THE STRONG SYMMETRIC GENUS AND GENERALIZED SYMMETRIC GROUPS OF TYPE G(n, 3) MICHAEL A. JACKSON Abstract. The generalized symmetric groups are defined to be G(n, m) = Zm o Σn where n, m ∈ Z+. The strong symmetric genus of a finite group G is the smallest genus of a closed orientable topological surface on which G acts faithfully as a group of orientation preserving automorphisms. The present work extends work on the strong symmetric genus by Marston Conder, who studied the symmetric groups, which are G(n, 1), and by the author, who studied the hyperoctahedral groups, which are G(n, 2). We give results for the strong symmetric genus of the groups of type G(n, 3). Grove City College, 100 Campus Drive, Grove City, PA 16127
[email protected]. 1 1. Introduction The strong symmetric genus of the finite group G is the smallest genus of a compact orientable surface on which G acts as a group of orientation preserving symmetries and is denoted σ0(G). The strong symmetric genus has a long history beginning with Burnside [1]. For more general information see [10, Chapter 6]. The strong symmetric genus of many groups are known: the alternating and symmetric groups [2, 3, 4], the hyperoctahedral groups [12], the remaining finite Coxeter groups [11], the groups P SL2(q) [8, 9] and SL2(q) [15], as well as the sporadic finite simple groups [5, 16, 17, 18]. The generalized symmetric groups G(n, m) are defined for n > 1 and m ≥ 1 to be the wreath product Zm o Σn.