An Algorithmic Introduction to Clustering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Large-Scale Kernel Ranksvm
Large-scale Kernel RankSVM Tzu-Ming Kuo∗ Ching-Pei Leey Chih-Jen Linz Abstract proposed [11, 23, 5, 1, 14]. However, for some tasks that Learning to rank is an important task for recommendation the feature set is not rich enough, nonlinear methods systems, online advertisement and web search. Among may be needed. Therefore, it is important to develop those learning to rank methods, rankSVM is a widely efficient training methods for large kernel rankSVM. used model. Both linear and nonlinear (kernel) rankSVM Assume we are given a set of training label-query- have been extensively studied, but the lengthy training instance tuples (yi; qi; xi); yi 2 R; qi 2 S ⊂ Z; xi 2 n time of kernel rankSVM remains a challenging issue. In R ; i = 1; : : : ; l, where S is the set of queries. By this paper, after discussing difficulties of training kernel defining the set of preference pairs as rankSVM, we propose an efficient method to handle these (1.1) P ≡ f(i; j) j q = q ; y > y g with p ≡ jP j; problems. The idea is to reduce the number of variables from i j i j quadratic to linear with respect to the number of training rankSVM [10] solves instances, and efficiently evaluate the pairwise losses. Our setting is applicable to a variety of loss functions. Further, 1 T X min w w + C ξi;j general optimization methods can be easily applied to solve w;ξ 2 (i;j)2P the reformulated problem. Implementation issues are also (1.2) subject to wT (φ (x ) − φ (x )) ≥ 1 − ξ ; carefully considered. -
A Kernel Method for Multi-Labelled Classification
A kernel method for multi-labelled classification Andre´ Elisseeff and Jason Weston BIOwulf Technologies, 305 Broadway, New York, NY 10007 andre,jason ¡ @barhilltechnologies.com Abstract This article presents a Support Vector Machine (SVM) like learning sys- tem to handle multi-label problems. Such problems are usually decom- posed into many two-class problems but the expressive power of such a system can be weak [5, 7]. We explore a new direct approach. It is based on a large margin ranking system that shares a lot of common proper- ties with SVMs. We tested it on a Yeast gene functional classification problem with positive results. 1 Introduction Many problems in Text Mining or Bioinformatics are multi-labelled. That is, each point in a learning set is associated to a set of labels. Consider for instance the classification task of determining the subjects of a document, or of relating one protein to its many effects on a cell. In either case, the learning task would be to output a set of labels whose size is not known in advance: one document can for instance be about food, meat and finance, although another one would concern only food and fat. Two-class and multi-class classification or ordinal regression problems can all be cast into multi-label ones. This makes the latter quite attractive but at the same time it gives a warning: their generality hides their difficulty to solve them. The number of publications is not going to contradict this statement: we are aware of only a few works about the subject [4, 5, 7] and they all concern text mining applications. -
Density Based Data Clustering
California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 3-2015 Density Based Data Clustering Rayan Albarakati California State University - San Bernardino Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Other Computer Engineering Commons Recommended Citation Albarakati, Rayan, "Density Based Data Clustering" (2015). Electronic Theses, Projects, and Dissertations. 134. https://scholarworks.lib.csusb.edu/etd/134 This Project is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of Graduate Studies 3-2015 Density Based Data Clustering Rayan Albarakati Follow this and additional works at: http://scholarworks.lib.csusb.edu/etd This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected], [email protected]. DESNITY BASED DATA CLUSTERING A Project Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Science in Computer Science by Rayan Albarakati March 2015 DESNITY BASED DATA CLUSTERING A Project Presented to the Faculty of California State University, San Bernardino by Rayan Albarakati March 2015 Approved by: Haiyan Qiao, Advisor, School of Computer Date Science and Engineering Owen J.Murphy Krestin Voigt © 2015 Rayan Albarakati ABSTRACT Data clustering is a data analysis technique that groups data based on a measure of similarity. -
Segment-Based Clustering of Hyperspectral Images Using Tree-Based Data Partitioning Structures
