Free Presentation Folder Mockup
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Making! the E-Magazine for the Fibrous Forest Products Sector
PAPERmaking! The e-magazine for the Fibrous Forest Products Sector Produced by: The Paper Industry Technical Association Volume 5 / Number 1 / 2019 PAPERmaking! FROM THE PUBLISHERS OF PAPER TECHNOLOGY Volume 5, Number 1, 2019 CONTENTS: FEATURE ARTICLES: 1. Wastewater: Modelling control of an anaerobic reactor 2. Biobleaching: Enzyme bleaching of wood pulp 3. Novel Coatings: Using solutions of cellulose for coating purposes 4. Warehouse Design: Optimising design by using Augmented Reality technology 5. Analysis: Flow cytometry for analysis of polyelectrolyte complexes 6. Wood Panel: Explosion severity caused by wood dust 7. Agriwaste: Soda-AQ pulping of agriwaste in Sudan 8. New Ideas: 5 tips to help nurture new ideas 9. Driving: Driving in wet weather - problems caused by Spring showers 10. Women and Leadership: Importance of mentoring and sponsoring to leaders 11. Networking: 8 networking skills required by professionals 12. Time Management: 101 tips to boost everyday productivity 13. Report Writing: An introduction to report writing skills SUPPLIERS NEWS SECTION: Products & Services: Section 1 – PITA Corporate Members: ABB / ARCHROMA / JARSHIRE / VALMET Section 2 – Other Suppliers Materials Handling / Safety / Testing & Analysis / Miscellaneous DATA COMPILATION: Installations: Overview of equipment orders and installations since November 2018 Research Articles: Recent peer-reviewed articles from the technical paper press Technical Abstracts: Recent peer-reviewed articles from the general scientific press Events: Information on forthcoming national and international events and courses The Paper Industry Technical Association (PITA) is an independent organisation which operates for the general benefit of its members – both individual and corporate – dedicated to promoting and improving the technical and scientific knowledge of those working in the UK pulp and paper industry. -
Lmc 6313 Principles of Interaction Design
Principles of Interaction Design – LMC 6313 Syllabus Course Number: LMC 6313 Location: Skiles 346 Times: T/Th – 3:00p-3:50p F (lab) – 11:15a-2:00p Instructor: Dr. Anne Sullivan Instructor Email: [email protected] Office Hours: By Appointment (Mondays are the best bet) Office Location: TSRB 317C TA: Takeria Blunt TA Email: [email protected] Course Website: http://canvas.gatech.edu Course Description: What is interaction, what is design, where did these notions come from, and where are they going? Through the activities in this course, you will return to questions of what kind of designer you are and wish to be, what you believe in, and how that will extend to your research and practice. You will also develop your own critical take on the material in the class and sharpen your voice and arguments about your perspectives. Interaction design wasn’t invented from scratch as a singular, monolithic practice. It was born out of the intersection of a number of disciplines from within design and human-computer interaction, and also from art, media, architecture, politics, and philosophy, and beyond. There are many different definitions of what it is and where we fit into it, and no two people we meet in this class will likely have the same definition. And that’s the way it should be. Through my suggestions and yours, we will also turn to design questions in digital culture, film, tv, fiction, gaming, music, art and beyond as we together frame our understandings. As you read, The syllabus, dates, times, assignments, and details are subject to change by instructor notification through Canvas or email. -
Analysis of the Application of Geometric Figures in Graphic Design Xiao Li Zhuhai College of Jilin University, Zhuhai, China
2019 International Conference on Art, Design and Cultural Studies (ADCS 2019) Analysis of the Application of Geometric Figures in Graphic Design Xiao Li Zhuhai College of Jilin University, Zhuhai, China Abstract. Geometric figures such as triangle, square, rhombus and circle are the basic elements of common graphics in our real life and graphic design, geometric figures are everywhere, and simple graphics can constitute all phenomena in the world, which can cause people's infinite reverie. The basic geometric figures are formed by conducting combination and change of complex representational figures, which is a reflection of people's summarization ability. The application performance in design is analyzed from the influence of geometric figures in graphic design. Keywords: geometric figure, graphic design, sign, font design, graphic creativity. 