The Molecular Basis for the Biotic Degradation of Metaldehyde

Total Page:16

File Type:pdf, Size:1020Kb

The Molecular Basis for the Biotic Degradation of Metaldehyde The molecular basis for the biotic degradation of metaldehyde John Christopher Thomas PhD University of York Biology September 2016 Abstract Metaldehyde is a molluscicide that is used to prevent crop damage by slugs and snails. It is frequently found in drinking water sources at concentrations above the legal maximum, and causes >90% of water quality failures in England. There is currently no economical, widely used treatment to remove metaldehyde pollution from water. Prior to the work presented here, it was known that metaldehyde is degraded biotically in soil, but the nature and identity of organisms responsible was unknown. Two novel metaldehyde degrading bacterial strains were isolated from domestic soil that can utilise metaldehyde as a sole carbon and energy source; Acinetobacter calcoaceticus E1 and Variovorax E3. Evidence that acetaldehyde is the primary metabolite of metaldehyde is presented: the metaldehyde dependent expression of an aldehyde dehydrogenase in A. calcoaceticus E1 was found, and the maximum metabolic flux of acetaldehyde was found to be greater than that of metaldehyde in cells grown using metaldehyde. The genomes of the isolated organisms were acquired. Comparative genomics of the two isolates showed that their novel catalytic ability was not dependent on genes shared between them, despite being isolated from the same soil sample. Comparison of the A. calcoaceticus E1 genome against other Acinetobacter that cannot utilise metaldehyde yielded a strong candidate for the primary metaldehyde degrading enzyme that has characteristics consistent with an enzyme that catalysed ether hydrolysis of isochorismate in its ancestral form and has evolved to hydrolyse ether bonds in metaldehyde. 2 Table of contents Abstract ................................................................................................................................................... 2 Table of contents ..................................................................................................................................... 3 Table of figures ........................................................................................................................................ 8 Table of tables ....................................................................................................................................... 12 Acknowledgements ............................................................................................................................... 14 Author’s declaration .............................................................................................................................. 15 Chapter 1: General Introduction ..................................................................................................... 17 1.1 The molecular diversity of soil microorganisms .................................................................... 17 1.2 The anthropogenic influence on soil ecology........................................................................ 18 1.3 Metaldehyde is a widely used molluscicide .......................................................................... 19 1.4 The toxicity of metaldehyde .................................................................................................. 20 1.5 Pollution of drinking water caused by metaldehyde ............................................................ 21 1.5.1 Metaldehyde use in other EU countries ........................................................................ 23 1.6 Chemical and physical methods of removing metaldehyde pollution .................................. 24 1.7 The biotic degradation of metaldehyde ................................................................................ 26 1.8 Bioremediation and biosensors ............................................................................................ 30 1.9 Aims of the project ................................................................................................................ 31 Chapter 2: Optimisation of a liquid-chromatography mass-spectrometry method for quantifying metaldehyde ....................................................................................................................................... 33 2.1 Introduction ........................................................................................................................... 33 2.2 Materials and methods ......................................................................................................... 35 2.2.1 LC and MS protocols ...................................................................................................... 35 2.3 Results ................................................................................................................................... 39 2.3.1 Decreasing response during, at least, the first 40 injections when analysing metaldehyde ................................................................................................................................. 39 3 2.3.2 No obvious sources of noise in parts of default protocol that take place before MS when analysing metaldehyde........................................................................................................ 40 2.3.3 The desolvation temperature significantly affects response and capillary voltage affects precision during the quantification of metaldehyde ......................................................... 51 2.3.4 Quantification of metaldehyde shows good precision across a range of concentrations but assessment of accuracy was weakened by standard preparations ........................................ 