Discovery and Characterization of SY-1365, a Selective, Covalent Inhibitor of CDK7 Shanhu Hu1, Jason J

Total Page:16

File Type:pdf, Size:1020Kb

Discovery and Characterization of SY-1365, a Selective, Covalent Inhibitor of CDK7 Shanhu Hu1, Jason J Published OnlineFirst May 7, 2019; DOI: 10.1158/0008-5472.CAN-19-0119 Cancer Translational Science Research Discovery and Characterization of SY-1365, a Selective, Covalent Inhibitor of CDK7 Shanhu Hu1, Jason J. Marineau1, Nisha Rajagopal1, Kristin B. Hamman1, Yoon Jong Choi1, Darby R. Schmidt1, Nan Ke1, Liv Johannessen1, Michael J. Bradley1, David A. Orlando1, Sydney R. Alnemy1, Yixuan Ren1, Stephane Ciblat2, Dana K. Winter2, Anzhelika Kabro2, Kevin T. Sprott1, J. Graeme Hodgson1, Christian C. Fritz1, John P. Carulli1, Emmanuelle di Tomaso1, and Eric R. Olson1 Abstract Recent studies suggest that targeting transcriptional machin- more sensitive to SY-1365. Transcriptional changes in acute ery can lead to potent and selective anticancer effects in cancers myeloid leukemia (AML) cell lines were distinct from those dependent on high and constant expression of certain tran- following treatment with other transcriptional inhibitors. SY- scription factors for growth and survival. Cyclin-dependent 1365 demonstrated substantial antitumor effects in multiple kinase 7 (CDK7) is the catalytic subunit of the CDK-activating AML xenograft models as a single agent; SY-1365–induced kinase complex. Its function is required for both cell-cycle growth inhibition was enhanced in combination with the regulation and transcriptional control of gene expression. BCL2 inhibitor venetoclax. Antitumor activity was also CDK7 has recently emerged as an attractive cancer target observed in xenograft models of ovarian cancer, suggesting because its inhibition leads to decreased transcript levels of the potential for exploring SY-1365 in the clinic in both oncogenic transcription factors, especially those associated hematologic and solid tumors. Our findings support targeting with super-enhancers. Here, we describe a selective CDK7 CDK7 as a new approach for treating transcriptionally inhibitor SY-1365, which is currently in clinical trials in addicted cancers. populations of patients with ovarian and breast cancer (NCT03134638). In vitro, SY-1365 inhibited cell growth of Significance: These findings demonstrate the molecular many different cancer types at nanomolar concentrations. SY- mechanism of action and potent antitumor activity of SY- 1365 treatment decreased MCL1 protein levels, and cancer 1365, the first selective CDK7 inhibitor to enter clinical cells with low BCL2L1 (BCL-XL) expression were found to be investigation. Introduction activates CDK9 via T-loop phosphorylation, providing another layer of regulation on transcription initiation and elongation (7, The role of cyclin-dependent kinase 7 (CDK7) in regulating 8). Roles in DNA repair, transcription termination, RNA capping, cell-cycle progression and transcription has been described in and chromatin modification have also been described (1, 9–11). both yeast (Kin28) and human cells (1–3). In cell-cycle regula- On the basis of findings in nonclinical models, CDK7 inhibi- tion, CDK7 complexes with cyclin H and MNAT1 to form the tion has emerged as a therapeutic approach in cancer. Although CDK-activating kinase, (CAK), and phosphorylates CDK1, 2, 4, the downstream events of CDK7 inhibition have not been fully and 6 to promote cell-cycle progression (2, 3). As part of the elucidated, decreased expression of oncogenes, including aber- multisubunit transcription factor II human (TFIIH), CDK7 phos- rantly expressed transcription factors associated with super- phorylates the C-terminal domain (CTD) of the RNA polymerase enhancers (SE), has been described (12). Treatment with the II (RNAPII) subunit Rbp1, with preference for the Ser5 and Ser7 small-molecule CDK7 inhibitor THZ1 resulted in apoptosis and residues of the YSPTSPS heptapeptide repeat. This CTD phos- inhibition of tumor growth in several human tumor murine phorylation plays a regulating role in the ability of RNAPII to xenograft models, including T-cell acute lymphoblastic leuke- initiate a productive transcription cycle (1, 4–6). Moreover, CDK7 mia (13), high-grade glioma (14), melanoma (15), neuroblasto- ma (12), medullary thyroid carcinoma (16), hepatocellular car- 1Syros Pharmaceuticals, Inc., Cambridge, Massachusetts. 