Ultraviolet Absorption in Transparent Zooplankton and Its Implications for Depth Distribution and Visual Predation

Total Page:16

File Type:pdf, Size:1020Kb

Ultraviolet Absorption in Transparent Zooplankton and Its Implications for Depth Distribution and Visual Predation Marine Biology -2001) 138: 717±730 Ó Springer-Verlag 2001 S. Johnsen á E. A. Widder Ultraviolet absorption in transparent zooplankton and its implications for depth distribution and visual predation Received: 14 April 2000 / Accepted: 16 November 2000 Abstract The use of transparency as camou¯age in the and minimum attainable depth were modeled using epipelagic realm is complicated by the presence of ul- contrast theory and the physics of light attenuation. traviolet radiation, because the presence of UV-protec- Because UV absorption was generally signi®cantly tive pigments decreases UV transparency and may reveal greater in the UVB than in the UVA spectrum -where transparent zooplankton to predators and prey with UV UV vision occurs), and because the highest UV ab- vision. DuringJuly 1999, September 1999, and June sorption was often found in less transparent individuals, 2000, transparency measurements -from 280 to 500 nm) its modeled eects on visibility were slight compared to were made on livingspecimens of 15 epipelagic-col- its eects on minimum attainable depth. lection depth: 0±20 m, average: 11 1 m) and 19 mesopelagic -collection depth: 150±790 m, average: 370 40 m) species of transparent zooplankton from Oceanographer Canyon and Wilkinson Basin in the Introduction Northwest Atlantic Ocean. In addition, measurements of downwellingirradiance -from 330 to 500 nm) versus Two strikingcharacteristics of many oceanic zooplank- depth were made. The tissues from epipelagic zoo- ton are their delicacy and their high degree of exposure plankton had lower UV transparency than those from to visual predators and prey. Transparency is one of the mesopelagic zooplankton, while the average visible most common adaptations to this environment and ap- transparency -at 480 nm) of the two groups was not pears to have evolved many times in parallel. All major signi®cantly dierent. Percent transparency was posi- pelagic phyla have transparent representatives, and tively correlated with wavelength over most of the many taxonomic groups -cnidarians, ctenophores, measured range, with a rapid decrease below a certain chaetognaths, polychaetes, salps, doliolids, cranchid cuto wavelength. In mesopelagic tissues, the cuto squid, pseudothecosomate pteropods, heteropods, hy- wavelength was generally 300 nm. In epipelagic tissues, periid amphipods) are dominated by transparent forms the cuto wavelength was between 300 and 400 nm. -McFall-Ngai 1990; Hamner 1996; Johnsen and Widder Twelve out of 19 epipelagic tissues had transparencies at 1998; Johnsen 2000). Many species achieve nearly 320 nm that were half or less than their 480 nm trans- complete invisibility, and it has longbeen assumed that parency values, versus only 4 out of 21 mesopelagic transparency functions as camou¯age -Hobson and tissues. The eects of UV absorption on UV visibility Chess 1978; McFall-Ngai 1990). Although transparent, mostly gelatinous zooplank- ton are poorly represented in trawls, research usingblue- Communicated by J. P. Grassle, New Brunswick water divingtechniques and submersibles has shown that they are diverse, abundant, and play critical roles as S. Johnsen -&) herbivores, predators and prey of zooplankton and Biology Department, MS #33, ichthyoplankton, and conveyers of organic mass to Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1049, USA deeper waters -e.g. Hamner et al. 1975; Alldredge and Madin 1982; Alldredge 1984; Caron et al. 1989; Lalli e-mail: [email protected] Tel.: +1-508-2893603; Fax: +1-508-4572134 and Gilmer 1989; Pages et al. 1996; Madin et al. 1997; Purcell 1997). All pelagic phyla contain numerous E. A. Widder Marine Science Division, transparent species that either prey on, or are preyed Harbor Branch Oceanographic Institution, upon by species with well-developed visual systems -re- Fort Pierce, Florida, USA viewed by Johnsen and Widder 1998). In addition, many 718 of these species -e.g. cnidarians, ctenophores, and 1995; Losey et al. 1999). Indeed, amongfreshwater te- chaetognaths) prey upon copepods and