algorithms Article Segment-Based Clustering of Hyperspectral Images Using Tree-Based Data Partitioning Structures Mohamed Ismail and Milica Orlandi´c* Department of Electronic Systems , NTNU: Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; [email protected] * Correspondence: [email protected] Received: 2 October 2020; Accepted: 8 December 2020; Published: 10 December 2020 Abstract: Hyperspectral image classification has been increasingly used in the field of remote sensing. In this study, a new clustering framework for large-scale hyperspectral image (HSI) classification is proposed. The proposed four-step classification scheme explores how to effectively use the global spectral information and local spatial structure of hyperspectral data for HSI classification. Initially, multidimensional Watershed is used for pre-segmentation. Region-based hierarchical hyperspectral image segmentation is based on the construction of Binary partition trees (BPT). Each segmented region is modeled while using first-order parametric modelling, which is then followed by a region merging stage using HSI regional spectral properties in order to obtain a BPT representation. The tree is then pruned to obtain a more compact representation. In addition, principal component analysis (PCA) is utilized for HSI feature extraction, so that the extracted features are further incorporated into the BPT. Finally, an efficient variant of k-means clustering algorithm, called filtering algorithm, is deployed on the created BPT structure, producing the final cluster map. The proposed method is tested over eight publicly available hyperspectral scenes with ground truth data and it is further compared with other clustering frameworks. The extensive experimental analysis demonstrates the efficacy of the proposed method. -
Image Segmentation Based on Multiscale Fast Spectral Clustering Chongyang Zhang, Guofeng Zhu, Minxin Chen, Hong Chen, Chenjian Wu
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, XX 2018 1 Image Segmentation Based on Multiscale Fast Spectral Clustering Chongyang Zhang, Guofeng Zhu, Minxin Chen, Hong Chen, Chenjian Wu Abstract—In recent years, spectral clustering has become one In recent years, researchers have proposed various ap- of the most popular clustering algorithms for image segmenta- proaches to large-scale image segmentation. The approaches tion. However, it has restricted applicability to large-scale images are based on three following strategies: constructing a sparse due to its high computational complexity. In this paper, we first propose a novel algorithm called Fast Spectral Clustering similarity matrix, using Nystrom¨ approximation and using based on quad-tree decomposition. The algorithm focuses on representative points. The following approaches are based the spectral clustering at superpixel level and its computational on constructing a sparse similarity matrix. In 2000, Shi and 3 complexity is O(n log n) + O(m) + O(m 2 ); its memory cost Malik [18] constructed the similarity matrix of the image by is O(m), where n and m are the numbers of pixels and the using the k-nearest neighbor sparse strategy to reduce the superpixels of a image. Then we propose Multiscale Fast Spectral complexity of constructing the similarity matrix to O(n) and Clustering by improving Fast Spectral Clustering, which is based to reduce the complexity of eigen-decomposing the Laplacian on the hierarchical structure of the quad-tree. The computational 3 complexity of Multiscale Fast Spectral Clustering is O(n log n) matrix to O(n 2 ) by using the Lanczos algorithm. -
A User's Guide to Support Vector Machines
A User's Guide to Support Vector Machines Asa Ben-Hur Jason Weston Department of Computer Science NEC Labs America Colorado State University Princeton, NJ 08540 USA Abstract The Support Vector Machine (SVM) is a widely used classifier. And yet, obtaining the best results with SVMs requires an understanding of their workings and the various ways a user can influence their accuracy. We provide the user with a basic understanding of the theory behind SVMs and focus on their use in practice. We describe the effect of the SVM parameters on the resulting classifier, how to select good values for those parameters, data normalization, factors that affect training time, and software for training SVMs. 1 Introduction The Support Vector Machine (SVM) is a state-of-the-art classification method introduced in 1992 by Boser, Guyon, and Vapnik [1]. The SVM classifier is widely used in bioinformatics (and other disciplines) due to its high accuracy, ability to deal with high-dimensional data such as gene ex- pression, and flexibility in modeling diverse sources of data [2]. SVMs belong to the general category of kernel methods [4, 5]. A kernel method is an algorithm that depends on the data only through dot-products. When this is the case, the dot product can be replaced by a kernel function which computes a dot product in some possibly high dimensional feature space. This has two advantages: First, the ability to generate non-linear decision boundaries using methods designed for linear classifiers. Second, the use of kernel functions allows the user to apply a classifier to data that have no obvious fixed-dimensional vector space representation. -
The Forgetron: a Kernel-Based Perceptron on a Fixed Budget