2Paraza Pharma, Inc., cinoma (17, 18), esophageal squamous cell carcinoma (19), Quebec City, Canada. nasopharyngeal carcinoma (20), small-cell lung cancer (SCLC; ref. 21), triple-negative breast cancer (TNBC; ref. 22), and ovarian Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/). cancer (23). Notably, these animal models had minimal weight loss, suggesting the potential for a therapeutic margin based on Corresponding Author: Shanhu Hu, Syros Pharmaceuticals Inc., 620 Memorial enhanced sensitivity of tumor cells. Furthermore, THZ1 is Dr., Suite 300, Cambridge, MA 02139. Phone: 617-744-1340; Fax: 617-744-1377; E-mail: [email protected] reported to suppress adaptive resistance development toward several targeted cancer therapies (24). Cancer Res 2019;79:3479–91 Transcriptionally, THZ1 treatment recapitulated the effects of doi: 10.1158/0008-5472.CAN-19-0119 selective inhibition of an analog-sensitive CDK7 variant with a Ó2019 American Association for Cancer Research. bulky ATP analog that does not inhibit wild-type CDK7. Both www.aacrjournals.org 3479 Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst May 7, 2019; DOI: 10.1158/0008-5472.CAN-19-0119 Hu et al. pharmacologic agents affected RNAPII pausing and the expres- ML-2 (ACC-15) was purchased from DSMZ. All cell lines were sion of a common set of genes (1, 9). cultured according to manufacturer's instructions at 37Cin5% Given that THZ1 lacked several features desired in a clinically CO2 in a humidified incubator. All cell lines used in the study were applicable molecule, we executed medicinal chemistry on the under passage 15. Mycoplasma test was not performed. THZ1 scaffold to identify a CDK7 inhibitor suitable for clinical investigation. We describe a new molecule, SY-1365, as more Antiproliferation assay potent, selective, and metabolically stable than THZ1. SY-1365 is A total of 386 cell lines were treated with SY-1365 at following in clinical development as a single agent and in combination with concentrations: 0.0005, 0.0015, 0.0046, 0.014, 0.041, 0.12, 0.37, standard-of-care agents in multiple ovarian and breast cancer and 1.1 mmol/L. Cells were incubated with compound for populations (NCT03134638). 72 hours or at least two doubling times if they were slow growing. CellTiter-Glo (G7570, Promega) signal was measured before treatment on day0 and then a minimum of 3 or maximum of Materials and Methods 6 days after treatment depending on the cell line. Simultaneously, Chemicals the signal was measured from the cell line treated with DMSO for JQ1 (S7110), flavopiridol (S2679), and venetoclax (S8048) the same duration. were purchased from Selleck Chemicals, LLC. NVP2 (HY-12214A) The CellTiter-Glo signals after treatment with drug at increasing was purchased from MedChemExpress, LLC. concentrations were normalized to DMSO to obtain the relative Detailed synthetic protocols for SY-314, SY-351, SY-1365, cell count. A dose–response curve was fit to these relative counts biotinylated SY-1365, and SY-1365 covalent docking to CDK7 using the GRcalculate and GRlogisticFit functions from the R can be found in Supplementary Materials and Methods. package GRmetrics (26). Response metrics calculated from the cell line data are in Supplementary Table S2 and described in Kinase activity assay Supplementary Materials and Methods. On the basis of these Compound potencies were determined for each CDK by mea- response metrics, we developed an algorithm for classifying cell suring loss of activity of the kinase on a peptide substrate. All lines into two categories, "low-sensitive/insensitive" or "high- assays included active CDK protein purified with cyclin protein sensitive" to SY-1365 (Supplementary Table S2; Supplementary (cyclin H and Mat1 with CDK7), ATP, substrate peptide (5-FAM- Materials and Methods). YSPTSPSYSPTSPSYSPTSPSKKKK with CDK7), and compound or DMSO. After incubation, the amount of phosphorylated peptide Apoptosis assay product was measured using Caliper/LabChip EZ Reader. Percent For TNBC and immortalized normal cell lines, logarithmically inhibition by the compound was determined by comparing the growing cells were seeded the day before treatment and grown to amount of substrate converted to product with compound versus 60%–80% confluence. For acute myeloid leukemia (AML) cell DMSO control. Further details can be found in Supplementary lines, cells were seeded at 0.5 Â 106/mL and dosed 2 hours later. Materials and Methods. For all cell lines, cells were dosed with either DMSO or the indicated dosages of SY-1365 for 48 hours before staining with Determination of KI and kinact Annexin V and propidium iodide (10010-02, Southernbiotech, The CDK7 inhibition kinase assay was performed as above; ApoScreen Annexin V Apoptosis Kit) following manufacturer's however, compound and CDK7/cyclin H/MNAT1 complex were recommendations. Samples were analyzed by flow cytometry and preincubated for 0, 5, 10, 20, 30, and 60 minutes prior to reaction results were analyzed on FlowJo V10. initiation with ATP and substrate. CDK7/cyclin H/MNAT1 con- centration was increased to 30 nmol/L with a 5-minute reaction Occupancy assay time. The time-dependent decay of enzyme activity due to cova- To determine the ratio of SY-1365–occupied to unoccupied lent inhibition