1. Introduction As a language of graphic design, geometry is getting more and more credit. In such a fast-paced living space, our graphic requirements for graphic design are also increasing accordingly, the time people stay on complex graphics is becoming shorter and shorter, and it is urgent for us to make changes, simplify complex graphics, make complicated things simple and return to its original nature. It makes people to quickly interpret graphic information under the environment of modern life rhythm. Geometric figures are ubiquitous in graphic design; it is indispensable in font design, sign design, and image design, printing process, package design and pop design. And this kind of expression form of simple geometric figures can convey people's simple, understandable and bright feelings. 2. Application of Geometric Figures in Sign Design The history of the sign can be traced back to the "totem" ancient times, in the evolution process from complexity to simplicity, it expresses emotion with graphics, transfers the expression of meaning to the viewer, and changes from complicated graphics to simple and easy-to-understand intuitive geometric graphics. -
Geometric Design Strategic Research TRANSPORTATION RESEARCH BOARD 2006 EXECUTIVE COMMITTEE OFFICERS
TRANSPORTATION RESEARCH Number E-C110 January 2007 Geometric Design Strategic Research TRANSPORTATION RESEARCH BOARD 2006 EXECUTIVE COMMITTEE OFFICERS Chair: Michael D. Meyer, Professor, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta Vice Chair: Linda S. Watson, Executive Director, LYNX–Central Florida Regional Transportation Authority, Orlando Division Chair for NRC Oversight: C. Michael Walton, Ernest H. Cockrell Centennial Chair in Engineering, University of Texas, Austin Executive Director: Robert E. Skinner, Jr., Transportation Research Board TRANSPORTATION RESEARCH BOARD 2006 TECHNICAL ACTIVITIES COUNCIL Chair: Neil J. Pedersen, State Highway Administrator, Maryland State Highway Administration, Baltimore Technical Activities Director: Mark R. Norman, Transportation Research Board Christopher P. L. Barkan, Associate Professor and Director, Railroad Engineering, University of Illinois at Urbana–Champaign, Rail Group Chair Shelly R. Brown, Principal, Shelly Brown Associates, Seattle, Washington, Legal Resources Group Chair Christina S. Casgar, Office of the Secretary of Transportation, Office of Intermodalism, Washington, D.C., Freight Systems Group Chair James M. Crites, Executive Vice President, Operations, Dallas–Fort Worth International Airport, Texas, Aviation Group Chair Arlene L. Dietz, C&A Dietz, LLC, Salem, Oregon, Marine Group Chair Robert C. Johns, Director, Center for Transportation Studies, University of Minnesota, Minneapolis, Policy and Organization Group Chair Patricia V. McLaughlin, Principal, Moore Iacofano Golstman, Inc., Pasadena, California, Public Transportation Group Chair Marcy S. Schwartz, Senior Vice President, CH2M HILL, Portland, Oregon, Planning and Environment Group Chair Leland D. Smithson, AASHTO SICOP Coordinator, Iowa Department of Transportation, Ames, Operations and Maintenance Group Chair L. David Suits, Executive Director, North American Geosynthetics Society, Albany, New York, Design and Construction Group Chair Barry M. -
General Video Brainstorming for Workshops
Standard Brainstorming Brainstorming, also known as the Delphi technique, is used to generate innovative ideas. Osborn (1957) introduced brainstorming to create synergy within the members of a group: ideas suggested by one participant would spark ideas in other participants. Subsequent studies (Collaros and Anderson, 1969, Diehl and Stroebe, 1987) challenged the effectiveness of group brainstorming, finding that aggregates of individuals could produce the same number of ideas as groups. They found that production blocking, free-riding and evaluation apprehension were sufficient to outweigh the benefits of synergy in brainstorming groups. Since then, many researchers have explored different strategies for addressing these limitations. For our purposes, the quantity of ideas is not the only important measure. We are also interested in the relationship among the members of the group. As de Vreede et al. (2000) point out, one should also consider elaboration of ideas, as group members react to each other's ideas. Brainstorming sessions have two phases: the first for generating ideas and the second for reflecting upon them. A small group (three to seven people) agree on a specific topic and a limited period of time. The goal is to generate as many ideas as possible, maximizing quantity over quality: Twenty different ideas are better than three indepth ideas. Phase 1 usually lasts from half-an-hour to an hour, depending upon the topic and the group. Sessions longer than an hour are not recommended. Even if ideas are still flowing, the group should stop when time is up. It is better that everyone leaves feeling energized and excited by the ideas rather than tired and bored. -