The Forgetron: A Kernel-Based Perceptron on a Fixed Budget Ofer Dekel Shai Shalev-Shwartz Yoram Singer School of Computer Science & Engineering The Hebrew University, Jerusalem 91904, Israel oferd,shais,singer @cs.huji.ac.il { } Abstract The Perceptron algorithm, despite its simplicity, often performs well on online classification problems. The Perceptron becomes especially effec- tive when it is used in conjunction with kernels. However, a common dif- ficulty encountered when implementing kernel-based online algorithms is the amount of memory required to store the online hypothesis, which may grow unboundedly. In this paper we describe and analyze a new in- frastructure for kernel-based learning with the Perceptron while adhering to a strict limit on the number of examples that can be stored. We first describe a template algorithm, called the Forgetron, for online learning on a fixed budget. We then provide specific algorithms and derive a uni- fied mistake bound for all of them. To our knowledge, this is the first online learning paradigm which, on one hand, maintains a strict limit on the number of examples it can store and, on the other hand, entertains a relative mistake bound. We also present experiments with real datasets which underscore the merits of our approach. 1 Introduction The introduction of the Support Vector Machine (SVM) [7] sparked a widespread interest in kernel methods as a means of solving (binary) classification problems. Although SVM was initially stated as a batch-learning technique, it significantly influenced the develop- ment of kernel methods in the online-learning setting. Online classification algorithms that can incorporate kernels include the Perceptron [6], ROMMA [5], ALMA [3], NORMA [4] and the Passive-Aggressive family of algorithms [1]. -
Kernel Methods Through the Roof: Handling Billions of Points Efficiently
Kernel methods through the roof: handling billions of points efficiently Giacomo Meanti Luigi Carratino MaLGa, DIBRIS MaLGa, DIBRIS Università degli Studi di Genova Università degli Studi di Genova [email protected] [email protected] Lorenzo Rosasco Alessandro Rudi MaLGa, DIBRIS, IIT & MIT INRIA - École Normale Supérieure Università degli Studi di Genova PSL Research University [email protected] [email protected] Abstract Kernel methods provide an elegant and principled approach to nonparametric learning, but so far could hardly be used in large scale problems, since naïve imple- mentations scale poorly with data size. Recent advances have shown the benefits of a number of algorithmic ideas, for example combining optimization, numerical linear algebra and random projections. Here, we push these efforts further to develop and test a solver that takes full advantage of GPU hardware. Towards this end, we designed a preconditioned gradient solver for kernel methods exploiting both GPU acceleration and parallelization with multiple GPUs, implementing out-of-core variants of common linear algebra operations to guarantee optimal hardware utilization. Further, we optimize the numerical precision of different operations and maximize efficiency of matrix-vector multiplications. As a result we can experimentally show dramatic speedups on datasets with billions of points, while still guaranteeing state of the art performance. Additionally, we make our software available as an easy to use library1. 1 Introduction Kernel methods provide non-linear/non-parametric extensions of many classical linear models in machine learning and statistics [45, 49]. The data are embedded via a non-linear map into a high dimensional feature space, so that linear models in such a space effectively define non-linear models in the original space. -
Learning on Hypergraphs: Spectral Theory and Clustering
Learning on Hypergraphs: Spectral Theory and Clustering Pan Li, Olgica Milenkovic Coordinated Science Laboratory University of Illinois at Urbana-Champaign March 12, 2019 Learning on Graphs Graphs are indispensable mathematical data models capturing pairwise interactions: k-nn network social network publication network Important learning on graphs problems: clustering (community detection), semi-supervised/active learning, representation learning (graph embedding) etc. Beyond Pairwise Relations A graph models pairwise relations. Recent work has shown that high-order relations can be significantly more informative: Examples include: Understanding the organization of networks (Benson, Gleich and Leskovec'16) Determining the topological connectivity between data points (Zhou, Huang, Sch}olkopf'07). Graphs with high-order relations can be modeled as hypergraphs (formally defined later). Meta-graphs, meta-paths in heterogeneous information networks. Algorithmic methods for analyzing high-order relations and learning problems are still under development. Beyond Pairwise Relations Functional units in social and biological networks. High-order network motifs: Motif (Benson’16) Microfauna Pelagic fishes Crabs & Benthic fishes Macroinvertebrates Algorithmic methods for analyzing high-order relations and learning problems are still under development. Beyond Pairwise Relations Functional units in social and biological networks. Meta-graphs, meta-paths in heterogeneous information networks. (Zhou, Yu, Han'11) Beyond Pairwise Relations Functional units in social and biological networks. Meta-graphs, meta-paths in heterogeneous information networks. Algorithmic methods for analyzing high-order relations and learning problems are still under development. Review of Graph Clustering: Notation and Terminology Graph Clustering Task: Cluster the vertices that are \densely" connected by edges. Graph Partitioning and Conductance A (weighted) graph G = (V ; E; w): for e 2 E, we is the weight. -
Fast Approximate Spectral Clustering
