CONIFER EXERCISE the Common Conifers in the Pacific Northwest

Total Page:16

File Type:pdf, Size:1020Kb

CONIFER EXERCISE the Common Conifers in the Pacific Northwest CONIFER EXERCISE The common conifers in the Pacific Northwest belong to the following genera*: Abies, Calocedrus, Xanthocyparis, Juniperus, Larix, Picea, Pinus, Pseudotsuga, Taxus, Thuja, and Tsuga. Most of the common species of these genera are provided in the laboratory. Secure a labeled sample of each of the specimens and, as you examine and study the leafy twigs, answer the questions and fill in the blanks in the following exercise. The materials provided will include most (if not all) of the following species, which are classified in the families Cupressaceae, Pinaceae, and Taxaceae. In this exercise, diagnostic vegetative features of the leaves and stem are emphasized first, followed by an examination and comparison of cones (reproductive structures) and by a fill-in key to the common conifers. Cupressaceae Calocedrus decurrens (Incense cedar; does not occur naturally north of Mt. Hood, OR) Xanthocyparis nootkatensis (Alaska cedar) – formerly Chamaecyparis nootkatensis Juniperus scopulorum (Juniper) Thuja plicata (Western red cedar) Pinaceae Abies amabilis (Pacific or Amabilis fir) Abies grandis (Grand fir) Abies lasiocarpa (Alpine or Subalpine fir) Abies procera (Noble fir) Larix occidentalis (Western larch) Picea sitchensis (Sitka spruce) Pinus contorta (Lodgepole pine) Pinus monticola (Western white pine) Pinus ponderosa (Ponderosa or Yellow pine) Pseudotsuga menziesii (Douglas fir) Tsuga heterophylla (Western hemlock) Tsuga mertensiana (Mountain hemlock) Taxaceae Taxus brevifolia (Pacific yew) VEGETATIVE FEATURES 1. CUPRESSACEAE (Cypress family) Four of the genera have scale-like (as contrasted to needle-like) leaves. These four genera are _________________, _________________, _________________, and _________________. Consider these four specimens only (there is one representative in each genus). One usually will have round twigs (=stems) with 2 scale leaves opposite each other or 3 to 4 scale leaves in a whorl (arising from the same node or part of the stem), while the others appear to have flattened twigs with 2 scale leaves opposite or 4 scale leaves in a whorl. Which has "round" twigs with the scale leaves in 2's or 3's? _________________ ________________ Considering the specimens with flattened twigs and with scale leaves in 2's or 4's, identify the following sketches of the leaves. Label: ___________________ ____________________ ____________________ The ovulate (=seed) cones of these four genera are distinctive. In general, they are small, often nearly globose or slightly cylindrical, and composed of 2-12 scales (the structures that bear the seeds). The cones of the Cupressaceae are generally smaller than those to be found in the other conifers, especially those in the Pinaceae. Which has a nearly globose, dry cone with the cone scales enlarged and thickest at the end? ___________________ ___________________ Which has a usually bluish, often fleshy cone that does not open to shed the seeds? ___________________ ___________________ The other two genera have more elongate, dry cones with several scales. The one with only 4 to 6 scales is _________________ _________________; the other with about 10 to 12 scales is _________________ ________________ Which of these has the larger cones? _________________ ________________ 2. PINACEAE (Pine family) The species in the Pinaceae have needle-like leaves, and usually rather large cones that are composed of numerous, spirally arranged cone scales. Some genera have the needles borne singly along all the twigs, usually in a spiral arrangement, others have the needles borne in small clusters or bundles of 2, 3, or 5 along the twigs, whereas others have the needles borne in terminal tufts at the tips of very short, lateral (spur) branches. Select the four species that have needles in bunches of 2 to 5, or in tufts or spur shoots. Those that have the needles in 2's, 3's, or 5's are in the genus Pinus (pines); the other, which has brush-like tufts of needles at the end of spur shoots, is ___________________ ___________________ This is a very distinctive conifer, the only one in the Pacific Northwest that is deciduous (meaning that the leaves are all shed each fall). Note that the leaves or needles of this tree are young, soft, and obviously freshly grown. Identify the other three species as follows: Needles 2 per bundle_________________ _________________ Needles 3 per bundle_________________ _________________ Needles 5 per bundle_________________ _________________ All the other needle-bearing species have the needles borne singly. Two genera are peculiar in that the leaves are shed rather quickly when the tree (or branches thereof) is cut; therefore, never try to use either of them as a Christmas tree! Both of these genera have evergreen leaves that, when shed, leave a tiny remnant of the leaf-base on the twig; a remnant that can be described as peg-like. In one, the pegs stand out at right angles to the stem and, in the other, they project forward. Separate the two genera with