larval crusta- leosts UV vision appears to be fairly widespread -re- ceans -Baier and Purcell 1997; Harbison et al. 1978), viewed by Jacobs 1992, Goldsmith 1994, and Shashar which react defensively to shadows -Forward 1976; 1995; Carleton et al. 2000). Several researchers have Buskey et al. 1986) and thus may react to opaque or hypothesized that UV vision is primarily used to im- translucent predators passingoverhead. prove detection of planktonic prey -Loew et al. 1993; Since the majority of transparent zooplankton are Cronin et al. 1994; McFarland and Loew 1994), and more delicate and less agile than their visually orienting Browman et al. -1994) have shown that the presence of predators or prey, their success in predator/prey inter- UV light improves the search behavior of certain UV- actions with these species depends critically upon their sensitive zooplanktivorous ®sh. The presence of UV visibility and, in particular, their sighting distance -the sensitivity in planktivorous but not in non-planktivo- maximum distance at which they are detectable by an rous life stages of salmonids -reviewed by Tovee 1995), organism relying on visual cues) -Johnsen and Widder the correlation between UV vision and planktivory in 1998). Because underwater sighting distances are short, coral reef ®sh -McFarland et al., in preparation), and they are generally determined more by an object's the correlation between ocular UV transparency and contrast than by its size -Mertens 1970). An object's planktivory -Siebeck and Marshall 2001) all suggest that contrast depends on its distance from the viewer, its UV vision is often used to increase the contrast of transparency, and the transparency of the surrounding planktonic prey. water. Beyond the sighting distance, the object's contrast The second problem related to UV radiation is po- drops below what the viewer can detect. Because the tential radiation damage. Numerous studies have shown sighting distance depends on the optical properties of the that pelagic organisms are damaged by UV radiation in zooplankton and the surroundingwater, changesin ei- various ways, includingdeleterious eects on DNA, ther aect predator±prey relationships and possibly the proteins, tissue, activity, growth, reproduction, and species composition of the ecosystem -Zaret and Kerfoot chemical defenses -Damkaer et al. 1980, 1981; Worrest 1975; Greene 1983; reviewed by McFall-Ngai 1990). 1982; HaÈ der and Worrest 1991; Smith et al. 1992; Cro- The issue of ultraviolet -UV) transparency is partic- nin and Hay 1995; El-Sayed et al. 1996; Hay 1996). ularly intriguing. Recent research has shown that UV Dierential levels of these eects have been shown to radiation is more abundant in epipelagic ecosystems in¯uence biomass, sex ratios, and species compositions -de®ned in this paper as the depth range 0±20 m) than of both terrestrial and marine ecosystems -Bogenrieder previously supposed -Fleischmann 1989; Frank and and Klein 1982; Bothwell et al. 1994; Chalker-Scott Widder 1996; reviewed by El-Sayed et al. 1996 and 1995; WaÈ ngberg et al. 1996; Odmark et al. 1998). These Losey et al. 1999). This presents two problems for zoo- eects are primarily due to UVB radiation -280± plankton that have evolved a concealment strategy 320 nm), and in clear polar water have been observed to based on transparency. The ®rst involves UV vision depths of 20±25 m -reviewed by El-Sayed et al. 1996). At amongpotential predators and prey. UV vision has been lower latitudes, where surface UV irradiance is higher, demonstrated in many marine species, and it has been these eects are likely to be observed even deeper. conservatively estimated that there is sucient UV light One of the primary defensive mechanisms against UV for vision down to 200 m in clear ocean water -reviewed radiation damage is the use of UV-absorbing pigments by Shashar 1995 and Losey et al. 1999). Visual pigments -Dunlap et al. 1991; Douglas and Thorpe 1992; Thorpe with UV sensitivity -though not necessarily peaking in et al. 1993; Karentz 1994; Carroll and Shick 1996; the UV) have been found in the Atlantic halibut -Helvik Hannach and Sigelo 1998). However, because UV-pro- et al., in preparation), 22 -out of 41 examined) species of tective pigments must attenuate UV light to be eective, coral reef ®sh -McFarland and