Science Article

Total Page:16

File Type:pdf, Size:1020Kb

Science Article Vol. 5, No. 11 November 1995 INSIDE • Science in National Parks, p. 216 • North-Central Section Meeting, GSA TODAY p. 225 A Publication of the Geological Society of America • Southeastern Section Meeting, p. 227 Evidence of Collisional Processes Associated with Ophiolite Obduction in the Eastern Mediterranean: Results from Ocean Drilling Program Leg 160 Scientific Participants of Leg 160: A. H. F. Robertson* and K.-C. Emeis (Co-Chief Scientists), C. Richter (Staff Scientist), M.-M. Blanc-Valleron, I. Bouloubassi, H.-J. Brumsack, A. Cramp, G. J. De Lange, E. Di Stefano, R. Flecker, E. Frankel, M. W. Howell, T. R. Janecek, M-J. Jurado-Rodriguez, A. E. S. Kemp, I. Koizumi, A. Kopf, C. O. Major, Y. Mart, D. F. C. Pribnow, A. Rabaute, A. P. Roberts, J. H. Rüllkotter, T. Sakamoto, S. Spezzaferri, T. S. Staerker, J. S. Stoner, B. M. Whiting, J. M. Woodside Figure 1. JOIDES Resolution at Marseilles, France, prior to departing on Leg 160. ABSTRACT driving force was tectonic loading by longer active (e.g., the Upper Creta- sional settings on land to the east to Recent drilling in the eastern the Eurasian plate. In this area the ceous Oman ophiolite). However, the areas of incipient collision on the Mediterranean Sea south of Cyprus leading edge is represented by the Troodos is an example of an ophiolite Mediterranean Ridge in the west (Cita has revealed important insights into Troodos ophiolite. The breakup and that is undergoing active emplacement and Camerlenghi, l990). One such area fundamental tectonic processes asso- subsidence history of the Eratos- today, in an area that is easily accessi- of incipient collision includes the ciated with continental collision and thenes Seamount, as revealed by ble and geologically well known. Much Eratosthenes Seamount, south of ophiolite emplacement. A transect drilling during Leg 160, is clearly of the evidence for this emplacement is Cyprus. Previous geophysical studies of four sites was drilled across the linked with the emplacement of the recorded beneath the sea to the south (Woodside, l977, l991; Krasheninnikov Africa-Eurasia plate boundary. The Troodos ophiolite. This underwent of Cyprus, along the boundary between et al., l994) suggest that the Eratos- results show that the African plate, strong surface uplift during active the African and Eurasian plates. This thenes Seamount is a fragment of con- represented by the Eratosthenes tectonic emplacement, associated area was a target of drilling during Leg tinental (or transitional-type) crust that Seamount, underwent rapid with collision of the seamount with 160 in March and April l995 (Figs. 1 is undergoing subsidence and breakup subsidence and related faulting the Cyprus margin. and 2). in a zone of incipient collision between in Pliocene-Pleistocene time. The The eastern Mediterranean Sea the African and Eurasian plates (Robert- INTRODUCTION (Fig. 3) is a remnant of the Mesozoic son, l990; Kempler, l993; Limonov et Tethys ocean (Dercourt et al., l993). al., l994; Robertson et al., l994, l995). *Corresponding author—Alastair Robertson, Many ophiolites were emplaced Different areas record various stages of Department of Geology and Geophysics, Uni- long ago by processes that are no versity of Edinburgh, Edinburgh, EH9 3JW, UK. Tethys closure, ranging from fully colli- Obduction continued on p. 219 ABCD E Figure 2. Core photographs illustrating stages in the tectonic-sedimentary evolution of the Eratosthenes Seamount and the adjacent Cyprus margin. A: Oncolites (algal balls) that accumulated on a shallow-water carbonate platform in Miocene time (Site 966, Core 17R, Section 1, 45–65 cm). B: Limestone (Miocene?) composed of various types of clasts, reflecting current reworking in a shal- low-water shelf setting (Site 966, Core 13R, Section 1, 1–21 cm). C: Debris flow composed of clasts of altered shallow-water limestone in a matrix of muddy nannofossil ooze of early Pliocene age (Site 966, Core 8H, Section 1, 1-23 cm). D: Clast-rich nannofossil ooze of Pliocene age showing slumping and color banding. The slumping is related to collapse of the Eratosthenes Seamount (Site 965, Core 3H, Section 3, 35–58 cm). E: Calcareous silty mud with detrital gypsum of Messinian(?) age, possibly deposited in a saline lake located at the foot of the Cyprus slope (Site 968, Core 25X, Section 2, 108–132 cm). Obduction continued from p. 213 This hypothesis could be tested by drilling a transect of relatively shallow holes (most <300 m) across the Africa- Eurasia plate boundary. One hole was Figure 3. Outline map of drilled on the northern part of the the Mediterranean showing seamount plateau (Site 966), one on the main tectonic features the upper northern slopes (Site 965), and the locations of the sites one on a small high at the base of the drilled during Leg 160. This article deals only with the northern slope of the seamount (Site transect of sites drilled 967), and one on the lower slope of the between Cyprus