peg-like leaf scars (there are three such species). Of these three species, one has sharp, stiff, and more or less square (in cross-section) leaves. What is the genus and species? ___________________ ___________________ The other two have flat, blunt needles. Note that the leaves of one of these are very white beneath, but green above. Examine these leaves under your microscope and note that the whiteness is due to the presence of several rows of white dots (pores or stomata--singular, stoma). The other species is almost the same color on both surfaces (having stomata almost equally numerous on both surfaces). The first species also will have the needles tending to spread in a horizontal plane, in contrast to the other, where the needles tend to spread in all directions. Identify the two species. Needles spreading in one plane, gray beneath, green above, very unequal in length ___________________ ___________________ Needles spreading in all directions, about the same color on both surfaces, not markedly different in length ___________________ ___________________ Now you should have left only the species of Pseudotsuga and Abies, all of which have comparatively smooth twigs where the needles have been shed. Examine the leaf scars carefully. Some scars are nearly circular, or slightly elongate (with reference to the axis of the branch), whereas at least one of the species has the scars broader than long and somewhat crater-like or umbilicate (navel-like). Recognize the genera as represented in the following two sketches. (This is not a hard and sharp distinction, and does not always "work".) Genus ____________________ Genus ____________________ "A" has pointed and almost sharp buds, in contrast to those of "B", which are more blunt. "A" tends to have less regular opposite branching than does "B". What is species "A"? ____________________ ___________________ Cheer up, if you cannot recognize it from the leaves, you surely can from the cones, as they are perhaps the most distinctive cones found among our conifers, having a 3- cornered bract extending past each seed-bearing scale. To repeat, the species is ____________________ ____________________ There are four species with leaf scars as shown in "B", all in the genus ______________. The species of this genus usually cannot be distinguished by the cones, since a peculiarity of this genus is that the cones are never shed in their entirety, but only scale by scale, leaving the axis of the cone on the tree, standing stiffly erect. These four species can be distinguished, though, by the presence of stomates on one or two surfaces, by differences in the arrangement and attachment of leaves, and by differences in positioning of resin ducts in the leaves. Two species, namely ________________ _______________ and ________________ _______________ have stomata on the lower side of the leaves, but not on the upper side (hence the leaves are gray beneath but green above). Of these two species without stomata on the upper surface, one has the needles practically all spreading in a horizontal plane, the upper and lower surfaces of the twigs being similarly exposed, while the other species has the needles on the upper side of the twigs appressed and pointing forward, well covering the top of the twig. On this basis, identify the two species as illustrated below. _______________ ________________ _______________ _______________ The other two species in the same genus (with leaf scars as shown in "B") have stomata on both leaf surfaces. These two species are _______________ _______________ and _______________ _______________. One of these, namely _______________ _______________, has ± straight leaves with one broad central row of stomata on upper leaf surface. The other species, _______________ _______________, has leaves with a sharp curve near the point of attachment to the twig (the leaves of this species resemble hockey sticks). Stomata on upper leaf surface are in two distinct rows with evident green midvein. With a single-edge razor blade, cut very thin leaf cross- sections of all four species and examine under the microscope. Three look like the top sketch, having very small resin ducts just within the lower epidermis; these three species are _______________ _______________, _______________ _______________, and _______________ _______________. The fourth species, _______________ ____________ resembles the lower sketch, in which the resin ducts are much larger and located midway between the midvein and the edge of the leaf and midway between the upper and lower epidermis. As with the scale-leaved species, many of the needle-leaved conifers can be recognized by their cones alone. Consider the following features: Two genera have cones with a 3-pointed bract arising from beneath each cone scale; the bracts may be about as long as the cone scales (barely visible) or considerably longer than the cone scales. Which of these has the larger cone? ________ _______________ and which the smaller? ________ _______________. Two cones have sharp hooks or spines near the tip of the scales. One of these has somewhat lopsided, smaller cones; it is ________ _______________.