Loew 1994; McFarland their presence reduces an organism's transparency in the et al., in preparation), juvenile salmonids -Bowmaker UV, and thus increases its sighting distance for preda- and Kunz 1987; Coughlin and Hawryshyn 1994), and tors and prey with UV vision. This presents a potential decapod and stomatopod crustaceans -Cronin and dilemma for transparent epipelagic zooplankton: Frank 1996; Marshall and Oberwinkler 1999). In addi- protection or concealment. This con¯ict is particularly tion, Siebeck and Marshall -2001) examined the lenses dicult to resolve in clear, oceanic waters, where UV and corneas of 211 species of coral reef ®sh and found radiation levels are high and camou¯age is especially that 50% had high transparency at UV wavelengths. challenging. Reports of decreasing ozone levels at polar, Since the majority of the lenses and corneas in high UV temperate, and tropical latitudes -Solomon 1990; Sto- environments have high UV absorption -presumably to larski et al. 1992) create an additional complication, protect the retina from radiation damage) -Thorpe et al. because transparent zooplankton may face concomitant 1993), Siebeck and Marshall suggest that
Recommended publications
  • Trophic Ecology of Gelatinous Zooplankton in Oceanic Food Webs of the Eastern Tropical Atlantic Assessed by Stable Isotope Analysis
    Limnol. Oceanogr. 9999, 2020, 1–17 © 2020 The Authors. Limnology and Oceanography published by Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography. doi: 10.1002/lno.11605 Tackling the jelly web: Trophic ecology of gelatinous zooplankton in oceanic food webs of the eastern tropical Atlantic assessed by stable isotope analysis Xupeng Chi ,1,2* Jan Dierking,2 Henk-Jan Hoving,2 Florian Lüskow,3,4 Anneke Denda,5 Bernd Christiansen,5 Ulrich Sommer,2 Thomas Hansen,2 Jamileh Javidpour2,6 1CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China 2Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany 3Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada 4Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada 5Institute of Marine Ecosystem and Fishery Science (IMF), Universität Hamburg, Hamburg, Germany 6Department of Biology, University of Southern Denmark, Odense M, Denmark Abstract Gelatinous zooplankton can be present in high biomass and taxonomic diversity in planktonic oceanic food webs, yet the trophic structuring and importance of this “jelly web” remain incompletely understood. To address this knowledge gap, we provide a holistic trophic characterization of a jelly web in the eastern tropical Atlantic, based on δ13C and δ15N stable isotope analysis of a unique gelatinous zooplankton sample set. The jelly web covered most of the isotopic niche space of the entire planktonic oceanic food web, spanning > 3 tro- phic levels, ranging from herbivores (e.g., pyrosomes) to higher predators (e.g., ctenophores), highlighting the diverse functional roles and broad possible food web relevance of gelatinous zooplankton.
    [Show full text]
  • High Abundance of Salps in the Coastal Gulf of Alaska During 2011
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/301733881 High abundance of salps in the coastal Gulf of Alaska during 2011: A first record of bloom occurrence for the northern Gulf Article in Deep Sea Research Part II Topical Studies in Oceanography · April 2016 DOI: 10.1016/j.dsr2.2016.04.009 CITATION READS 1 33 4 authors, including: Ayla J. Doubleday Moira Galbraith University of Alaska System Institute of Ocean Sciences, Sidney, BC, Cana… 3 PUBLICATIONS 16 CITATIONS 28 PUBLICATIONS 670 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: l. salmonis and c. clemensi attachment sites: chum salmon View project All content following this page was uploaded by Moira Galbraith on 10 June 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Deep-Sea Research II ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 High abundance of salps in the coastal Gulf of Alaska during 2011: A first record of bloom occurrence for the northern Gulf Kaizhi Li a, Ayla J. Doubleday b, Moira D. Galbraith c, Russell R. Hopcroft b,n a Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China b Institute of Marine Science, University of Alaska, Fairbanks, AK 99775-7220, USA c Institute of Ocean Sciences, Fisheries and Oceans Canada, P.O.