59 2.3.5 Comparison of precision of default protocol to optimised protocol ............................ 65 2.4 Discussion .............................................................................................................................. 66 2.4.1 Comparison to other published methods ..................................................................... 67 2.4.2 Summary ....................................................................................................................... 68 Chapter 3: Enrichment and characterisation of metaldehyde degrading organisms ..................... 69 3.1 Introduction ........................................................................................................................... 69 3.1.1 The isolation of microorganisms with specific metabolic capabilities .......................... 69 3.1.2 Bacterial phylogeny and the identification of species .................................................. 69 3.1.3 Aims ............................................................................................................................... 70 3.2 Materials and methods ......................................................................................................... 72 3.2.1 Minimal media ............................................................................................................... 72 3.2.2 Enrichments and isolations of metaldehyde degrading organisms .............................. 73 3.2.3 Substrate utilisation assays ........................................................................................... 74 3.2.4 Extraction of genomic DNA ........................................................................................... 75 3.2.5 16S polymerase chain reaction (PCR) and Sanger sequencing ..................................... 75 3.2.6 Genomic sequencing ..................................................................................................... 75 3.2.7 BLAST based method used to identify gnomically sequenced bacterial strains close to a strain isolated in this study ........................................................................................................... 76 3.2.8 Average nucleotide identity (ANI) ................................................................................. 76 3.3 Results ................................................................................................................................... 77 3.3.1 Acinetobacter strain E1 and Variovorax strain E3 were isolated in enrichments for metaldehyde catabolism ............................................................................................................... 77 4 3.3.2 Metaldehyde degrading organisms could not be isolated from agricultural soils or slow sand filter samples ........................................................................................................................ 81 3.3.3 The disappearance of metaldehyde from minimal media is proportional to the growth of Acinetobacter E1 and Variovorax E3 in pure cultures .............................................................. 82 3.3.4 Genomic sequence of isolates ....................................................................................... 86 3.3.5 Identification of A. calcoaceticus RUH2202 as a strain closely related to Acinetobacter E1 that does not degrade metaldehyde ........................................................................................ 90 3.3.6 Phylogeny of isolates E1 and E3 .................................................................................... 91 3.3.7 Carbon sources utilised by A. calcoaceticus E1 ............................................................. 94 3.4 Discussion .............................................................................................................................
Recommended publications
  • Characterization and Genomic Analysis of a Diesel-Degrading Bacterium, Acinetobacter Calcoaceticus CA16, Isolated from Canadian Soil Margaret T
    Ho et al. BMC Biotechnology (2020) 20:39 https://doi.org/10.1186/s12896-020-00632-z RESEARCH ARTICLE Open Access Characterization and genomic analysis of a diesel-degrading bacterium, Acinetobacter calcoaceticus CA16, isolated from Canadian soil Margaret T. Ho1,2, Michelle S. M. Li1, Tim McDowell3, Jacqueline MacDonald1 and Ze-Chun Yuan1,3* Abstract Background: With the high demand for diesel across the world, environmental decontamination from its improper usage, storage and accidental spills becomes necessary. One highly environmentally friendly and cost-effective decontamination method is to utilize diesel-degrading microbes as a means for bioremediation. Here, we present a newly isolated and identified strain of Acinetobacter calcoaceticus (‘CA16’) as a candidate for the bioremediation of diesel-contaminated areas. Results: Acinetobacter calcoaceticus CA16 was able to survive and grow in minimal medium with diesel as the only source of carbon. We determined through metabolomics that A. calcoaceticus CA16 appears to be efficient at diesel degradation. Specifically, CA16 is able to degrade 82 to 92% of aliphatic alkane hydrocarbons (CnHn +2; where n = 12–18) in 28 days. Several diesel-degrading genes (such as alkM and xcpR) that are present in other microbes were also found to be activated in CA16. Conclusions: The results presented here suggest that Acinetobacter strain CA16 has good potential in the bioremediation of diesel-polluted environments. Keywords: Microbial bioremediation, Acinetobacter calcoaceticus CA16, Diesel-degrading bacteria, Diesel bioremediation, Aliphatic hydrocarbons, n-alkanes Background can be mitigated by microbial bioremediation, which With the high demand for diesel around the world, se- uses microbes to remove pollutants from the environ- vere environmental and ecological problems have arisen ment [3, 4].