Recommended publications
  • Pije 14 Jeffrey Pine-Incense
    PIJE 14 JEFFREY PINE-INCENSE-CEDAR/HUCKLEBERRY OAK Pinus jeffreyi-Calocedrus decurrens/Quercus vaccinifolia PIJE-CADE27/QUVA (N=13; FS=13) Distribution. This Association occurs on the Applegate and Ashland Ranger Districts, Rogue River National Forest and the Galice and Illinois Valley Ranger Districts, Siskiyou National Forest. It may also occur on the Ashland and Grants Pass Resource Areas, Medford District, Bureau of Land Management. Distinguishing Characteristics. This is a relatively high elevation Jeffrey pine association and is the coolest of the Jeffrey pine associations. Huckleberry oak and incense-cedar are usually present. Soils. Parent material is serpentine, with one occurrence of peridotite. Surface gravel and rock content averages 26 and 36 percent cover, respectively, while exposed bedrock cover averages 5 percent. Based on two plots sampled, soils are deep (greater than 40 inches) and well drained. Surface texture is silty clay loam, with 8 to 25 percent gravel, 35 to 50 percent cobbles and stones, and 32 percent PIJE 15 clay. Subsurface texture is silty clay loam, with 5 percent gravel, 40 percent cobbles and stones, and 32 to 35 percent clay. The soil moisture regime is probably xeric and the soil temperature regime is probably frigid. Soils classify to the following subgroups: Dystric Xerochrept and Typic Xerochrept. Environment. Elevation averages 3990 feet. Aspect is variable, although generally not northerly. Slope averages 33 percent with a range of 5 to 68 percent. Slope position ranges from ridgetops down to the middle one-third of the slope. Vegetation Composition and Structure. Total species richness is low for the Series, averaging 27 species.
    [Show full text]
  • Proceedings of the 56 Annual Western International Forest Disease Work
    Proceedings of the 56th Annual Western International Forest Disease Work Conference October 27-31, 2008 Missoula, Montana St. Marys Lake, Glacier National Park Compiled by: Fred Baker Department of Wildland Resources College of Natural Resources Utah State University Proceedings of the 56th Annual Western International Forest Disease Work Conference October 27 -31, 2008 Missoula, Montana Holiday Inn Missoula Downtown At The Park Compiled by: Fred Baker Department of Wildland Resources College of Natural Resources Utah State University & Carrie Jamieson & Patsy Palacios S.J. and Jessie E. Quinney Natural Resources Research Library College of Natural Resources Utah State University, Logan 2009, WIFDWC These proceedings are not available for citation of publication without consent of the authors. Papers are formatted with minor editing for formatting, language, and style, but otherwise are printed as they were submitted. The authors are responsible for content. TABLE OF CONTENTS Program Opening Remarks: WIFDWC Chair Gregg DeNitto Panel: Climate Change and Forest Pathology – Focus on Carbon Impacts of Climate Change for Drought and Wildfire Faith Ann Heinsch 3 Carbon Credit Projects in the Forestry Sector: What is Being Done to Manage Carbon? What Can Be Done? Keegan Eisenstadt 3 Mountain Pine Beetle and Eastern Spruce Budworm Impacts on Forest Carbon Dynamics Caren Dymond 4 Climate Change’s Influence on Decay Rates Robert L. Edmonds 5 Panel: Invasive Species: Learning by Example (Ellen Goheen, Moderator) Is Firewood Moving Tree Pests? William
    [Show full text]
  • Psme 46 Douglas-Fir-Incense
    PSME 46 DOUGLAS-FIR-INCENSE-CEDAR/PIPER'S OREGONGRAPE Pseudotsuga menziesii-Calocedrus decurrens/Berberis piperiana PSME-CADE27/BEPI2 (N=18; FS=18) Distribution. This Association occurs on the Applegate, Ashland, and Prospect Ranger Districts, Rogue River National Forest, and the Tiller and North Umpqua Ranger Districts, Umpqua National Forest. It may also occur on the Butte Falls Ranger District, Rogue River National Forest and adjacent Bureau of Land Management lands. Distinguishing Characteristics. This is a drier, cooler Douglas-fir association. White fir is frequently present, but with relatively low covers. Piper's Oregongrape and poison oak, dry site indicators, are also frequently present. Soils. Parent material is mostly schist, welded tuff, and basalt, with some andesite, diorite, and amphibolite. Average surface rock cover is 8 percent, with 8 percent gravel. Soils are generally deep, but may be moderately deep, with an average depth of greater than 40 inches. PSME 47 Environment. Elevation averages 3000 feet. Aspects vary. Slope averages 35 percent and ranges between 12 and 62 percent. Slope position ranges from the upper one-third of the slope down to the lower one-third of the slope. This Association may also occur on benches and narrow flats. Vegetation Composition and Structure. Total species richness is high for the Series, averaging 44 percent. The overstory is dominated by Douglas-fir and ponderosa pine, with sugar pine and incense-cedar common associates. Douglas-fir dominates the understory. Incense-cedar, white fir, and Pacific madrone frequently occur, generally with covers greater than 5 percent. Sugar pine is common. Frequently occurring shrubs include Piper's Oregongrape, baldhip rose, poison oak, creeping snowberry, and Pacific blackberry.