and the Cyprus margin to the north (Site 968; Eratosthenes Seamount Fig. 4, inset). (Sites 965, 966, 967, and In this article we summarize the 968). The line with teeth new information gained by drilling, marks the deformation front and we demonstrate how this can be between the African and used to test a model of collisional pro- Eurasian plates. cesses and ophiolite obduction that is of general importance. The details of the recovery at the individual sites are recorded elsewhere (Emeis, Robertson, Richter, et al., 1995). SUMMARY OF DRILLING RESULTS the Eratosthenes Seamount gave way to erosion and/or local accumulation of The nature of the basement of the gypsum and ferruginous muds in small Eratosthenes Seamount is unknown, marginal lagoons and/or lakes, as but it might represent transitional crust recorded at Sites 965 and 967 (Fig. 5). of a rifted passive margin. The presence By contrast, a much thicker (~150 m) of mafic igneous intrusions at depth is succession of inferred Messinian age suggested by the existence of a strong was deposited at Site 968 on the lower magnetic anomaly beneath the Cyprus slope. This was probably seamount and adjacent seafloor areas deposited in a large lake or inland sea, (Woodside, l977, l991). The oldest well below eustatic sea level. The exis- sediments recovered during Leg 160 are tence of Messinian lakes was previously undated shallow-water carbonates that inferred in the western Mediterranean underlie Upper Cretaceous pelagic Tyrrhenian Sea (Kastens, Mascle, et al., carbonates at Site 967 (Fig. 4). In the l990). pre–Upper Cretaceous, the Eratosthenes Distinctive matrix-supported brec- Seamount formed part of a carbonate cias occur between underlying shallow- platform, as widely exposed around the water carbonates and overlying nanno- eastern Mediterranean (e.g., in south- fossil oozes of early Pliocene age at Site ern Turkey and the Levant). Overlying 966. They formed by mainly mass-flow pelagic carbonates, of Upper Creta- processes during the early Pliocene ceous and middle Eocene age at Site (pre–4.5 Ma). The source of many of 967 and of exclusively middle Eocene the clasts was a shallow-water lime- age at Site 966, indicate accumulation stone, similar to the underlying succes- in a quiet deep-water (bathyal) setting. sion. Pliocene accumulation took place The absence of gravity input (e.g., tur- in a relatively deep-marine setting bidites) within the Upper Cretaceous (more than several hundred meters), and middle Eocene pelagic sediments based on microfossils in the matrix. is consistent with deposition on a Erosion of the limestones that are submerged platform or promontory, redeposited as clasts in the lower isolated from terrigenous input. The Pliocene might have been subaerial, Figure 4. Summary of the successions drilled on the Eratosthenes Seamount and lower slope of Eratosthenes Seamount area was proba- subaqueous, or both, but there is little the Cyprus margin. Lower left: Simplified bathymetry of the transect area. bly then still located well to the south evidence of clast rounding via sedimen- of areas of Tethys that experienced tary transport. A tectonic fabric present ophiolite emplacement and active mar- within several clasts could suggest gin deformation in the latest Creta- derivation from a faulted rock (e.g., ceous (Campanian-Maastrichtian; an erosional fault scarp). The presence ¸Sengör and Yilmaz, l981). of nannofossil mud clasts also indicates Middle Eocene pelagic carbonate that deep-marine sediments were accumulation was followed by shallow- reworked in an unstable slope setting. water carbonate deposition. The car- The Pliocene-Pleistocene succes- bonates accumulated in a near-reef, sions at each site are composed of nan- platform setting and are dated as early nofossil oozes interbedded with cal- Miocene at Site 967, on the basis of careous muds, numerous sapropels, benthic foraminifera (I. Premoli-Silva, and minor volcanic ash. The Eratos- 1995, personal commun.). Water thenes Seamount sites (Sites 965, 966, depths must have decreased by more and 967) are now at water depths rang- than several hundred meters between ing from 700 to 2900 m. These differ- the middle Eocene and the Miocene, ences in water depth are the result of which implies that surface tectonic differential subsidence of the seamount uplift of the Eratosthenes Seamount area. Much of this subsidence took must have taken place, in addition to place relatively rapidly. The early the effects of any eustatic sea-level Pliocene sediments accumulated in change. This uplift is not likely to have deep water, without evidence of a grad- been collision-induced, because the ual upward transition from shallow- subsequent Miocene shallow-water water conditions. Benthic foraminifers deposition took place under relatively indicate a further deepening after the tectonically stable conditions, but it late Pliocene, at least at Site 967. could instead reflect tectonic move- ments related to an earlier history of TECTONIC MODEL OF subduction.