An Overview of the Building Delivery Process
An Overview of the Building Delivery CHAPTER Process 1 (How Buildings Come into Being) CHAPTER OUTLINE 1.1 PROJECT DELIVERY PHASES 1.11 CONSTRUCTION PHASE: CONTRACT ADMINISTRATION 1.2 PREDESIGN PHASE 1.12 POSTCONSTRUCTION PHASE: 1.3 DESIGN PHASE PROJECT CLOSEOUT 1.4 THREE SEQUENTIAL STAGES IN DESIGN PHASE 1.13 PROJECT DELIVERY METHOD: DESIGN- BID-BUILD METHOD 1.5 CSI MASTERFORMAT AND SPECIFICATIONS 1.14 PROJECT DELIVERY METHOD: 1.6 THE CONSTRUCTION TEAM DESIGN-NEGOTIATE-BUILD METHOD 1.7 PRECONSTRUCTION PHASE: THE BIDDING 1.15 PROJECT DELIVERY METHOD: CONSTRUCTION DOCUMENTS MANAGEMENT-RELATED METHODS 1.8 PRECONSTRUCTION PHASE: THE SURETY BONDS 1.16 PROJECT DELIVERY METHOD: DESIGN-BUILD METHOD 1.9 PRECONSTRUCTION PHASE: SELECTING THE GENERAL CONTRACTOR AND PROJECT 1.17 INTEGRATED PROJECT DELIVERY METHOD DELIVERY 1.18 FAST-TRACK PROJECT SCHEDULING 1.10 CONSTRUCTION PHASE: SUBMITTALS AND CONSTRUCTION PROGRESS DOCUMENTATION Building construction is a complex, significant, and rewarding process. It begins with an idea and culminates in a structure that may serve its occupants for several decades, even centuries. Like the manufacturing of products, building construction requires an ordered and planned assembly of materials. It is, however, far more complicated than product manufacturing. Buildings are assembled outdoors by a large number of diverse constructors and artisans on all types of sites and are subject to all kinds of weather conditions. Additionally, even a modest-sized building must satisfy many performance criteria and legal constraints, requires an immense variety of materials, and involves a large network of design and production firms. Building construction is further complicated by the fact that no two buildings are identical; each one must be custom built to serve a unique function and respond to its specific context and the preferences of its owner, user, and occupant. -
Instrumentalists and Renaissance Culture, 1420–1600
Instrumentalists and Renaissance Culture, 1420–1600 This innovative and multilayered study of the music and culture of Renaissance instrumentalists spans the early institutionalization of instrumental music from c.1420 to the rise of the basso continuo and newer roles for players around 1600. Employing a broad cultural narrative interwoven with detailed case studies, close readings of eighteen essential musical sources, and analysis of musical images, Victor Coelho and Keith Polk show that instrumental music formed a vital and dynamic element in the artistic landscape, from rote function to creative fantasy. Instrumentalists occupied a central role in courtly ceremonies and private social rituals during the Renaissance, as banquets, dances, processions, religious celebrations, and weddings all required their participation – regardless of social class. Instrumental genres were highly diverse artistic creations, from polyphonic repertories revealing knowledge of notated styles, to improvisation and flexible practices. Understanding the contributions of instrumentalists is essential for any accurate assessment of Renaissance culture. victor coelho is Professor of Music and Director of the Center for Early Music Studies at Boston University, a fellow of Villa I Tatti, the Harvard University Center for Italian Renaissance Studies in Florence, and a lutenist and guitarist. His books include Music and Science in the Age of Galileo, The Manuscript Sources of Seventeenth- Century Italian Lute Music, Performance on Lute, Guitar, and Vihuela, and The Cambridge Companion to the Guitar. In 2000 he received the Noah Greenberg Award given by the American Musicological Society for outstanding contributions to the performance of early music, resulting in a recording (with Alan Curtis) that won a Prelude Classical Award in 2004. -
Lean Product Launch: 3 Ways 3P Events Can Reduce Waste, Risk, and Time to Market