    [Show full text]
  • Cupressaceae Calocedrus Decurrens Incense Cedar
    Cupressaceae Calocedrus decurrens incense cedar Sight ID characteristics • scale leaves lustrous, decurrent, much longer than wide • laterals nearly enclosing facials • seed cone with 3 pairs of scale/bract and one central 11 NOTES AND SKETCHES 12 Cupressaceae Chamaecyparis lawsoniana Port Orford cedar Sight ID characteristics • scale leaves with glaucous bloom • tips of laterals on older stems diverging from branch (not always too obvious) • prominent white “x” pattern on underside of branchlets • globose seed cones with 6-8 peltate cone scales – no boss on apophysis 13 NOTES AND SKETCHES 14 Cupressaceae Chamaecyparis thyoides Atlantic white cedar Sight ID characteristics • branchlets slender, irregularly arranged (not in flattened sprays). • scale leaves blue-green with white margins, glandular on back • laterals with pointed, spreading tips, facials closely appressed • bark fibrous, ash-gray • globose seed cones 1/4, 4-5 scales, apophysis armed with central boss, blue/purple and glaucous when young, maturing in fall to red-brown 15 NOTES AND SKETCHES 16 Cupressaceae Callitropsis nootkatensis Alaska yellow cedar Sight ID characteristics • branchlets very droopy • scale leaves more or less glabrous – little glaucescence • globose seed cones with 6-8 peltate cone scales – prominent boss on apophysis • tips of laterals tightly appressed to stem (mostly) – even on older foliage (not always the best character!) 15 NOTES AND SKETCHES 16 Cupressaceae Taxodium distichum bald cypress Sight ID characteristics • buttressed trunks and knees • leaves
    [Show full text]
  • Sign. Tree Publication.Pub
    Heritage Tree Classification DISTRICT OF SAANICH OUTSTANDING ~ Age, Size, Specimen. SIGNIFICANT TREES TOUR RARE ~ One or very few of a kind. UNIQUE ~ Unusual in some form of growth HISTORICAL ~ Having been planted by a noted person, age or in some other way connected with a significant event. GROUP ~ Outstanding rows or groups of trees. WILDLIFE ~ Perch or nesting tree. AREA ~ An area with many outstanding individual trees or tree groups. These trees are endorsed by the Significant Tree Program, having been re- viewed and approved by the Environment and Natural Areas Advisory LANDMARK ~ Trees that over time have become Committee (ENA). landmarks. This tour will allow you to view a portion of the trees accepted into the program. Theses are the Criteria for Designation of a Significant Tree. District of Saanich Parks Division T. 250.475.5522 E. [email protected] Page 2 Touring of Saanich’s designated “Significant Trees” as per schedule B of the Interesng Facts Tree Protection Bylaw, starting at the Saanich Municipal Hall. Trees are listed in order of appearance along planned route. Incense Cedar (Calocedrus decurrens) Appears to resemble western red cedar, but not a true cedar. The 2 on Palmer Road were planted about 1900 by Mr. Palmer, head of a disnguished horcultural family. Start of Tour Tag Species Address California Redwood—Giant Sequoia (Sequoiadendron Giganteum) #16 Contorted Perkin Willow (Sakix babylonica) 770 Vernon Ave There is a double trunked coast redwood at 1815 Ferndale , was grown from a burl brought from California in 1952. #35 Austrian Pine (Pinus Nigra) 3891 Carey Rd #177 European Beech (Fagus Sylvatica) 3905 Carey Rd English Oak (Quercus Robur ) The tree located at 1895 Ferndale Rd, the #168 English Oak (Quercus Robur) 993 Columbine Way old McClung estate, was grown from an acorn planted by Nellie #169 Ponderosa (Pinus Ponderosa) 3993 Columbine Way McLung.
