XII. Thermal Light Curves of Haumea, 2003 VS2 and 2003 AZ84 with Herschel/PACS?

Total Page:16

File Type:pdf, Size:1020Kb

XII. Thermal Light Curves of Haumea, 2003 VS2 and 2003 AZ84 with Herschel/PACS? A&A 604, A95 (2017) Astronomy DOI: 10.1051/0004-6361/201630354 & c ESO 2017 Astrophysics “TNOs are Cool”: A survey of the trans-Neptunian region XII. Thermal light curves of Haumea, 2003 VS2 and 2003 AZ84 with Herschel/PACS? P. Santos-Sanz1, E. Lellouch2, O. Groussin3, P. Lacerda4, T. G. Müller5, J. L. Ortiz1, C. Kiss6, E. Vilenius5; 7, J. Stansberry8, R. Duffard1, S. Fornasier2; 9, L. Jorda3, and A. Thirouin10 1 Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008-Granada, Spain e-mail: [email protected] 2 LESIA-Observatoire de Paris, CNRS, UPMC Univ. Paris 6, Univ. Paris-Diderot, France 3 Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France 4 Astrophysics Research Centre, Queen’s University Belfast, Belfast BT7 1NN, UK 5 Max-Planck-Institut für extraterrestrische Physik (MPE), Garching, Germany 6 Konkoly Observatory of the Hungarian Academy of Sciences, Budapest, Hungary 7 Max-Planck-Institut für Sonnensystemforschung (MPS), Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany 8 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 9 Univ. Paris Diderot, Sorbonne Paris Cité, 4 rue Elsa Morante, 75205 Paris, France 10 Lowell Observatory, 1400 W Mars Hill Rd, Flagstaff, Arizona 86001, USA Received 24 December 2016 / Accepted 19 April 2017 ABSTRACT Context. Time series observations of the dwarf planet Haumea and the Plutinos 2003 VS2 and 2003 AZ84 with Herschel/PACS are presented in this work. Thermal emission of these trans-Neptunian objects (TNOs) were acquired as part of the “TNOs are Cool” Herschel Space Observatory key programme. Aims. We search for the thermal light curves at 100 and 160 µm of Haumea and 2003 AZ84, and at 70 and 160 µm for 2003 VS2 by means of photometric analysis of the PACS data. The goal of this work is to use these thermal light curves to obtain physical and thermophysical properties of these icy Solar System bodies. Methods. When a thermal light curve is detected, it is possible to derive or constrain the object thermal inertia, phase integral and/or surface roughness with thermophysical modeling. Results. Haumea’s thermal light curve is clearly detected at 100 and 160 µm. The effect of the reported dark spot is apparent at 100 µm. Different thermophysical models were applied to these light curves, varying the thermophysical properties of the surface within and outside the spot. Although no model gives a perfect fit to the thermal observations, results imply an extremely low thermal inertia (<0.5 J m−2 s−1=2 K−1, hereafter MKS) and a high phase integral (>0:73) for Haumea’s surface. We note that the dark spot region appears to be only weakly different from the rest of the object, with modest changes in thermal inertia and/or phase integral. The thermal light curve of 2003 VS2 is not firmly detected at 70 µm and at 160 µm but a thermal inertia of (2 ± 0:5) MKS can be derived from these data. The thermal light curve of 2003 AZ84 is not firmly detected at 100 µm. We apply a thermophysical model to the mean thermal fluxes and to all the Herschel/PACS and Spitzer/MIPS thermal data of 2003 AZ84, obtaining a close to pole-on orientation as the most likely for this TNO. Conclusions. For the three TNOs, the thermal inertias derived from light curve analyses or from the thermophysical analysis of the mean thermal fluxes confirm the generally small or very small surface thermal inertias of the TNO population, which is consistent with a statistical mean value Γmean = 2:5 ± 0:5 MKS. Key words. Kuiper belt objects: individual: Haumea – Kuiper belt objects: individual: 2003 VS2 – Kuiper belt objects: individual: 2003 AZ84 – submillimeter: planetary systems – techniques: photometric – infrared: planetary systems 1. Introduction (TNOs) and Centaurs can be shape-driven (i.e. Jacobi-shaped rotating body, such as Varuna, Jewitt & Sheppard 2002) or be The study of the visible photometric variation of solar system causes by albedo contrasts on the surface of a Maclaurin-shaped minor bodies enables us to determine optical light curves (flux rotating spheroid (e.g. the Pluto case). Combinations of shape or magnitude versus time), for which essential parameters are the and albedo effects are also possible and very likely occur within peak-to-peak amplitude and the rotational period of the object. TNOs (e.g. Makemake) and Centaurs. Contact-binaries can also Short-term photometric variability of trans-Neptunian objects produce short-term photometric variability within the TNO and Centaur populations. The largest amplitudes are usually associ- ? Herschel is an ESA space observatory with science instruments pro- ated with Jacobi shapes and the smallest ones with Maclaurin