LEAN PRODUCT LAUNCH: 3 WAYS 3P EVENTS CAN REDUCE WASTE, RISK, AND TIME TO MARKET www.viantmedical.com / [email protected] By Todd Clark Program Manager INTRODUCTION Get a diverse group of smart people in a room and present them with a challenge. Brainstorm ideas and collaborate to choose the best solution. Build a mockup and simulate the process to learn as much as you can before bringing it into the real world. Sounds like a solid foundation for a successful a product launch, right? We think so, too. In a nutshell, that’s what happens during a Lean Production Preparation Process (3P) event. For more than a decade, Viant teams have been leveraging Lean Product Development and Lean Product Launch techniques to improve product quality, lower cost, and speed time to market. We’re bringing Lean to life across the product lifecycle to support our customers in expanding their product offerings, optimizing their supply chains, and managing costs on a global scale. Both Lean Product Development and Lean Product Launch have Lean principles at their core, like identifying and reducing waste. Both use Lean tools, including cross-functional teams and set-based design. However, Lean Product Development is used earlier in the product lifecycle and focuses on the process of product design. While there is often some overlap, Lean Product Launch happens later in the product lifecycle and focuses on the design of the manufacturing process. 3P is a Lean Product Launch tool that has been particularly effective for our customers. 3P events bring stakeholders together to identify and reduce waste in every step of a process, thereby increasing efficiency, de-risking the manufacturing process, and compressing the timeline. -
Introducing the NACTO Urban Design Guidelines What Is NACTO?
The NACTO USDG – expanding the toolkit Introducing the NACTO Urban Design Guidelines What Is NACTO? • Founded 1996 • Peer Network of Large Central Cities (32) • Advancing Sustainable Transportation and Street Design • Focus on Local Innovation and Expertise • City Counterpart to AASHTO San Mateo Training Overview MAY 13 Training for local policymakers and elected officials MAY 14 Training for Public Works and Engineering MAY 20 On-site street design charrette at Middlefield Road May 13 Agenda Overview 9:00 – 9:15 Opening Remarks 9:15 – 10:30 Presentations: Design Policies & Assumptions 10:30 - 10:40 Break 10:40 – 11:30 Presentations: Streets & Measurement 11:30 – 12:45 Interactive Design Exercise & Lunch 12:45 – 2:00 Presentations & Discussion: Bikeway Design & Safe Intersection Design May 7, 2014: Tacoma vows to prosecute rogue crosswalk painters “City Crosswalks must comply with federal guidelines…We look at sight distance, we look at traffic volumes, we look at street width…” -Kurtis Kingsolver, City of Tacoma Director of Public Works Current street design guidance Prevailing design guidelines define every street as a highway Fixed-object hazards vs. community assets The Need for Speed “The objective in design of any engineered facility used by public is to satisfy the public’s demand for service in an economical manner with efficient traffic operations and with low crash frequency and severity. The facility should, therefore, accommodate nearly all demands with reasonable adequacy and also should not fail under severe or extreme traffic -
Sres Logo Download What Is SRE (Site Reliability Engineering)? Site Reliability Engineering (SRE) Is a Software Engineering Approach to IT Operations
sres logo download What is SRE (site reliability engineering)? Site reliability engineering (SRE) is a software engineering approach to IT operations. SRE teams use software as a tool to manage systems, solve problems, and automate operations tasks. SRE takes the tasks that have historically been done by operations teams, often manually, and instead gives them to engineers or ops teams who use software and automation to solve problems and manage production systems. SRE is a valuable practice when creating scalable and highly reliable software systems. It helps you manage large systems through code, which is more scalable and sustainable for sysadmins managing thousands or hundreds of thousands of machines. The concept of site reliability engineering comes from the Google engineering team and is credited to Ben Treynor Sloss. SRE helps teams find a balance between releasing new features and making sure that they are reliable for users. Standardization and automation are 2 