    [Show full text]
  • Review of the Molluscicide Metaldehyde in the Environment Environmental Science Water Research & Technology
    Volume 3 Number 3 May 2017 Pages 381–574 Environmental Science Water Research & Technology rsc.li/es-water ISSN 2053-1400 CRITICAL REVIEW G. R. Fones et al. Review of the molluscicide metaldehyde in the environment Environmental Science Water Research & Technology View Article Online CRITICAL REVIEW View Journal | View Issue Review of the molluscicide metaldehyde in the Cite this: Environ. Sci.: Water Res. environment Technol., 2017, 3,415 G. D. Castle,a G. A. Mills,b A. Gravell,c L. Jones,d I. Townsend,d D. G. Camerone and G. R. Fones *a Metaldehyde is the active ingredient in most slug pellets used to protect crops. This molluscicide is consid- ered an emerging pollutant and is frequently detected in surface water bodies above the EU statutory drinking water limit of 0.1 μgL−1 for a pesticide. This presents a challenge for providers of drinking water. Received 4th February 2017, Understanding the sources, transport and environmental fate of this compound is therefore important. This Accepted 10th April 2017 critical review discusses these aspects including monitoring and analytical techniques used for the detec- tion of metaldehyde in environmental matrices. Novel techniques used for the removal of metaldehyde DOI: 10.1039/c7ew00039a from drinking water are presented together with potential catchment management strategies and initiatives rsc.li/es-water useful for the mitigation of this molluscicide in the environment. Creative Commons Attribution 3.0 Unported Licence. Water impact Metaldehyde is a potent molluscicide and is applied to land as baited-pellets. Due to its physicochemical properties, metaldehyde runs off readily from fields and enters surface water bodies where often it can be present at drinking water capitation sites at elevated concentrations.
    [Show full text]
  • Alphabetical Index of Substances and Articles
    ALPHABETICAL INDEX OF SUBSTANCES AND ARTICLES - 355 - NOTES TO THE INDEX 1. This index is an alphabetical list of the substances and articles which are listed in numerical order in the Dangerous Goods List in Chapter 3.2. 2. For the purpose of determining the alphabetical order the following information has been ignored even when it forms part of the proper shipping name: numbers; Greek letters; the abbreviations “sec” and “tert”; and the letters “N” (nitrogen), “n” (normal), “o” (ortho) “m” (meta), “p” (para) and “N.O.S.” (not otherwise specified). 3. The name of a substance or article in block capital letters indicates a proper shipping name. 4. The name of a substance or article in block capital letters followed by the word “see” indicates an alternative proper shipping name or part of a proper shipping name (except for PCBs). 5. An entry in lower case letters followed by the word “see” indicates that the entry is not a proper shipping name; it is a synonym. 6. Where an entry is partly in block capital letters and partly in lower case letters, the latter part is considered not to be part of the proper shipping name. 7. A proper shipping name may be used in the singular or plural, as appropriate, for the purposes of documentation and package marking. - 356 - INDEX Name and description Class UN No. Name and description Class UN No. Accumulators, electric, see 4.3 3292 Acid mixture, nitrating acid, see 8 1796 8 2794 8 2795 Acid mixture, spent, nitrating acid, see 8 1826 8 2800 8 3028 Acraldehyde, inhibited, see 6.1 1092 ACETAL 3 1088
    [Show full text]
  • Microbial Community Composition During Degradation of Organic Matter
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Bodenökologie Microbial community composition during degradation of organic matter Stefanie Elisabeth Wallisch Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. A. Göttlein Prüfer der Dissertation: 1. Hon.-Prof. Dr. M. Schloter 2. Univ.-Prof. Dr. S. Scherer Die Dissertation wurde am 14.04.2015 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 03.08.2015 angenommen. Table of contents List of figures .................................................................................................................... iv List of tables ..................................................................................................................... vi Abbreviations .................................................................................................................. vii List of publications and contributions .............................................................................. viii Publications in peer-reviewed journals .................................................................................... viii My contributions to the publications ....................................................................................... viii Abstract