vided by European–led Principal Investigator consortia and with impor- shapes with highly variegated surfaces. Large amplitudes can tant participation from NASA. PACS: The Photodetector Array Camera also be associated with contact-binaries and small amplitudes and Spectrometer is one of Herschel’s instruments. Article published by EDP Sciences A95, page 1 of 19 A&A 604, A95 (2017) with objects with rotational axes close to pole-on. If we know techniques applied are detailed in Sect.3. Data are analyzed, the rotational properties (i.e. rotation period and amplitude) of modeled, and interpreted in Sect.4. Finally, the major conclu- a Jacobi shaped object, it is possible to derive the axes ratio of sions of this work are summarized and discussed in Sect.5. the ellipsoid (i.e. a shape model) and also a lower limit for the density (Jewitt & Sheppard 2002; Sheppard et al. 2008, and ref- 2. Observations erences therein), assuming the object is in hydrostatic equilib- rium (Chandrasekhar 1987) with a certain aspect angle. On the The observations presented here are part of the project other hand, if we suspect that the object has a Maclaurin shape “TNOs are Cool”: a survey of the trans-Neptunian region, we can derive a shape model from the rotational period, but it a Herschel Space Observatory open time key programme is needed to assume a realistic density in this case. The majority (Müller et al. 2009). This programme used ∼372 h of Her- of the TNOs/Centaurs (∼70%) present shallow light curves (am- schel time (plus ∼30 h within the SDP) to observe 130 plitudes less than 0.15 mag), which indicates that most of them TNOs/Centaurs, plus two giant planet satellites (Phoebe and are Maclaurin-shaped bodies (Duffard et al. 2009; Thirouin et al. Sycorax), with Herschel/PACS; 11 of these objects were also 2010). For a couple of special cases (only for Centaurs until now) observed with Herschel/SPIRE at 250, 350, and 500 µm (see where more information is available (i.e. long-term changes in Fornasier et al. 2013), with the main goal of obtaining sizes, light curve amplitudes), the position of the rotational axis can be albedos, and thermophysical properties of a large set of ob- derived or at least constrained (Tegler et al. 2005; Duffard et al. jects that are representative of the different dynamical popu- 2014a; Ortiz et al. 2015; Fernandez-Valenzuela et al. 2017). lations within the TNOs. For PACS measurements, we used Complementary to optical light curves, thermal light curves a range of observation durations from about 40 to 230 min are a powerful tool to obtain additional information about physi- based on flux estimates for each object. Results of the PACS cal and, in particular, thermal properties of these bodies. At first and SPIRE measurements to date have been published in order, immediate comparison of the thermal and optical light Müller et al.(2010), Lellouch et al.(2010), Lim et al.(2010), curves enables us to differentiate between shape-driven light Santos-Sanz et al.(2012), Mommert et al.(2012), Vilenius et al. curves (the thermal light curve is then correlated with the op- (2012), Pál et al.(2012), Fornasier et al.(2013), Lellouch et al. tical one) and light curves that are the result of albedo markings (2013), Vilenius et al.(2014), Du ffard et al.(2014b) 1. In addi- (the two light curves are anti-correlated). Furthermore, quantita- tion, four bright objects (Haumea, 2003 VS2, 2003 AZ84 and tive modeling of the thermal light curve enables us to constrain Varuna) were re-observed long enough to search for thermal the surface energetic and thermal properties, namely its bolomet- emission variability related to rotation (i.e. thermal light curve). ric albedo, thermal inertia, and surface roughness (e.g. Pluto, see This paper presents results for the first three. Other objects Lellouch et al. 2016, and references therein). In a more intuitive (Pluto, Eris, Quaoar, Chiron) were also observed outside of the way, in the case of positively correlated thermal and optical light “TNOs are Cool” programme to search for their thermal light curves, it is also possible to constrain the thermal inertia using curve. the delay between the thermal and optical light curves and their The general strategy we used to detect a thermal light curve relative amplitudes. with Herschel/PACS was to perform a long observation covering Until recently, only a few thermal light curves of outer most of the expected light curve duration, followed by a shorter Solar System minor bodies (or dwarf planets) have been ob- follow-on observation, which enabled us to clean the images’ tained. Pluto’s thermal light curve was detected with ISO/PHOT, backgrounds, as explained in Sect. 3.1. Spitzer/MIPS, and /IRC at a variety of wavelengths long- Dwarf planet (136108) Haumea was observed twice with wards of 20 µm (Lellouch et al.