    [Show full text]
  • Vietnamese Conifers and Some Problems of Their Sustainable Utilization Ke Loc Et Al
    Vietnamese conifers and some problems of their sustainable utilization Ke Loc et al. Vietnamese conifers and some problems of their sustainable utilization Phan Ke Loc 1, 2, Nguyen Tien Hiep 2, Nguyen Duc To Luu 3, Philip Ian Thomas 4, Aljos Farjon 5, L.V. Averyanov 6, J.C. Regalado, Jr. 7, Nguyen Sinh Khang 2, Georgina Magin 8, Paul Mathew 8, Sara Oldfield 9, Sheelagh O’Reilly 8, Thomas Osborn 10, Steven Swan 8 and To Van Thao 2 1 University of Natural Science, Vietnam National University, Hanoi; 2 Institute of Ecology and Biological Resources; 3 Vietnam Central Forest Seed Company; 4 Royal Botanic Garden Edinburgh; 5 Royal Botanic Gardens, Kew; 6 Komarov Botanical Institute; 7 Missouri Botanical Garden; 8 Fauna & Flora International; 9 Global Trees Campaign; 10 Independent Consultant Introduction Vietnam is now recognized as one of the top ten global conifer conservation ‘hotspots’, as defined by the Conifer Specialist Group of the World Conservation Union (IUCN). Vietnam’s conifer flora has approximately 34 species that are indigenous to the country, making up about 5% of conifers known worldwide. Although conifers represent only less than 0.3% of the total number of higher vascular plant species of Vietnam, they are of great ecological, cultural and economic importance. Most conifer wood is prized for its high value in house construction, furniture making, etc. The decline of conifer populations in Vietnam has caused serious concern among scientists. Threats to conifer species are substantial and varied, ranging from logging (both commercial and subsistence), land clearing for agriculture, and forest fire. Over the past twelve years (1995-2006), Vietnam Botanical Conservation Program (VBCP), a scientific cooperation between the Missouri Botanical Garden in Saint Louis and the Institute of Ecology and Biological Resources in Hanoi, has conducted various studies on this important group of plants in order to gather baseline information necessary to make sound recommendations for their conservation and sustainable use.
    [Show full text]
  • Plant Palette - Trees 50’-0”
    50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Zelkova Serrata “Greenvase” Metasequoia glyptostroboides Cladrastis kentukea Chamaecyparis obtusa ‘Gracilis’ Ulmus parvifolia “Emer I” Green Vase Zelkova Dawn Redwood American Yellowwood Slender Hinoki Falsecypress Athena Classic Elm • Vase shape with upright arching branches • Narrow, conical shape • Horizontally layered, spreading form • Narrow conical shape • Broadly rounded, pendulous branches • Green foliage • Medium green, deciduous conifer foliage • Dark green foliage • Evergreen, light green foliage • Medium green, toothed leaves • Orange Fall foliage • Rusty orange Fall foliage • Orange to red Fall foliage • Evergreen, no Fall foliage change • Yellowish fall foliage Plant Palette - Trees 50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Quercus coccinea Acer freemanii Cercidiphyllum japonicum Taxodium distichum Thuja plicata Scarlet Oak Autumn Blaze Maple Katsura Tree Bald Cyprus Western Red Cedar • Pyramidal, horizontal branches • Upright, broad oval shape • Pyramidal shape • Pyramidal shape, develops large flares at base • Pyramidal, buttressed base with lower branches • Long glossy green leaves • Medium green fall foliage • Bluish-green, heart-shaped foliage • Leaves are needle-like, green • Leaves green and scale-like • Scarlet red Fall foliage • Brilliant orange-red, long lasting Fall foliage • Soft apricot Fall foliage • Rich brown Fall foliage • Sharp-pointed cone scales Plant Palette - Trees 50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Thuja plicata “Fastigiata” Sequoia sempervirens Davidia involucrata Hogan
    [Show full text]
  • DICOTS Aceraceae Maple Family Anacardiaceae Sumac Family