important components of the SRE model. Site reliability engineers should always be looking for ways to enhance and automate operations tasks. In this way, SRE helps to improve the reliability of a system today, while also improving it as it grows over time. SRE supports teams who are moving from a traditional approach to IT operations to a cloud-native approach. What does a site reliability engineer do? A site reliability engineer is a unique role that requires either a background as a software developer with additional operations experience, or as a sysadmin or in an IT operations role that also has software development skills. SRE teams are responsible for how code is deployed, configured, and monitored, as well as the availability, latency, change management, emergency response, and capacity management of services in production. -
Intersection Geometric Design
Intersection Geometric Design Course No: C04-033 Credit: 4 PDH Gregory J. Taylor, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] Intersection Geometric Design INTRODUCTION This course summarizes and highlights the geometric design process for modern roadway intersections. The contents of this document are intended to serve as guidance and not as an absolute standard or rule. When you complete this course, you should be familiar with the general guidelines for at-grade intersection design. The course objective is to give engineers and designers an in-depth look at the principles to be considered when selecting and designing intersections. Subjects include: 1. General design considerations – function, objectives, capacity 2. Alignment and profile 3. Sight distance – sight triangles, skew 4. Turning roadways – channelization, islands, superelevation 5. Auxiliary lanes 6. Median openings – control radii, lengths, skew 7. Left turns and U-turns 8. Roundabouts 9. Miscellaneous considerations – pedestrians, traffic control, frontage roads 10. Railroad crossings – alignments, sight distance For this course, Chapter 9 of A Policy on Geometric Design of Highways and Streets (also known as the “Green Book”) published by the American Association of State Highway and Transportation Officials (AASHTO) will be used primarily for fundamental geometric design principles. This text is considered to be the primary guidance for U.S. roadway geometric design. Copyright 2015 Gregory J. Taylor, P.E. Page 2 of 56 Intersection Geometric Design This document is intended to explain some principles of good roadway design and show the potential trade-offs that the designer may have to face in a variety of situations, including cost of construction, maintenance requirements, compatibility with adjacent land uses, operational and safety impacts, environmental sensitivity, and compatibility with infrastructure needs. -
Design Thinking and Applied Ideation
Design Thinking and Applied Ideation . Thinking about problems . Brainstorming and ideation . Improv and collaboration our h y etc Sk m ble . Practice brainstorms pro . Scenarios and storytelling . Presentation and wrap Gayle Curtis E110 – 14 January 2010 Thinking about problems Investigate Contextualize Brainstorm Cluster Explain Evaluate Observe Substantiate Explore: Analyze Diagram Try out on Record Diagram Alternatives Prioritize Mockup stakeholders Analyze Explain Possibilities Eliminate Express Test with Understand Articulate Choices Elevate Build users Discover Define Ideate Evaluate Prototype Test Iterate Problems Solutions Reframe Redefine Reprioritize Redirect Replan 2 Ideation and inspiration Genius is one percent inspiration and ninety-nine percent perspiration. Thomas Edison, inventor Inspiration is for amateurs. The rest of us just show up and get to work. Chuck Close, artist 3 Brainstorming Defined by Alex Osborn in 1939 “Storming a problem in a commando fashion” . “Your Creative Power,” 1949 . “Applied Imagination,” 1953 Took on a life of its own . BBDO - Alex Osborn . MIT Creative Engineering Lab - John Arnold . Stanford Design Division - Bob McKim . IDEO . d.school at Stanford and Potsdam Sources: _; Verner Reed/Time & Life Pictures/Getty Images; Gayle Curtis 4 The Osborn Rules for Brainstorming 5 Osborn Rule #1 DEFER JUDGEMENT Say Yes! Source: Doré 6 Fifty phrases that kill creativity . Our place is different . Now's not the right time. It can't be done. We tried that before. It isn't in the budget. It's too much trouble to change. It costs too much. Can't teach an old dog new tricks. It won't pay for itself. That's not my job. Good thought, but impractical.