Recommended publications
  • Plotting Variable Stars on the H-R Diagram Activity
    Pulsating Variable Stars and the Hertzsprung-Russell Diagram The Hertzsprung-Russell (H-R) Diagram: The H-R diagram is an important astronomical tool for understanding how stars evolve over time. Stellar evolution can not be studied by observing individual stars as most changes occur over millions and billions of years. Astrophysicists observe numerous stars at various stages in their evolutionary history to determine their changing properties and probable evolutionary tracks across the H-R diagram. The H-R diagram is a scatter graph of stars. When the absolute magnitude (MV) – intrinsic brightness – of stars is plotted against their surface temperature (stellar classification) the stars are not randomly distributed on the graph but are mostly restricted to a few well-defined regions. The stars within the same regions share a common set of characteristics. As the physical characteristics of a star change over its evolutionary history, its position on the H-R diagram The H-R Diagram changes also – so the H-R diagram can also be thought of as a graphical plot of stellar evolution. From the location of a star on the diagram, its luminosity, spectral type, color, temperature, mass, age, chemical composition and evolutionary history are known. Most stars are classified by surface temperature (spectral type) from hottest to coolest as follows: O B A F G K M. These categories are further subdivided into subclasses from hottest (0) to coolest (9). The hottest B stars are B0 and the coolest are B9, followed by spectral type A0. Each major spectral classification is characterized by its own unique spectra.
    [Show full text]
  • Light Curve Analysis of Variable Stars Using Fourier Decomposition and Principal Component Analysis
    A&A 507, 1729–1737 (2009) Astronomy DOI: 10.1051/0004-6361/200912851 & c ESO 2009 Astrophysics Light curve analysis of variable stars using Fourier decomposition and principal component analysis S. Deb1 andH.P.Singh1,2 1 Department of Physics & Astrophysics, University of Delhi, Delhi 110007, India e-mail: [email protected],[email protected] 2 CRAL-Observatoire de Lyon, CNRS UMR 142, 69561 Saint-Genis Laval, France Received 8 July 2009 / Accepted 1 September 2009 ABSTRACT Context. Ongoing and future surveys of variable stars will require new techniques to analyse their light curves as well as to tag objects according to their variability class in an automated way. Aims. We show the use of principal component analysis (PCA) and Fourier decomposition (FD) method as tools for variable star light curve analysis and compare their relative performance in studying the changes in the light curve structures of pulsating Cepheids and in the classification of variable stars. Methods. We have calculated the Fourier parameters of 17 606 light curves of a variety of variables, e.g., RR Lyraes, Cepheids, Mira Variables and extrinsic variables for our analysis. We have also performed PCA on the same database of light curves. The inputs to the PCA are the 100 values of the magnitudes for each of these 17 606 light curves in the database interpolated between phase 0 to 1. Unlike some previous studies, Fourier coefficients are not used as input to the PCA. Results. We show that in general, the first few principal components (PCs) are enough to reconstruct the original light curves compared to the FD method where 2 to 3 times more parameters are required to satisfactorily reconstruct the light curves.