Recommended publications
  • Preliminary Catalog of the Sedimentary Basins of the United States
    Preliminary Catalog of the Sedimentary Basins of the United States By James L. Coleman, Jr., and Steven M. Cahan Open-File Report 2012–1111 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Coleman, J.L., Jr., and Cahan, S.M., 2012, Preliminary catalog of the sedimentary basins of the United States: U.S. Geological Survey Open-File Report 2012–1111, 27 p. (plus 4 figures and 1 table available as separate files) Available online at http://pubs.usgs.gov/of/2012/1111/. iii Contents Abstract ...........................................................................................................................................................1
    [Show full text]
  • Carbonate Ramps: an Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 Carbonate ramps: an introduction V. P. WRIGHT 1 & T. P. BURCHETTE 2 1Department of Earth Sciences, Cardiff University, Cardiff CF1 3YE, UK and BG Exploration and Production, 100 Thames Valley Park Drive, Reading RG6 1PT, UK 2Bp Exploration, Building 200, Chertsey Road, Sunbury-on-Thames, Middlesex TW16 7LN, UK Carbonate ramps are carbonate platforms which history. The term shelf is, however, most widely have a very low gradient depositional slope used in the geological context for any broad, (commonly less than 0.1 ~ from a shallow-water gently-sloping surface, clastic or carbonate, shoreline or lagoon to a basin floor (Burchette & which has a break in slope in deeper water, and Wright 1992). A large proportion of carbonate is typified by usage of the term 'continental successions in the geological record were shelf' (e.g. Bates & Jackson 1987). In addition, deposited in ramp-like settings. Nevertheless, the term ramp is now also widely used by clastic ramps remain one of the more enigmatic sedimentologists for low-gradient submarine carbonate platform types. In contrast to steeper- slopes, particularly on continental shelves. sloped rimmed shelves and isolated buildups, Where the dominant sea-floor sediments are of where the factors which have controlled their carbonate mineralogy, however, such a configu- location and development are commonly quite ration has become known as a 'distally steep- evident, the controls on ramp development have ened ramp', a morphology which in carbonate seldom been clearly demonstrated. In order to settings is more often than not inherited from an shed new light on this topic, and related aspects antecedent morphological feature.
    [Show full text]
  • Growth and Demise of a Paleogene Isolated Carbonate Platform of the Offshore Indus Basin, Pakistan: Effects of Regional and Local Controlling Factors
    Published in "Marine Micropaleontology 140: 33–45, 2018" which should be cited to refer to this work. Growth and demise of a Paleogene isolated carbonate platform of the Offshore Indus Basin, Pakistan: effects of regional and local controlling factors Khurram Shahzad1 · Christian Betzler1 · Nadeem Ahmed2 · Farrukh Qayyum1 · Silvia Spezzaferri3 · Anwar Qadir4 Abstract Based on high-resolution seismic and well depositional trend of the platform, controlled by the con- datasets, this paper examines the evolution and drown- tinuing thermal subsidence associated with the cooling of ing history of a Paleocene–Eocene carbonate platform in volcanic margin lithosphere, was the major contributor of the Offshore Indus Basin of Pakistan. This study uses the the accommodation space which supported the vertical internal seismic architecture, well log data as well as the accumulation of shallow water carbonate succession. Other microfauna to reconstruct factors that governed the car- factors such as eustatic changes and changes in the carbon- bonate platform growth and demise. Carbonates domi- ate producers as a response to the Paleogene climatic per- nated by larger benthic foraminifera assemblages permit turbations played secondary roles in the development and constraining the ages of the major evolutionary steps and drowning of these buildups. show that the depositional environment was tropical within oligotrophic conditions. With the aid of seismic stratigra- Keywords Paleogene carbonate platform · Seismic phy, the carbonate platform edifice is resolved into seven sequence stratigraphy · Drowning · Offshore Indus Basin · seismic units which in turn are grouped into three packages Larger benthic foraminifera · Biostratigraphy that reflect its evolution from platform initiation, aggrada- tion with escarpment formation and platform drowning.