    [Show full text]
  • Ubiquity of Microbial Capacity to Degrade Metaldehyde in Dissimilar Agricul- Tural, Allotment and Garden Soils
    Journal Pre-proofs Ubiquity of microbial capacity to degrade metaldehyde in dissimilar agricul- tural, allotment and garden soils Natasha Balashova, Sarah Wilderspin, Chao Cai, Brian J. Reid PII: S0048-9697(19)35405-1 DOI: https://doi.org/10.1016/j.scitotenv.2019.135412 Reference: STOTEN 135412 To appear in: Science of the Total Environment Received Date: 19 September 2019 Revised Date: 4 November 2019 Accepted Date: 5 November 2019 Please cite this article as: N. Balashova, S. Wilderspin, C. Cai, B.J. Reid, Ubiquity of microbial capacity to degrade metaldehyde in dissimilar agricultural, allotment and garden soils, Science of the Total Environment (2019), doi: https://doi.org/10.1016/j.scitotenv.2019.135412 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Published by Elsevier B.V. 1 2 3 Ubiquity of microbial capacity to degrade metaldehyde 4 in dissimilar agricultural, allotment and garden soils 5 6 7 Natasha Balashova1, Sarah Wilderspin1, Chao Cai1,2 and Brian J. Reid1* 8 9 1 School of Environmental Sciences, University of East Anglia, Norwich, UK 10 2 Institute for Urban Environment, Chinese Academy of Sciences, Xiamen, P.R.
    [Show full text]
  • BMC Microbiology Biomed Central
    BMC Microbiology BioMed Central Research article Open Access Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector Asha Rani1, Anil Sharma1, Raman Rajagopal1, Tridibesh Adak2 and Raj K Bhatnagar*1 Address: 1Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110 067, India and 2National Institute of Malaria Research (ICMR), Sector 8, Dwarka, Delhi, 110077, India Email: Asha Rani - [email protected]; Anil Sharma - [email protected]; Raman Rajagopal - [email protected]; Tridibesh Adak - [email protected]; Raj K Bhatnagar* - [email protected] * Corresponding author Published: 19 May 2009 Received: 14 January 2009 Accepted: 19 May 2009 BMC Microbiology 2009, 9:96 doi:10.1186/1471-2180-9-96 This article is available from: http://www.biomedcentral.com/1471-2180/9/96 © 2009 Rani et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Mosquitoes are intermediate hosts for numerous disease causing organisms. Vector control is one of the most investigated strategy for the suppression of mosquito-borne diseases. Anopheles stephensi is one of the vectors of malaria parasite Plasmodium vivax. The parasite undergoes major developmental and maturation steps within the mosquito midgut and little is known about Anopheles-associated midgut microbiota.
    [Show full text]
  • Review of the Molluscicide Metaldehyde in the Environment Environmental Science Water Research & Technology
    Volume 3 Number 3 May 2017 Pages 381–574 Environmental Science Water Research & Technology rsc.li/es-water ISSN 2053-1400 CRITICAL REVIEW G. R. Fones et al. Review of the molluscicide metaldehyde in the environment Environmental Science Water Research & Technology View Article Online CRITICAL REVIEW View Journal | View Issue Review of the molluscicide metaldehyde in the Cite this: Environ. Sci.: Water Res. environment Technol., 2017, 3,415 G. D. Castle,a G. A. Mills,b A. Gravell,c L. Jones,d I. Townsend,d D. G. Camerone and G. R. Fones *a Metaldehyde is the active ingredient in most slug pellets used to protect crops. This molluscicide is consid- ered an emerging pollutant and is frequently detected in surface water bodies above the EU statutory drinking water limit of 0.1 μgL−1 for a pesticide. This presents a challenge for providers of drinking water. Received 4th February 2017, Understanding the sources, transport and environmental fate of this compound is therefore important. This Accepted 10th April 2017 critical review discusses these aspects including monitoring and analytical techniques used for the detec- tion of metaldehyde in environmental matrices. Novel techniques used for the removal of metaldehyde DOI: 10.1039/c7ew00039a from drinking water are presented together with potential catchment management strategies and initiatives rsc.li/es-water useful for the mitigation of this molluscicide in the environment. Creative Commons Attribution 3.0 Unported Licence. Water impact Metaldehyde is a potent molluscicide and is applied to land as baited-pellets. Due to its physicochemical properties, metaldehyde runs off readily from fields and enters surface water bodies where often it can be present at drinking water capitation sites at elevated concentrations.