    FLOWERINGPLANTS Lamiaceae Mint family (ANGIOSPERMS) Brassicaceae Mustard family Prunella vulgaris - Self Heal Cardamine nutallii - Spring Beauty Satureja douglasii – Yerba Buena Rubiaceae Madder family DICOTS Galium aparine- Cleavers Boraginaceae Borage family Malvaceae Mallow family Galium trifidum – Small Bedstraw Aceraceae Maple family Cynoglossum grande – Houndstongue Sidalcea virgata – Rose Checker Mallow Acer macrophyllum – Big leaf Maple Oleaceae Olive family MONOCOTS Anacardiaceae Sumac family Fraxinus latifolia - Oregon Ash Toxicodendron diversilobum – Poison Oak Cyperaceae Sedge family Plantaginaceae Plantain family Carex densa Apiaceae Carrot family Plantago lanceolata – Plantain Anthriscus caucalis- Bur Chervil Iridaceae Iris family Daucus carota – Wild Carrot Portulacaceae Purslane family Iris tenax – Oregon Iris Ligusticum apiifolium – Parsley-leaved Claytonia siberica – Candy Flower Lovage Claytonia perforliata – Miner’s Lettuce Juncaceae Rush family Osmorhiza berteroi–Sweet Cicely Juncus tenuis – Slender Rush Sanicula graveolens – Sierra Sanicle Cynoglossum Photo by C.Gautier Ranunculaceae Buttercup family Delphinium menziesii – Larkspur Liliaceae Lily family Asteraceae Sunflower family Caryophyllaceae Pink family Ranunculus occidentalis – Western Buttercup Allium acuminatum – Hooker’s Onion Achillea millefolium – Yarrow Stellaria media- Chickweed Ranunculus uncinatus – Small-flowered Calochortus tolmiei – Tolmie’s Mariposa Lily Adendocaulon bicolor – Pathfinder Buttercup Camassia quamash - Camas Bellis perennis – English
    [Show full text]
  • IHCA Recommended Plant List
    Residential Architectural Review Committee Recommended Plant List Plant Materials The following plant materials are intended to guide tree and shrub ADDITIONS to residential landscapes at Issaquah Highlands. Lot sizes, shade, wind and other factors place size and growth constraints on plants, especially trees, which are suitable for addition to existing landscapes. Other plant materials may be considered that have these characteristics and similar maintenance requirements. Additional species and varieties may be selected if authorized by the Issaquah Highlands Architectural Review Committee. This list is not exhaustive but does cover most of the “good doers” for Issaquah Highlands. Our microclimate is colder and harsher than those closer to Puget Sound. Plants not listed should be used with caution if their performance has not been observed at Issaquah Highlands. * Drought-tolerant plant ** Requires well-drained soil DECIDUOUS TREES: Small • Acer circinatum – Vine Maple • Acer griseum – Paperbark Maple • *Acer ginnala – Amur Maple • Oxydendrum arboreum – Sourwood • Acer palmation – Japanese Maple • *Prunus cerasifera var. – Purple Leaf Plum varieties • Amelanchier var. – Serviceberry varieties • Styrax japonicus – Japanese Snowbell • Cornus species, esp. kousa Medium • Acer rufinerve – Redvein Maple • Cornus florida (flowering dogwood) • *Acer pseudoplatanus – Sycamore Maple • Acer palmatum (Japanese maple, many) • • *Carpinus betulus – European Hornbeam Stewartia species (several) • *Parrotia persica – Persian Parrotia Columnar Narrow
    [Show full text]
  • Integrated Conservation of Tree Species by Botanic Gardens: a Reference Manual Integrated Conservation of Tree Species by Botanic Gardens: a Reference Manual
    Integrated conservation of tree species by botanic gardens: a reference manual Integrated conservation of tree species by botanic gardens: a reference manual Compiled by: Sara Oldfield and Adrian C. Newton November 2012 Acknowledgements Many individUals have generoUsly contribUted their time to the preparation of this manUal and are acknowledged with gratitUde. Andrea Kramer provided sUbstantial Recommended citation: comments on an early draft and helped to shape the Oldfield, S. and Newton, A.C. 2012. strUctUre and content of the manUal greatly enhancing Integrated conservation of tree species by the final docUment. Larry Stritch critically reviewed the botanic gardens: a reference manUal. final draft and provided valUable improvements to the Botanic Gardens Conservation International, text. Ildiko Whitton provided assistance with research Richmond, United Kingdom throUghoUt the preparation of the manUal and prepared case stUdies as noted in the text. GratefUl thanks are ISBN-10: 1-905164-44-0 also dUe to Bart C. O’Brien, Joachim Gratzfeld, Dan ISBN-13: 