Fast Approximate Spectral Clustering Donghui Yan Ling Huang Michael I. Jordan University of California Intel Research Lab University of California Berkeley, CA 94720 Berkeley, CA 94704 Berkeley, CA 94720 [email protected] [email protected] [email protected] ABSTRACT variety of methods have been developed over the past several decades Spectral clustering refers to a flexible class of clustering proce- to solve clustering problems [15, 19]. A relatively recent area dures that can produce high-quality clusterings on small data sets of focus has been spectral clustering, a class of methods based but which has limited applicability to large-scale problems due to on eigendecompositions of affinity, dissimilarity or kernel matri- its computational complexity of O(n3) in general, with n the num- ces [20, 28, 31]. Whereas many clustering methods are strongly ber of data points. We extend the range of spectral clustering by tied to Euclidean geometry, making explicit or implicit assump- developing a general framework for fast approximate spectral clus- tions that clusters form convex regions in Euclidean space, spectral tering in which a distortion-minimizing local transformation is first methods are more flexible, capturing a wider range of geometries. applied to the data. This framework is based on a theoretical anal- They often yield superior empirical performance when compared ysis that provides a statistical characterization of the effect of local to competing algorithms such as k-means, and they have been suc- distortion on the mis-clustering rate. We develop two concrete in- cessfully deployed in numerous applications in areas such as com- stances of our general framework, one based on local k-means clus- puter vision, bioinformatics, and robotics. -
Spectral Clustering: a Tutorial for the 2010’S
Spectral Clustering: a Tutorial for the 2010’s Marina Meila∗ Department of Statistics, University of Washington September 22, 2016 Abstract Spectral clustering is a family of methods to find K clusters using the eigenvectors of a matrix. Typically, this matrix is derived from a set of pairwise similarities Sij between the points to be clustered. This task is called similarity based clustering, graph clustering, or clustering of diadic data. One remarkable advantage of spectral clustering is its ability to cluster “points” which are not necessarily vectors, and to use for this a“similarity”, which is less restric- tive than a distance. A second advantage of spectral clustering is its flexibility; it can find clusters of arbitrary shapes, under realistic separations. This chapter introduces the similarity based clustering paradigm, describes the al- gorithms used, and sets the foundations for understanding these algorithms. Practical aspects, such as obtaining the similarities are also discussed. ∗ This tutorial appeared in “Handbook of Cluster ANalysis” by Christian Hennig, Marina Meila, Fionn Murthagh and Roberto Rocci (eds.), CRC Press, 2015. 1 Contents 1 Similarity based clustering. Definitions and criteria 3 1.1 What is similarity based clustering? . ...... 3 1.2 Similarity based clustering and cuts in graphs . ......... 3 1.3 The Laplacian and other matrices of spectral clustering ........... 4 1.4 Four bird’s eye views of spectral clustering . ......... 6 2 Spectral clustering algorithms 7 3 Understanding the spectral clustering algorithms 11 3.1 Random walk/Markov chain view . 11 3.2 Spectral clustering as finding a small balanced cut in ........... 13 G 3.3 Spectral clustering as finding smooth embeddings . -
Knowledge-Based Systems Layer-Constrained Variational
Knowledge-Based Systems 196 (2020) 105753 Contents lists available at ScienceDirect Knowledge-Based Systems journal homepage: www.elsevier.com/locate/knosys Layer-constrained variational autoencoding kernel density estimation model for anomaly detectionI ∗ Peng Lv b, Yanwei Yu a,b, , Yangyang Fan c, Xianfeng Tang d, Xiangrong Tong b a Department of Computer Science and Technology, Ocean University of China, Qingdao, Shandong 266100, China b School of Computer and Control Engineering, Yantai University, Yantai, Shandong 264005, China c Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China d College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA article info a b s t r a c t Article history: Unsupervised techniques typically rely on the probability density distribution of the data to detect Received 16 October 2019 anomalies, where objects with low probability density are considered to be abnormal. However, Received in revised form 5 March 2020 modeling the density distribution of high dimensional data is known to be hard, making the problem of Accepted 7 March 2020 detecting anomalies from high-dimensional data challenging. The state-of-the-art methods solve this Available online 10 March 2020 problem by first applying dimension reduction techniques to the data and then detecting anomalies Keywords: in the low dimensional space. Unfortunately, the low dimensional space does not necessarily preserve Anomaly detection the density distribution of the original high dimensional data. This jeopardizes the effectiveness of Variational autoencoder anomaly detection. In this work, we propose a novel high dimensional anomaly detection method Kernel density estimation called LAKE.