    [Show full text]
  • Removal of Metaldehyde in Aqueous Solutions by Heterogeneous Photocatalysis and Adsorption Processes
    Removal of metaldehyde in aqueous solutions by heterogeneous photocatalysis and adsorption processes A thesis submitted to University College London for the degree of Doctor of Philosophy by Zhuojun Li Department of Civil, Environmental & Geomatic Engineering University College London January 2020 1 Declaration I, Zhuojun Li confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Name: Zhuojun Li Signature: Date: 2 Abstract Metaldehyde has been detected in surface water and drinking water in the UK, exceeding the EU and UK standard of 0.1 µg L-1. Conventional water treatment methods are not effective due to the physicochemical properties of metaldehyde while newly proposed methods are under research and cannot be applied at an industrial scale. This thesis investigated the removal of metaldehyde from aqueous solutions by heterogeneous photocatalysis using nanoparticle photocatalysts and adsorption processes using carbon materials, aiming to provide a feasible solution to the problem. Powdered activated carbon (PAC) proved to be the most effective material to remove metaldehyde from water. It has a relatively large specific surface area of 962.4 m2 g-1 and a pore size distribution in the micro-/meso-pores range that favours adsorption of metaldehyde. Adsorption of metaldehyde onto PAC was explained by the Langmuir -1 isotherm model, with a highest maximum adsorption capacity (qm) of 28.33 mg g , and by the pseudo-second order kinetic model, with highest adsorption rate (k2) of 0.16 g -1 -1 mg min . Low initial concentration of metaldehyde solution led to lower qm of PAC for metaldehyde due to low driving force for mass transfer and competition with water molecules.
    [Show full text]
  • Identification, Molecular Epidemiology, and Antibiotic Resistance Characterization of Acinetobacter Spp
    FACULTY OF HEALTH SCIENCES DEPARTMENT OF MEDICAL BIOLOGY UNIVERSITY HOSPITAL OF NORTH NORWAY DEPARTMENT OF MICROBIOLOGY AND INFECTION CONTROL REFERENCE CENTRE FOR DETECTION OF ANTIMICROBIAL RESISTANCE Identification, molecular epidemiology, and antibiotic resistance characterization of Acinetobacter spp. clinical isolates Nabil Karah A dissertation for the degree of Philosophiae Doctor June 2011 Acknowledgments The work presented in this thesis has been carried out between January 2009 and September 2011 at the Reference Centre for Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway (UNN); and the Research Group for Host–Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø (UIT), Tromsø, Norway. I would like to express my deep and truthful acknowledgment to my main supervisor Ørjan Samuelsen. His understanding and encouraging supervision played a major role in the success of every experiment of my PhD project. Dear Ørjan, I am certainly very thankful for your indispensible contribution in all the four manuscripts. I am also very grateful to your comments, suggestions, and corrections on the present thesis. I am sincerely grateful to my co-supervisor Arnfinn Sundsfjord for his important contribution not only in my MSc study and my PhD study but also in my entire career as a “Medical Microbiologist”. I would also thank you Arnfinn for your nonstop support during my stay in Tromsø at a personal level. My sincere thanks are due to co-supervisors Kristin Hegstad and Gunnar Skov Simonsen for the valuable advice, productive comments, and friendly support. I would like to thank co-authors Christian G.