    [Show full text]
  • Midwater Data Sheet
    MIDWATER TRAWL DATA SHEET RESEARCH VESSEL__________________________________(1/20/2013Version*) CLASS__________________;DATE_____________;NAME:_________________________; DEVICE DETAILS___________ LOCATION (OVERBOARD): LAT_______________________; LONG___________________________ LOCATION (AT DEPTH): LAT_______________________; LONG______________________________ LOCATION (START UP): LAT_______________________; LONG______________________________ LOCATION (ONBOARD): LAT_______________________; LONG______________________________ BOTTOM DEPTH_________; DEPTH OF SAMPLE:____________; DURATION OF TRAWL___________; TIME: IN_________AT DEPTH________START UP__________SURFACE_________ SHIP SPEED__________; WEATHER__________________; SEA STATE_________________; AIR TEMP______________ SURFACE TEMP__________; PHYS. OCE. NOTES______________________; NOTES_____________________________ INVERTEBRATES Lensia hostile_______________________ PHYLUM RADIOLARIA Lensia havock______________________ Family Tuscaroridae “Round yellow ones”___ Family Hippopodiidae Vogtia sp.___________________________ PHYLUM CTENOPHORA Family Prayidae Subfamily Nectopyramidinae Class Nuda "Pointed siphonophores"________________ Order Beroida Nectadamas sp._______________________ Family Beroidae Nectopyramis sp.______________________ Beroe abyssicola_____________________ Family Prayidae Beroe forskalii________________________ Subfamily Prayinae Beroe cucumis _______________________ Craseoa lathetica_____________________ Class Tentaculata Desmophyes annectens_________________ Subclass
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Piggybacking Pycnogonids and Parasitic Narcomedusae on Pandea Rubra (Anthomedusae, Pandeidae)
    Plankton Benthos Res 2(2): 83–90, 2007 Plankton & Benthos Research © The Plankton Society of Japan Piggybacking pycnogonids and parasitic narcomedusae on Pandea rubra (Anthomedusae, Pandeidae) FRANCESC PAGÈS1†, JORDI CORBERA2 &DHUGAL LINDSAY3* 1 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37–49, 08003, Barcelona, Catalunya, Spain 2 Carrer Gran 90, 08310 Argentona, Catalunya, Spain 3 Marine Biology and Ecology Research Program, Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natushima-cho, Yokosuka, 237–0061, Japan †Deceased Received 26 October 2006; Accepted 30 January 2007 Abstract: Associations between pycnogonids and the mesopelagic anthomedusan Pandea rubra are reported from two in situ video footage records off the Pacific coast of northern Japan, and from a plankton sample collected in the Weddell Sea (one juvenile of the pycnogonid Pallenopsis (Bathypallenopsis) tritonis). This is the first pelagic record of a pycnogonid in the Southern Ocean and the first record of an association between pycnogonids and a hydroidomedusa at mesopelagic depths. Taxonomic descriptions of both host and associate are given. Two early stages of a parasitic nar- comedusa adhered to the medusan subumbrella are also reported. Possible origins for the pycnogonid-medusa associa- tion are postulated. Key words: Antarctica, anthomedusa, association, Japan, mesopelagic, pycnogonid Hedgpeth (1962) suggested that bathypelagic pycnogo- Introduction nids are parasites or commensals upon larger organisms, Pycnogonids are marine arthropods that are usually ben- possibly medusae, as previous observations had shown that thic in habitat. However, occasionally they are observed the larval stages of pycnogonids can be parasitic on hy- swimming in coastal surface waters (Clark & Carpenter droidomedusae in coastal waters (Lebour 1916, Oshima 1977) or are found in plankton samples collected in upper 1933, Okuda 1940).