    [Show full text]
  • A New Crustal Model of the Anatolia–Aegean
    A new crustal model of the Anatolia–Aegean domain: evidence for the dominant role of isostasy in the support of the Anatolian plateau Hayrullah Karabulut, Anne Paul, Ali Değer Özbakır, Tuğçe Ergün, Selver Şentürk To cite this version: Hayrullah Karabulut, Anne Paul, Ali Değer Özbakır, Tuğçe Ergün, Selver Şentürk. A new crustal model of the Anatolia–Aegean domain: evidence for the dominant role of isostasy in the support of the Anatolian plateau. Geophysical Journal International, Oxford University Press (OUP), 2019, 218 (1), pp.57-73. 10.1093/gji/ggz147. hal-02156625 HAL Id: hal-02156625 https://hal.archives-ouvertes.fr/hal-02156625 Submitted on 14 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geophys. J. Int. (2019) 218, 57–73 doi: 10.1093/gji/ggz147 Advance Access publication 2019 March 27 GJI Geodynamics and tectonics A new crustal model of the Anatolia–Aegean domain: evidence for the dominant role of isostasy in the support of the Anatolian plateau Hayrullah Karabulut,1 Anne Paul,2 Ali Deger˘ Ozbakır,¨ 1 Tugc˘ ¸e Ergun¨ 1 and Selver S¸enturk¨ 3 1Bogazic˘ ¸i University, Kandilli Observatory and Earthquake Research Institute, Department of Geophysics, 34685 Istanbul, Turkey.
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 50
    38. MESOZOIC CALCITURBDITES IN DEEP SEA DRILLING PROJECT HOLE 416A RECOGNITION OF A DROWNED CARBONATE PLATFORM Wolfgang Schlager, Rosenstiel School of Marine and Atmospheric Science, Division of Marine Geology and Geophysics, University of Miami, Miami, Florida ABSTRACT The Tithonian-Hauterivian section of Site 416 contains about 10 per cent limestone and marlstone in well-defined beds between shale and sandstone. Depositional structures, grain composition, and dia- genetic fabrics of the limestone beds as well as their association with graded sandstone and brown shale suggest their deposition by turbid- ity currents below calcite-compensation depth. Carbonate material was initially shed from a shallow-water platform with ooid shoals and peloidal sands. Soft clasts of deep-water carbonate muds were ripped up during downslope sediment transport. Shallow-water mud of metastable aragonite and magnesium calcite was deposited on top of the graded sands, forming the fine tail of the turbidite; it has been subsequently altered to tight micritic limestone that is harder and less porous than Coccolith sediment under similar overburden. Abnor- mally high strontium contents are attributed to high aragonite con- tents in the original sediment. This suggests that the limestone beds behaved virtually as closed systems during diagenesis. Drowning of the platform during the Valanginian is inferred from the disappearance of the micritic limestones, the increase in abun- dance of phosphorite, of ooids with quartz nuclei, and of the quartz content in the calciturbidites. In Hauterivian time, the carbonate supply disappeared completely. The last limestone layers are litho- clastic breccias which indicate that erosion has cut into well-lithified and dolomitized deeper parts of the platform rather than sweeping off loose sediment from its top.