    [Show full text]
  • Use Products Containing Metaldehyde
    United States Prevention, Pesticides OPP-2005-0231 Environmental Protection And Toxic Substances July 27, 2006 Agency (7508P) _________________________________________________________________ Reregistration Eligibility Decision for Metaldehyde List A Case No. 0576 Reregistration Eligibility Decision (RED) Document For Metaldehyde Approved by: /s/ . Debra Edwards, Ph. D. Director Special Review and Reregistration Division Date: July 27, 2006__ . Page 2 of 53 TABLE OF CONTENTS Metaldehyde Reregistration Eligibility Decision Team ............................................... 5 Glossary of Terms and Abbreviations.......................................................................... 6 I. Introduction ......................................................................................................... 8 II. Chemical Overview............................................................................................ 10 III. Summary of the Metaldehyde Science Assessments......................................... 11 A. Human Health Risk Assessment ..................................................................... 12 1. Acute Toxicity .............................................................................................. 12 2. FQPA Safety Factor..................................................................................... 12 3. Endpoint Selection ....................................................................................... 13 4. Dietary Exposure and Risk from Food and Drinking Water..................... 15 a)
    [Show full text]
  • Metaldehyde Poisoning from Slug Bait Ingestion
    CASE REPORTS Refer to: Longstreth WT Jr, Pierson DJ: Metaldehyde poisoning from slug bait ingestion. West J Med 1982 Aug; 137:134- oculocephalic reflexes and corneal reflexes were 137 present. Tone and tendon reflexes were diffusely increased though there were flexor plantar re- sponses. Chvostek's sign was present. Laboratory testing was remarkable for an unmeasured anion gap of 23 mEq per liter, though the arterial blood Metaldehyde Poisoning gas determinations showed respiratory alkalosis with pH 7.57 and carbon dioxide partial pressure From Slug Bait Ingestion (Pco2) 21 mm of mercury. Urine pH was 5.5 with W. T. LONGSTRETH, Jr, MD ketones present. Serum calcium and magnesium DAVID J. PIERSON, MD levels were normal. Toxicologic studies on blood Seattle and gastric contents were negative except for an unidentified substance. Her hospital course was complicated by severe WE RECENTLY CARED FOR a patient with massive muscle spasms and repeated generalized convul- metaldehyde poisoning and report the case to fam- sions despite therapeutic concentrations of pheny- iliarize physicians with the toxic effects of the toin and phenobarbital in the blood. Diazepam substance, as well as to outline a rational approach administered intravenously only briefly controlled to future cases. the spasms and convulsions. Although the serum creatine kinase level was elevated to four times Report of a Case normal, significant myoglobinuria did not develop. A 32-year-old woman, a grade school teacher, She also had pneumonia, increased oral and tra- had a one-year history of depression and several cheobronchial secretions and elevated serum trans- suicide attempts. Early one morning she swallowed aminase levels, which peaked during the second approximately 470 ml (16 oz) of a commercial week and returned to normal by the time of dis- liquid slug bait (Deadline, Pace National Corpo- charge.
    [Show full text]
  • Successful Pathogen : Emergence of a Acinetobacter Baumannii
    Acinetobacter baumannii: Emergence of a Successful Pathogen Anton Y. Peleg, Harald Seifert and David L. Paterson Clin. Microbiol. Rev. 2008, 21(3):538. DOI: 10.1128/CMR.00058-07. Downloaded from Updated information and services can be found at: http://cmr.asm.org/content/21/3/538 These include: http://cmr.asm.org/ REFERENCES This article cites 610 articles, 321 of which can be accessed free at: http://cmr.asm.org/content/21/3/538#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on November 25, 2011 by CONSOL.CAPES-T299093 Information about commercial reprint orders: http://cmr.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ CLINICAL MICROBIOLOGY REVIEWS, July 2008, p. 538–582 Vol. 21, No. 3 0893-8512/08/$08.00ϩ0 doi:10.1128/CMR.00058-07 Copyright © 2008, American Society for Microbiology. All Rights Reserved. Acinetobacter baumannii: Emergence of a Successful Pathogen Anton Y. Peleg,1* Harald Seifert,2 and David L. Paterson3,4,5 Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts1; Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Cologne, Germany2; University of Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia3; Pathology Queensland, Brisbane, Queensland, 4 5 Australia ; and Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
    [Show full text]