    [Show full text]
  • 000881536.Pdf (3.344Mb)
    UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ TIAGO FRANCISCO LINS LEAL PINHEIRO Estudo da sailboat para sistemas binários Guaratinguetá 2016 Tiago Francisco Lins Leal Pinheiro Estudo da sailboat para sistemas binários Trabalho de Graduação apresentado ao Conselho de Curso de Graduação em Bacharel em Física da Faculdade de Engenharia do Campus de Gua- ratinguetá, Universidade Estatual Paulista, como parte dos requisitos para obtenção do diploma de Graduação em Bacharel em Física . Orientador: Profo Dr. Rafael Sfair Guaratinguetá 2016 Pinheiro, Tiago Francisco Lins Leal L654e Estudo da sailboat para sistemas binários / Tiago Francisco Lins Leal Pinheiro– Guaratinguetá, 2016. 57 f.: il. Bibliografia: f. 53 Trabalho de Graduação em Bacharelado em Física – Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2016. Orientador: Prof. Dr. Rafael Sfair 1. Planetas - Orbitas 2. Sistema binário (Matematica) 3. Metodos de simulação I. Título . CDU 523. DADOS CURRICULARES TIAGO FRANCISCO LINS LEAL PINHEIRO NASCIMENTO 03/06/1993 - Lorena / SP FILIAÇÃO Roberto Carlos Pinheiro Jurema Lins Leal Pinheiro 2012 / 2016 Bacherelado em Física Faculdade de Engenharia de Guaratin- guetá - UNESP 2011 Bacherelado em Engenharia de Produção Centro Universitário Salesiano de São Paulo - UNISAL 2008 / 2010 Ensino Médio Instituto Santa Teresa AGRADECIMENTOS Em primeiro lugar agradeço a Deus, fonte da vida e da graça. Agradeço pela minha vida, minha inteligência, minha família e meus amigos, ao meu orientador, Prof. Dr. Rafael Sfair que jamais deixou de me incentivar. Sem a sua orientação, dedicação e auxílio, o estudo aqui apresentado seria praticamente impossível. aos meus pais Roberto Carlos Pinheiro e Jurema Lins Leal Pinheiro, e irmãos Maria Teresa, Daniel, Gabriel e Rafael, que apesar das dificuldades enfrentadas, sempre incentivaram meus estudos.
    [Show full text]
  • Universidade Estadual Paulista "Júlio De Mesquita Filho" Campus De Guaratinguetá
    UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ TIAGO FRANCISCO LINS LEAL PINHEIRO Estudo da estabilidade de anéis em exoplanetas Guaratinguetá 2019 Tiago Francisco Lins Leal Pinheiro Estudo da estabilidade de anéis em exoplanetas Trabalho Mestrado apresentado ao Conselho da Pós Graduação em Mestrado em Física da Faculdade de Engenharia do Campus de Guaratinguetá, Univer- sidade Estatual Paulista, como parte dos requisitos para obtenção do diploma de Mestre em Mestrado em Física . Orientador: Profo Dr. Rafael Sfair Guaratinguetá 2019 Pinheiro, Tiago Francisco Lins Leal P654E Estudo da estabilidade de anéis em exoplanetas / Tiago Francisco Lins Leal Pinheiro – Guaratinguetá, 2019. 57 f : il. Bibliografia: f. 54 Dissertação (Mestrado) – Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2019. Orientador: Prof. Dr. Rafael Sfair 1. Exoplanetas. 2. Satélites. 3. Métodos de simulação. I. Título. CDU 523.4(043) Luciana Máximo Bibliotecária/CRB-8 3595 DADOS CURRICULARES TIAGO FRANCISCO LINS LEAL PINHEIRO NASCIMENTO 03/06/1993 - Lorena / SP FILIAÇÃO Roberto Carlos Pinheiro Jurema Lins Leal Pinheiro 2012 / 2016 Bacharelado em Física Universidade Estadual Paulista "Júlio de Mesquita Filho" 2017 / 2019 Mestrado em Física Universidade Estadual Paulista "Júlio de Mesquita Filho" Dedico este trabalho aos meus pais, Roberto e Jurema, aos meus irmãos, Maria Teresa, Daniel, Gabriel e Rafael, a minha sobrinha Giovanna Maria e amigos. AGRADECIMENTOS Em primeiro lugar agradeço a Deus, fonte da vida e da graça. Agradeço pela minha vida, minha inteligência, minha família e meus amigos, ao meu orientador, Prof. Dr. Rafael Sfair que jamais deixou de me incentivar. Sem a sua orientação, dedicação e auxílio, o estudo aqui apresentado seria praticamente impossível.