    [Show full text]
  • Tsunami Risk Analysis of the East Coast of the United States
    Tsunami Risk Analysis of the East Coast of the United States INTRODUCTION METHODOLOGY In the wake of the 2004 Indian Ocean tsunami and the 2011 Japan tsunami and Given the large area of the east coast, a rudimentary analysis was performed. corresponding nuclear disaster, much more attention has been focused on coastal Elevation is the most important factor in analyzing the risk of flooding in a coastal vulnerability to tsunamis. Areas near active tectonic margins have a much higher area; the lower the elevation, the greater the potential for damage. Elevation data risk of being hit by a tsunami, due to proximity. People who live in these areas are was reclassified into no risk, medium risk, and high risk zones. These zones were: more aware of the danger than their counterparts on passive tectonic margins. It is 25+ m above sea level, 10 to 25 m above sea level, and below 10 m above sea lev- generally a good assumption that the risk of a tsunami is low in places like the el. Essentially, most land adjacent to the coast that falls in the final category eastern seaboard of the United States. would be badly damaged by a 10m tsunami from the Canary Islands, unless buff- Despite the low risk, the east coast has been hit by tsunamis in the past. Ex- ered by another portion of land blocking the coast. If a larger tsunami were to oc- amples include the Newfoundland tsunami caused by the Grand Banks earth- cur, up to the max wave height predicted by Ward and Day of 25 m, any land ad- quake.
    [Show full text]
  • Coupled Onshore Erosion and Offshore Sediment Loading As Causes of Lower Crust Flow on the Margins of South China Sea Peter D
    Clift Geosci. Lett. (2015) 2:13 DOI 10.1186/s40562-015-0029-9 REVIEW Open Access Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of South China Sea Peter D. Clift1,2* Abstract Hot, thick continental crust is susceptible to ductile flow within the middle and lower crust where quartz controls mechanical behavior. Reconstruction of subsidence in several sedimentary basins around the South China Sea, most notably the Baiyun Sag, suggests that accelerated phases of basement subsidence are associated with phases of fast erosion onshore and deposition of thick sediments offshore. Working together these two processes induce pressure gradients that drive flow of the ductile crust from offshore towards the continental interior after the end of active extension, partly reversing the flow that occurs during continental breakup. This has the effect of thinning the continental crust under super-deep basins along these continental margins after active extension has finished. This is a newly recognized form of climate-tectonic coupling, similar to that recognized in orogenic belts, especially the Himalaya. Climatically modulated surface processes, especially involving the monsoon in Southeast Asia, affects the crustal structure offshore passive margins, resulting in these “load-flow basins”. This further suggests that reorganiza- tion of continental drainage systems may also have a role in governing margin structure. If some crustal thinning occurs after the end of active extension this has implications for the thermal history of hydrocarbon-bearing basins throughout the area where application of classical models results in over predictions of heatflow based on observed accommodation space.
    [Show full text]
  • Passive Margin Salt Tectonics: Effects of Margin Tilt, Sediment Progradation, and Regional Extension
    Passive Margin Salt Tectonics: Effects of Margin Tilt, Sediment Progradation, and Regional Extension Steven J. Ings* Department of Earth Sciences, Dalhousie University, Halifax, NS, B3H 3J5 [email protected] and Lykke Gemmer and Chris Beaumont Department of Oceanography, Dalhousie University, Halifax, NS, B3H 4J1 ABSTRACT Deformation of many passive continental margin sedimentary packages is dominated by salt tectonics (e.g., offshore west Africa, east Brazil, eastern Canada). In many cases, salt became mobilized at an early stage of basin formation. In cases where salt deposition was syn-rift or immediately post-rift (e.g., Scotian margin, offshore eastern Canada), early salt mobilization may have been initiated by a combination of tilting and regional extension of the margin. On the Scotian margin, salt tectonics has been long-lived; once salt was initially mobilized, it continued to deform well into the Tertiary. Sediment progradation and aggradation into the Scotian Basin was likely the primary control on long- lived salt tectonics on the Nova Scotian margin. We analyze the driving mechanisms of passive margin salt tectonics using finite element numerical models of a viscous substratum (salt) overlain by a frictional- plastic overburden (sedimentary rocks), and present results of models incorporating margin tilting, regional extension, and sedimentation. The numerical models show that sediment progradation combined with basinward tilt destabilizes the salt-overburden system more than progradation alone. A basinward margin tilt of 1 degree accelerates the evolution of the system, and thereby produces landward extensional structures and basinward contractional salt structures earlier in the model evolution than with progradation alone, resulting in the formation of long allochthonous salt sheets extending greater lateral distances than in equivalent models without tilt.