    [Show full text]
  • Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria) Paulyn Cartwright1, Nathaniel M
    Journal of the Marine Biological Association of the United Kingdom, page 1 of 10. #2008 Marine Biological Association of the United Kingdom doi:10.1017/S0025315408002257 Printed in the United Kingdom Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria) paulyn cartwright1, nathaniel m. evans1, casey w. dunn2, antonio c. marques3, maria pia miglietta4, peter schuchert5 and allen g. collins6 1Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66049, USA, 2Department of Ecology and Evolutionary Biology, Brown University, Providence RI 02912, USA, 3Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, SP, Brazil, 4Department of Biology, Pennsylvania State University, University Park, PA 16802, USA, 5Muse´um d’Histoire Naturelle, CH-1211, Gene`ve, Switzerland, 6National Systematics Laboratory of NOAA Fisheries Service, NMNH, Smithsonian Institution, Washington, DC 20013, USA Hydroidolina is a group of hydrozoans that includes Anthoathecata, Leptothecata and Siphonophorae. Previous phylogenetic analyses show strong support for Hydroidolina monophyly, but the relationships between and within its subgroups remain uncertain. In an effort to further clarify hydroidolinan relationships, we performed phylogenetic analyses on 97 hydroidolinan taxa, using DNA sequences from partial mitochondrial 16S rDNA, nearly complete nuclear 18S rDNA and nearly complete nuclear 28S rDNA. Our findings are consistent with previous analyses that support monophyly of Siphonophorae and Leptothecata and do not support monophyly of Anthoathecata nor its component subgroups, Filifera and Capitata. Instead, within Anthoathecata, we find support for four separate filiferan clades and two separate capitate clades (Aplanulata and Capitata sensu stricto). Our data however, lack any substantive support for discerning relationships between these eight distinct hydroidolinan clades.
    [Show full text]
  • HYDROMEDUSAE Sheet M
    CONSEIL INTERNATIONAL POUR L'EXPLORATION DE LA MER Zooplankton. HYDROMEDUSAE Sheet M. Families: Pandeidae and Tiarannidae (By F. S. Russell) 1955. ISBN 978-87-7482-802-0 https://doi.org/10.17895/ices.pub.4969 ISSN 2707-675X 2 7 1. Amphinema dinema. 3. Paratiara digitalis. 5. Leuckartiara octona. 7. L. breviconis. 2. A. rugosum. 4. Halitholus cirratus. 6. L. nobilis. 8. Annatiara a/finis. (After various authors). -3- 13 14 16 9. Catablema vesicarium. 11. Pandea conica. 14. Calycopsis simplex. 16. Chromatonema rubrum. 10. N eoturris pileata, 13. Bythotiara murrayi. 15. Tiaranna rotunda. (After various authors). -4- Family P ANDEIDAE Mouth with four simple or crenulated lips. Gonads simple or folded, situated adradially or interradially on stomach wall, rarely on perradii of subumbrella. Two, four or more marginal tentacles with swollen bases, or without basal swellings and with terminal nematocyst clusters: with or without rudimentary marginal tentacles, warts or tentaculae. Sub-family Amphineminae Simple mouth lips. Two perradial marginal tentacles with basal swellings. Genus AMPHINEMA Haeckel: Characters as sub-family. I. Amphinema dinema (Peron & Lesueur). Simple unfolded adradial gonads. 14-24 small marginal warts. Height up to 6 mm. 2. A. rugosum (Mayer). Folded adradial gonads, with 3 or 4 folds sloping obliquely downwards towards interradii. 16--24 small marginal tentaculae. Height up to 6 mm. Sub-family Protiarinae Simple mouth lips. Four perradial marginal tentacles with basal swellings. Genus PARATIARA Kramp & Damas: Characters as sub-family. 3. Paratiara digitalis Kramp & Dam as. Simple unfolded interradial gonads. 8 or more marginal tentacles. Height 10 mm. Sub-family Pandeinae Crenulated mouth lips.