    [Show full text]
  • Spectroscopy of Variable Stars
    Spectroscopy of Variable Stars Steve B. Howell and Travis A. Rector The National Optical Astronomy Observatory 950 N. Cherry Ave. Tucson, AZ 85719 USA Introduction A Note from the Authors The goal of this project is to determine the physical characteristics of variable stars (e.g., temperature, radius and luminosity) by analyzing spectra and photometric observations that span several years. The project was originally developed as a The 2.1-meter telescope and research project for teachers participating in the NOAO TLRBSE program. Coudé Feed spectrograph at Kitt Peak National Observatory in Ari- Please note that it is assumed that the instructor and students are familiar with the zona. The 2.1-meter telescope is concepts of photometry and spectroscopy as it is used in astronomy, as well as inside the white dome. The Coudé stellar classification and stellar evolution. This document is an incomplete source Feed spectrograph is in the right of information on these topics, so further study is encouraged. In particular, the half of the building. It also uses “Stellar Spectroscopy” document will be useful for learning how to analyze the the white tower on the right. spectrum of a star. Prerequisites To be able to do this research project, students should have a basic understanding of the following concepts: • Spectroscopy and photometry in astronomy • Stellar evolution • Stellar classification • Inverse-square law and Stefan’s law The control room for the Coudé Description of the Data Feed spectrograph. The spec- trograph is operated by the two The spectra used in this project were obtained with the Coudé Feed telescopes computers on the left.
    [Show full text]
  • Precision Astrometry for Fundamental Physics – Gaia
    Gravitation astrometric tests in the external Solar System: the QVADIS collaboration goals M. Gai, A. Vecchiato Istituto Nazionale di Astrofisica [INAF] Osservatorio Astrofisico di Torino [OATo] WAG 2015 M. Gai - INAF-OATo - QVADIS 1 High precision astrometry as a tool for Fundamental Physics Micro-arcsec astrometry: Current precision goals of astrometric infrastructures: a few 10 µas, down to a few µas 1 arcsec (1) 5 µrad 1 micro-arcsec (1 µas) 5 prad Reference cases: • Gaia – space – visible range • VLTI – ground – near infrared range • VLBI – ground – radio range WAG 2015 M. Gai - INAF-OATo - QVADIS 2 ESA mission – launched Dec. 19th, 2013 Expected precision on individual bright stars: 1030 µas WAG 2015 M. Gai - INAF-OATo - QVADIS 3 Spacetime curvature around massive objects 1.5 G: Newton’s 1".74 at Solar limb 8.4 rad gravitational constant GM 1 cos d: distance Sun- 1 1 observer c2d 1 cos M: solar mass 0.5 c: speed of light Deflection [arcsec] angle : angular distance of the source to the Sun 0 0 1 2 3 4 5 6 Distance from Sun centre [degs] Light deflection Apparent variation of star position, related to the gravitational field of the Sun ASTROMETRY WAG 2015 M. Gai - INAF-OATo - QVADIS 4 Precision astrometry for Fundamental Physics – Gaia WAG 2015 M. Gai - INAF-OATo - QVADIS 5 Precision astrometry for Fundamental Physics – AGP Talk A = Apparent star position measurement AGP: G = Testing gravitation in the solar system Astrometric 1) Light deflection close to the Sun Gravitation 2) High precision dynamics in Solar System Probe P = Medium size space mission - ESA M4 (2014) Design driver: light bending around the Sun @ μas fraction WAG 2015 M.
