K.; Alkhaldi, A.A.M. Insights into 1. Introduction Leishmania Molecules and Their Leishmaniasis is a group of neglected tropical diseases caused by an opportunistic Potential Contribution to the intracellular protozoan organism of the genus Leishmania that affects people, domestic Virulence of the Parasite.
    [Show full text]