    [Show full text]
  • (Gulf Watch Alaska) Final Report the Seward Line: Marine Ecosystem
    Exxon Valdez Oil Spill Long-Term Monitoring Program (Gulf Watch Alaska) Final Report The Seward Line: Marine Ecosystem monitoring in the Northern Gulf of Alaska Exxon Valdez Oil Spill Trustee Council Project 16120114-J Final Report Russell R Hopcroft Seth Danielson Institute of Marine Science University of Alaska Fairbanks 905 N. Koyukuk Dr. Fairbanks, AK 99775-7220 Suzanne Strom Shannon Point Marine Center Western Washington University 1900 Shannon Point Road, Anacortes, WA 98221 Kathy Kuletz U.S. Fish and Wildlife Service 1011 East Tudor Road Anchorage, AK 99503 July 2018 The Exxon Valdez Oil Spill Trustee Council administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The Council administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Action of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. If you believe you have been discriminated against in any program, activity, or facility, or if you desire further information, please write to: EVOS Trustee Council, 4230 University Dr., Ste. 220, Anchorage, Alaska 99508-4650, or [email protected], or O.E.O., U.S. Department of the Interior, Washington, D.C. 20240. Exxon Valdez Oil Spill Long-Term Monitoring Program (Gulf Watch Alaska) Final Report The Seward Line: Marine Ecosystem monitoring in the Northern Gulf of Alaska Exxon Valdez Oil Spill Trustee Council Project 16120114-J Final Report Russell R Hopcroft Seth L.
    [Show full text]
  • Alaska Exclusive Economic Zone: Ocean Exploration and Research Bibliography
    Alaska Exclusive Economic Zone: Ocean Exploration and Research Bibliography Hope Shinn, Librarian, NOAA Central Library Jamie Roberts, Librarian, NOAA Central Library NCRL subject guide 2020-08 doi: 10.25923/k182-6s39 September 2020 U.S. Department of Commerce National Oceanic and Atmospheric Administration Office of Oceanic and Atmospheric Research NOAA Central Library – Silver Spring, Maryland Table of Contents Background ............................................................................................................................................... 3 Scope ......................................................................................................................................................... 3 Sources Reviewed ..................................................................................................................................... 7 Acknowledgements ................................................................................................................................... 7 Section I: Aleutian Islands ......................................................................................................................... 8 Section II: Aleutian Islands, Beaufort Sea, Bering Sea, Chukchi Sea, Gulf of Alaska ............................... 26 Section III: Aleutian Islands, Bering Sea, Gulf of Alaska .......................................................................... 27 Section IV: Aleutian Islands, Central Gulf of Alaska ...............................................................................
    [Show full text]
  • Evolution, Origins and Diversification of Parasitic Cnidarians
    1 Evolution, Origins and Diversification of Parasitic Cnidarians Beth Okamura*, Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. Email: [email protected] Alexander Gruhl, Department of Symbiosis, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany *Corresponding author 12th August 2020 Keywords Myxozoa, Polypodium, adaptations to parasitism, life‐cycle evolution, cnidarian origins, fossil record, host acquisition, molecular clock analysis, co‐phylogenetic analysis, unknown diversity Abstract Parasitism has evolved in cnidarians on multiple occasions but only one clade – the Myxozoa – has undergone substantial radiation. We briefly review minor parasitic clades that exploit pelagic hosts and then focus on the comparative biology and evolution of the highly speciose Myxozoa and its monotypic sister taxon, Polypodium hydriforme, which collectively form the Endocnidozoa. Cnidarian features that may have facilitated the evolution of endoparasitism are highlighted before considering endocnidozoan origins, life cycle evolution and potential early hosts. We review the fossil evidence and evaluate existing inferences based on molecular clock and co‐phylogenetic analyses. Finally, we consider patterns of adaptation and diversification and stress how poor sampling might preclude adequate understanding of endocnidozoan diversity. 2 1 Introduction Cnidarians are generally regarded as a phylum of predatory free‐living animals that occur as benthic polyps and pelagic medusa in the world’s oceans. They include some of the most iconic residents of marine environments, such as corals, sea anemones and jellyfish. Cnidarians are characterised by relatively simple body‐plans, formed entirely from two tissue layers (the ectoderm and endoderm), and by their stinging cells or nematocytes.