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • “Secular and Rotational Light Curves of 6478 Gault”
    1 “Secular and Rotational Light Curves of 6478 Gault” Ignacio Ferrín Faculty of Exact and Natural Sciences Institute of Physics, SEAP, University of Antioquia, Medellín, Colombia, 05001000 [email protected] Cesar Fornari Observatorio “Galileo Galilei”, X31 Oro Verde, Argentina Agustín Acosta Observatorio “Costa Teguise”, Z39 Lanzarote, España Number of pages 23 Number of Figures 10 Number of Tables 6 2 Abstract We obtained 877 images of active asteroid 6478 Gault on 41 nights from January 10th to June 8th, 2019, using several telescopes. We created the phase, secular and rotational light curves of Gault, from which several physical parameters can be derived. From the phase plot we find that no phase effect was evident. This implies that an optically thick cloud of dust surrounded the nucleus hiding the surface. The secular light curve (SLC) shows several zones of activity the origin of which is speculative. From the SLC plots a robust absolute magnitude can be derived and we find mV(1,1,α ) = 16.11±0.05. We also found a rotational period Prot = 3.360±0.005 h and show evidence that 6478 might be a binary. The parameters of the pair are derived. Previous works have concluded that 6478 is in a state of rotational disruption and the above rotational period supports this result. Our conclusion is that 6478 Gault is a suffocated comet getting rid of its suffocation by expelling surface dust into space using the centrifugal force. This is an evolutionary stage in the lifetime of some comets. Besides being a main belt comet (MBC) the object is classified as a dormant Methuselah Lazarus comet.
    [Show full text]
  • The Trans-Neptunian Haumea
    Astronomy & Astrophysics manuscript no. main c ESO 2018 October 22, 2018 High-contrast observations of 136108 Haumea? A crystalline water-ice multiple system C. Dumas1, B. Carry2;3, D. Hestroffer4, and F. Merlin2;5 1 European Southern Observatory. Alonso de Cordova´ 3107, Vitacura, Casilla 19001, Santiago de Chile, Chile e-mail: [email protected] 2 LESIA, Observatoire de Paris, CNRS. 5 place Jules Janssen, 92195 Meudon CEDEX, France e-mail: [email protected] 3 European Space Astronomy Centre, ESA. P.O. Box 78, 28691 Villanueva de la Canada,˜ Madrid, Spain 4 IMCCE, Observatoire de Paris, CNRS. 77, Av. Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 5 Universit Paris 7 Denis Diderot. 4 rue Elsa Morante, 75013 Paris, France e-mail: [email protected] Received 2010 May 18 / Accepted 2011 January 6 ABSTRACT Context. The trans-neptunian region of the Solar System is populated by a large variety of icy bodies showing great diversity in orbital behavior, size, surface color and composition. One can also note the presence of dynamical families and binary systems. One surprising feature detected in the spectra of some of the largest Trans-Neptunians is the presence of crystalline water-ice. This is the case for the large TNO (136 108) Haumea (2003 EL61). Aims. We seek to constrain the state of the water ice of Haumea and its satellites, and investigate possible energy sources to maintain the water ice in its crystalline form. Methods. Spectro-imaging observations in the near infrared have been performed with the integral field spectrograph SINFONI mounted on UT4 at the ESO Very Large Telescope.
    [Show full text]
  • Light Curve Classification with Recurrent Neural Networks for GOTO: Dealing with Imbalanced Data
    This is a repository copy of Light curve classification with recurrent neural networks for GOTO: dealing with imbalanced data. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/174727/ Version: Accepted Version Article: Burhanudin, U.F., Maund, J.R. orcid.org/0000-0003-0733-7215, Killestein, T. et al. (42 more authors) (2021) Light curve classification with recurrent neural networks for GOTO: dealing with imbalanced data. Monthly Notices of the Royal Astronomical Society. stab1545. ISSN 0035-8711 https://doi.org/10.1093/mnras/stab1545 This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record U F Burhanudin, J R Maund, T Killestein, K Ackley, M J Dyer, J Lyman, K Ulaczyk, R Cutter, Y-L Mong, D Steeghs, D K Galloway, V Dhillon, P O’Brien, G Ramsay, K Noysena, R Kotak, R P Breton, L Nuttall, E Pallé, D Pollacco, E Thrane, S Awiphan, P Chote, A Chrimes, E Daw, C Duffy, R Eyles-Ferris, B Gompertz, T Heikkilä, P Irawati, M R Kennedy, A Levan, S Littlefair, L Makrygianni, D Mata-Sánchez, S Mattila, J McCormac, D Mkrtichian, J Mullaney, U Sawangwit, E Stanway, R Starling, P Strøm, S Tooke, K Wiersema, Light curve classification with recurrent neural networks for GOTO: dealing with imbalanced data, Monthly Notices of the Royal Astronomical Society, 2021;, stab1545 is available online at: https://doi.org/10.1093/mnras/stab1545. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise.