    [Show full text]
  • Morphology of a Pre-Collisional, Salt-Bearing, Accretionary Complex: the Mediterranean Ridge (Eastern Mediterranean)
    Marine Geophysical Researches (2006) 27: 61–75 Ó Springer 2006 DOI 10.1007/s11001-005-5026-5 Morphology of a pre-collisional, salt-bearing, accretionary complex: The Mediterranean Ridge (Eastern Mediterranean) C. Huguen1,2,*, N. Chamot-Rooke3, B. Loubrieu4 & J. Mascle1 1UMR 6526 Ge´osciences-Azur, Observatoire Oce´anologique de Villefranche-sur-Mer, BP 4806235, Villefranche-sur-Mer Cedex, France 2LEGEM, Universite´ de Perpignan, 52 Avenue de Villeneuve, 66860, Perpignan Cedex, France 3Laboratoire de Ge´ologie, CNRS-UMR 8538, Ecole Normale Supe´rieure, 24 rue Lhomond, 75231, Paris Cedex 05, France 4IFREMER, DRO/GM, BP 7029270, Plouzane, France; *Author for correspondence (Tel.: +33-4-68662049; Fax: +33-4-68661747; E-mail: [email protected]) Received 13 December 2004; accepted 10 November 2005 Key words: Eastern Mediterranean, multibeam data, Mediterranean Ridge, subduction Abstract The Eastern Mediterranean Sea is a remnant of a deep Mesozoic oceanic basin, now almost totally consumed as a result of long-term plate convergence between Eurasia and Africa. The present-day surface morphology of the Eastern Mediterranean relates both to the early history of formation of the deep basins and the recent geodynamic interactions between interfering microplates. Among the most conspicuous morphologic features of the basin is an arc-shape, elongated and wide, bathymetric swell bisecting the entire basin from the Ionian to Levantine areas, known as the Mediterranean Ridge. During the last decade this tectono-sedimentary accretionary prism, which results from the Hellenic subduction, has been intensively surveyed by swath mapping, multichannel seismic profiling and deep dives. We present here, and briefly discuss, the main morphological characteristics of this feature as derived from swath bathymetric data that considerably help to better assess the lateral and north–south morphostructural variability of the Mediterranean Ridge.
    [Show full text]
  • Structure and Distribution of Cold Seep Communities Along the Peruvian Active Margin: Relationship to Geological and Fluid Patterns
    MARINE ECOLOGY PROGRESS SERIES Vol. 132: 109-125, 1996 Published February 29 Mar Ecol Prog Ser l Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns 'Laboratoire Ecologie Abyssale, DROIEP, IFREMER Centre de Brest, BP 70, F-29280 Plouzane, France '~epartementdes Sciences de la Terre, UBO, 6 ave. Le Gorgeu, F-29287 Brest cedex, France 3~aboratoireEnvironnements Sedimentaires, DROIGM, IFREMER Centre de Brest, BP 70, F-29280 Plouzane, France "niversite P. et M. Curie, Observatoire Oceanologique de Banyuls, F-66650 Banyuls-sur-Mer, France ABSTRACT Exploration of the northern Peruvian subduction zone with the French submersible 'Nau- tile' has revealed benthlc communities dominated by new species of vesicomyid bivalves (Calyptogena spp and Ves~comyasp ) sustained by methane-nch fluid expulsion all along the continental margin, between depths of 5140 and 2630 m Videoscoplc studies of 25 dives ('Nautiperc cruise 1991) allowed us to describe the distribution of these biological conlnlunities at different spahal scales At large scale the communities are associated with fluid expuls~onalong the major tectonic features (scarps, canyons) of the margln At a smaller scale on the scarps, the distribuhon of the communities appears to be con- trolled by fluid expulsion along local fracturatlon features such as joints, faults and small-scale scars Elght dlves were made at one particular geological structure the Middle Slope Scarp (the scar of a large debns avalanche) where numerous