    [Show full text]
  • Zooplankton Fecal Pellets, Marine Snow and Sinking Phytoplankton Blooms
    AQUATIC MICROBIAL ECOLOGY Vol. 27: 57–102, 2002 Published February 18 Aquat Microb Ecol REVIEW Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms Jefferson T. Turner* School for Marine Science and Technology, University of Massachusetts Dartmouth, 706 South Rodney French Boulevard, New Bedford, Massachusetts 02744-1221, USA ABSTRACT: Zooplankton fecal pellets have long been thought to be a dominant component of the sedimentary flux in marine and freshwater ecosystems, but that view is changing. The last 2 decades have seen publication of >500 studies using sediment traps, which reveal that zooplankton fecal pellets often constitute only a minor or variable proportion of the sedimentary flux. Substantial pro- portions of this flux are from organic aggregates (‘marine snow’) of various origins, including phyto- plankton blooms, which sediment directly to the benthos. It now appears that mainly large fecal pel- lets of macrozooplankton and fish are involved in the sedimentary flux. Smaller fecal pellets of microzooplankton and small mesozooplankton are mostly recycled or repackaged in the water column by microbial decomposition and coprophagy, contributing more to processes in the water column than flux to the benthos. The relative contributions of fecal pellets, marine snow and sinking phytoplankton to the vertical flux and recycling of materials in the water column are highly variable, dependent upon multiple interacting factors. These include variations in productivity, biomass, size spectra and composition of communities
    [Show full text]
  • A Comparative Analysis of the Locomotory Systems of Medusoid Cnidaria
    Helgol~nder wiss. Meeresunters. 25, 228-272 (1973) A comparative analysis of the locomotory systems of medusoid Cnidaria W. G. GLADFELTER Pacific Marine Station; Dillon Beach, California, USA KURZFASSUNG: Eine vergleichende Analyse der Iokomotorischen Systeme von Cnidarier- Medusen. Auf der Grundlage einer funktionell-morphologischen Analyse des lokomoto- rischen Systems bei Hydro- und Seyphomedusen wurde der Versuch unternommen, den Me- chanismus ihrer Schwimmbewegungen allgemein zu charakterisieren. An Vertretern yon ins- gesamt 42 Gattungen wurden der Bau und die funktionelle Variabilit~it des Schirmes, der Mesogloea, der Fibriiien der Mesogloea, der kontraktilen Elemente der Muskulatur und des Velums bzw. des Velariums untersucht und verglichen some eine Klassifizierung der Medusen nach der Struktur der Mesogloea und der Art der Fortbewegung vorgenommen. INTRODUCTION The most complete discussion to date of the medusa as a functioning musculo- skeletal system has been that of GLADFELTrR (1972a) for the hydromedusan Polyorchis montereyensis. In another study the very different locomotory system of the scypho- medusan Cyanea capillata has been discussed (GLADFrLT~R 1972b). Other published works on the functional morphology of medusan locomotory systems have been frag- mentary or have dealt with specialized aspects of the subiect (K~AslNSKA 1914, CHaVMAN 1953, 1959; MAC~IE 1964, CHAVMAN 1968 and others), and works on general anatomy (CguN I897, CONANT 1898, THIr~ 1938, HYMAN 1940a and others) though presenting some of the pertinent anatomy, have not discussed the locomotory system as a whole. A number of more speciaiized papers dealing with the physiology of medusan locomotion are also available but present only the essential rudiments of morphology (BULLOCK & HORRIDGE 1965, MACKIE 197t and others).
    [Show full text]