    [Show full text]
  • Way-Out World
    Non-fiction: Way-Out World Way-Out World By Hugh Westrup What strange satellite circles the visible edge of the solar system? The detonation of a single nuclear bomb can do catastrophic damage. So imagine the power of more than one bomb—not just two or 10 or even 10 million, but 10 billion. Astronomers have evidence that a collision with enough force to equal the explosion of 10 billion nuclear bombs once happened in the solar system. Out of that crack-up was born one of the oddest things in space. Its name is Haumea. “There is so much to learn about this newfound object, and we keep finding surprises,” says Mike Brown, an astronomer at the California Institute of Technology. “It’s just crazy.” ODD Balls The solar system is always changing. What astronomers know about it is changing even faster. Advances in telescope technology keep deepening their view of space, continually revealing new objects and new features on old objects. One example of that change in perspective is Pluto. For more than 70 years, astronomers considered it the ninth planet. Then, in 2007, the International Astronomical Union reclassified it as a dwarf planet. Like a planet, a dwarf planet orbits the sun. It also has enough mass, and therefore enough gravity, to give it a rounded shape. But it lacks pull; its gravity isn’t strong enough to clear its neighborhood of most smaller objects the way that planets do. A year later Pluto was reclassified again. Now it’s a plutoid. A plutoid is simply a dwarf planet that exists beyond Neptune, the eighth planet.
    [Show full text]
  • Ice Ontnos: Focus on 136108 Haumea
    Ice onTNOs: Focus on 136108 Haumea C. Dumas Collaborators: A. Alvarez, A. Barucci, C. deBergh, B. Carry, A. Guilbert, D. Hestroffer, P. Lacerda, F. deMeo, F. Merlin, C. Snodgrass, P. Vernazza, … Haumea Pluto (dwarf planets) DistribuTon of TNOs Largest TNOs Icy bodies in the OPSII context • Reservoir of volales in the solar system (H2O, N2, CH4, CO, CO2, C2H6, NH3OH, etc) • Small bodies populaon more hydrated than originally pictured – Main-belt comets (Hsieh and JewiZ 2006) – Themis asteroids family (Campins et al. 2010, Rivkin and Emery 2010) • Transport of water to the inner terrestrial planets (e.g. talk by Paul Hartogh) Paranal Observatory 6 SINFONI at UT4 7 SINFONI + NACO at UT4 8 SINFONI = MACAO + SPIFFI (SINFONI=Spectrograph for INtegral Field Observations in the Near Infrared) • AO SYSTEM: MACAO (Multi-Application Curvature Adaptive Optics): – Similar to UTs AO system for VLTI – 60 elements curvature sensing bimorph mirror – NGS or LGS – Developed by ESO • NEAR-IR SPECTRO: SPIFFI (SPectrometer for Infrared Faint Field Imaging): – 3-D spectrograph, 32 image slices, 1-2.5µm – Developed by MPE:Max Planck Institute for Extraterrestrial Physics + NOVA: Netherlands Research School for Astronomy SINFONI - Main characteristics • Location UT4 Cassegrain • Wavelength range 1-2.5µm • Detector 2048 x 2048 HAWAII array • Gratings J,H,K,H+K • Spectral resolution 1500 (H+K-filter) to 4000 (K-band) (outside OH lines) • Limiting magnitude (0.1”/spaxel) K~18.2, H+K~19.2 in hr, SNR~10 • FoV sampling 32 slices • Spatial resolution 0.25”/slice (no-AO), 0.1”(AO), 0.025” (AO) • Resulting FoV 8”x8”, 3”x3”, 0.8”x0.8” • Modes noAO, NGS-AO, LGS-AO SINFONI - IFS Principles SINFONI - IFS Principles (Cont’d) SINFONI - products Reconstructed image PSF spectrum H+K TNOs spectroscopy Orcus (Carry et al.
    [Show full text]