    [Show full text]
  • Gas Seeps and Gas Hydrates in the Amazon Deep-Sea
    Gas seeps and gas hydrates in the Amazon deep-sea fan Joao Marcelo Ketzer, Adolpho Augustin, Luiz Frederico Rodrigues, Rafael Oliveira, Daniel Praeg, Maria Alejandra Gomez Pivel, Antonio Tadeu dos Reis, Cleverson Silva, Bruno Leonel To cite this version: Joao Marcelo Ketzer, Adolpho Augustin, Luiz Frederico Rodrigues, Rafael Oliveira, Daniel Praeg, et al.. Gas seeps and gas hydrates in the Amazon deep-sea fan. Geo-Marine Letters, Springer Verlag, 2018, 38 (5), pp.429-438. 10.1007/s00367-018-0546-6. hal-02196115 HAL Id: hal-02196115 https://hal.archives-ouvertes.fr/hal-02196115 Submitted on 9 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geo-Marine Letters (2018) 38:429–438 https://doi.org/10.1007/s00367-018-0546-6 ORIGINAL Gas seeps and gas hydrates in the Amazon deep-sea fan Joao Marcelo Ketzer1,2 & Adolpho Augustin1 & Luiz Frederico Rodrigues1 & Rafael Oliveira1 & Daniel Praeg1,3 & 4 Maria Alejandra Gomez Pivel & Antonio Tadeu dos Reis5 & Cleverson Silva6 & Bruno Leonel7 Received: 10 January 2018 /Accepted: 2 August 2018 /Published online: 17 August 2018 # The Author(s) 2018 Abstract Deep-sea fans have been proposed to act as carbon sinks, rapid deposition driving shallow methanogenesis to favor net storage within the gas hydrate stability zone (GHSZ).
    [Show full text]
  • San Andrés, Old Providence and Santa Catalina (Caribbean Sea, Colombia)
    REEF ENVIRONMENTS AND GEOLOGY OF AN OCEANIC ARCHIPELAGO: SAN ANDRÉS, OLD PROVIDENCE AND SANTA CATALINA (CARIBBEAN SEA, COLOMBIA) with Field Guide JÓRN GEISTER Y JUAN MANUEL DÍAZ República de Colombia MINISTERIO DE MINAS Y ENERGÍA INSTITUTO COLOMBIANO DE GEOLOGÍA Y MINERÍA INGEOMINAS REEF ENVIRONMENTS AND GEOLOGY OF AN OCEANIC ARCHIPELAGO: SAN ANDRÉS, OLD PROVIDENCE AND SANTA. CATALINA (CARIBBEAN SEA, COLOMBIA with FIELD GUIDE) INGEOMINAS 2007 DIAGONAL 53 N°34-53 www.ingeominas.gov.co DIRECTOR GENERAL MARIO BALLESTEROS MEJÍA SECRETARIO GENERAL EDWIN GONZÁLEZ MORENO DIRECTOR SERVICIO GEOLÓGICO CÉSAR DAVID LÓPEZ ARENAS DIRECTOR SERVICIO MINERO (e) EDWARD ADAN FRANCO GAMBOA SUBDIRECTOR DE GEOLOGÍA BÁSICA ORLANDO NAVAS CAMACHO COORDINADORA GRUPO PARTICIPACIÓN CIUDADANA, ATENCIÓN AL CLIENTE Y COMUNICACIONES SANDRA ORTIZ ÁNGEL AUTORES: 315RN GEISTER Y JUAN MANUEL DÍAZ REVISIÓN EDITORIAL HUMBERTO GONZÁLEZ CARMEN ROSA CASTIBLANCO DISEÑO Y DIAGRAMACIÓN GUSTAVO VEJARANO MATIZ J SILVIA GUTIÉRREZ PORTADA: Foto: Estación en el mar Cl. San Andrés: Pared vertical de Bocatora Hole a -30 m. El coral Montastraea sp. adoptó una forma plana. Agosto de 1998. IMPRESIÓN IMPRENTA NACIONAL DE COLOMBIA CONTENT PREFACE 7 1. GENERAL BACKGROUND 8 2. STRUCTURAL SETTING AND REGIONAL GEOLOGY OF THE ARCHIPÉLAGO 9 2.1 Caribbean Piafe 9 2.2 Upper and Lower Nicaraguan Rises 9 2.3 Hess Escarpment and Colombia Basin 11 2.4 Islands and atolls of the Archipelago 12 3. CLIMATE AND OCEANOGRAPHY 14 4. GENERAL CHARACTERS OF WESTERN CARIBBEAN OCEANIC REEF COMPLEXE (fig. 7)
    [Show full text]