978-1-905164-44-8 LUscombe, Megan Marrison, Matt Parratt, Lorraine Perrins, Simon Marshall and Mark Nicholson for the Cover image: provision of expert case stUdies. Thank yoU also to Barney Wilczak/Wilczak Photography.co.Uk Professor Patricio Arce, Corey Barnes, Lillian ChUa, Allen Coombes, Tonya Lander, Dr Philip Moors, Maricela Design: RodrigUez Acosta and Xiangying Wen. We acknowledge Seascape. www.seascapedesign.co.Uk the major contribUtion of Professor Zeng Qingwen to the conservation of Magnolia spp. Zeng Qingwen Published by prepared the case stUdy on p 35. He died in the field Botanic Gardens Conservation International whilst collecting Magnolia specimens in 2012 and will Descanso HoUse, 199 Kew Road, Richmond, be remembered by the international botanical SUrrey, TW9 3BW, United Kingdom commUnity for his skills, enthUsiasm and willingness © BGCI 2012 to share information.
    [Show full text]
  • Fplgtr113.Pdf
    Abstract Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses. Keywords: wood structure, physical properties (wood), mechanical properties (wood), lumber, wood-based composites, plywood, panel products, design, fastenings, wood moisture, drying, gluing, fire resistance, finishing, decay, sandwich construction, preservation, and wood- based products On the cover: (Left to right, top to bottom) 1. Research at the Forest Products Laboratory, Madison, Wisconsin, contributes to maximizing benefits of the Nation’s timber resource. 2. Testing the behavior of wood in fire helps enhance fire safety. 3. The all-wood, 162-m (530-ft ) clear-span Tacoma Dome exemplifies the structural and esthetic potential of wood construction (photo courtesy of Western Wood Structures, Inc., Tualatin, Oregon). 4. Bending tests are commonly used to determine the engineering properties of wood. 5. Engineered wood trusses exemplify research that has led to more efficient use of wood. 6. The Teal River stress-laminated deck bridge is March 1999 located in Sawyer County, Wisconsin. 7. Kiln drying of wood is an important procedure Forest Products Laboratory. 1999. Wood handbook—Wood as an during lumber manufacturing. engineering material. Gen. Tech. Rep. FPL–GTR–113. Madison, WI: 8. Legging adhesive (photo courtesy of Air Products U.S. Department of Agriculture, Forest Service, Forest Products and Chemicals, Inc., Allentown Pennsylvania). Laboratory. 463 p. Adhesive bonding is a critical component in the A limited number of free copies of this publication are available to the performance of many wood products.
    [Show full text]
  • A Ppendix C : T Ree R Eports
    A PPENDIX C : T REE R EPORTS ........................................................................................................................ ........................................................................................................................ ........................................................................................................................ ........................................................................................................................ ........................................................................................................................ ........................................................................................................................ November 4, 2015 Jennifer Russell, Director City of Lafayette Parks Trails & Recreation 500 Saint Mary’s Road Lafayette, CA 94549 RE: Tree Inventory & Assessment at Leigh Creekside Park Improvement Plan Dear Jennifer, Per the City’s request, I have reviewed site conditions and prepared the following Tree Inventory Report and Assessment for the existing trees on site as they relate to the proposed Preliminary Site Improvement Plan prepared by architect, James Dixon. An initial site visit was made on October 28, 2015 to review proposed site improvements. Attendees at this meeting: • Jennifer Russell, Director of City of Lafayette Parks, Trails & Recreation • Niroop Srivatsa, Senior Planner at the City of Lafayette • James Dixon, project architect • Penn Phillips, City landscape consultant and arborist
    [Show full text]