Recommended publications
  • Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells
    Leukemia (2010) 24, 756–764 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells A Pellagatti1, M Cazzola2, A Giagounidis3, J Perry1, L Malcovati2, MG Della Porta2,MJa¨dersten4, S Killick5, A Verma6, CJ Norbury7, E Hellstro¨m-Lindberg4, JS Wainscoat1 and J Boultwood1 1LRF Molecular Haematology Unit, NDCLS, John Radcliffe Hospital, Oxford, UK; 2Department of Hematology Oncology, University of Pavia Medical School, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medizinische Klinik II, St Johannes Hospital, Duisburg, Germany; 4Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; 6Albert Einstein College of Medicine, Bronx, NY, USA and 7Sir William Dunn School of Pathology, University of Oxford, Oxford, UK To gain insight into the molecular pathogenesis of the the World Health Organization.6,7 Patients with refractory myelodysplastic syndromes (MDS), we performed global gene anemia (RA) with or without ringed sideroblasts, according to expression profiling and pathway analysis on the hemato- poietic stem cells (HSC) of 183 MDS patients as compared with the the French–American–British classification, were subdivided HSC of 17 healthy controls. The most significantly deregulated based on the presence or absence of multilineage dysplasia. In pathways in MDS include interferon signaling, thrombopoietin addition, patients with RA with excess blasts (RAEB) were signaling and the Wnt pathways. Among the most signifi- subdivided into two categories, RAEB1 and RAEB2, based on the cantly deregulated gene pathways in early MDS are immuno- percentage of bone marrow blasts.
    [Show full text]
  • Selective Targeting of Cyclin E1-Amplified High-Grade Serous Ovarian Cancer by Cyclin-Dependent Kinase 2 and AKT Inhibition
    Published OnlineFirst September 23, 2016; DOI: 10.1158/1078-0432.CCR-16-0620 Biology of Human Tumors Clinical Cancer Research Selective Targeting of Cyclin E1-Amplified High-Grade Serous Ovarian Cancer by Cyclin- Dependent Kinase 2 and AKT Inhibition George Au-Yeung1,2, Franziska Lang1, Walid J. Azar1, Chris Mitchell1, Kate E. Jarman3, Kurt Lackovic3,4, Diar Aziz5, Carleen Cullinane1,6, Richard B. Pearson1,2,7, Linda Mileshkin2,8, Danny Rischin2,8, Alison M. Karst9, Ronny Drapkin10, Dariush Etemadmoghadam1,2,5, and David D.L. Bowtell1,2,7,11 Abstract Purpose: Cyclin E1 (CCNE1) amplification is associated with Results: We validate CDK2 as a therapeutic target by demon- primary treatment resistance and poor outcome in high-grade strating selective sensitivity to gene suppression. However, we found serous ovarian cancer (HGSC). Here, we explore approaches to that dinaciclib did not trigger amplicon-dependent sensitivity in a target CCNE1-amplified cancers and potential strategies to over- panel of HGSC cell lines. A high-throughput compound screen come resistance to targeted agents. identified synergistic combinations in CCNE1-amplified HGSC, Experimental Design: To examine dependency on CDK2 in including dinaciclib and AKT inhibitors. Analysis of genomic data CCNE1-amplified HGSC, we utilized siRNA and conditional from TCGA demonstrated coamplification of CCNE1 and AKT2. shRNA gene suppression, and chemical inhibition using dina- Overexpression of Cyclin E1 and AKT isoforms, in addition to ciclib, a small-molecule CDK2 inhibitor. High-throughput mutant TP53, imparted malignant characteristics in untransformed compound screening was used to identify selective synergistic fallopian tube secretory cells, the dominant site of origin of HGSC.
    [Show full text]
  • Funkce CDK12 a CDK13 V Regulaci Transkripce Hana Paculová
    MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BIOCHEMIE Funkce CDK12 a CDK13 v regulaci transkripce Disertační práce Hana Paculová Školitel: Mgr. Jiří Kohoutek, Ph.D Brno 2018 Bibliogra cký záznam Autorka: Mgr. Hana Paculová Prrodovedecáá aaául,a鏈 Maaarkáova unvverv,a Úa,av bvochemve Název práce: Funáce CDK12 a CDK13 v regulacv ,ranaárvpce Studijní program: Bvochemve Studijní obor: Bvochemve Školitel: Mgr. Jvr Kohou,eá鏈 Ph.D Akademický rok: 2017/2018 Po et stran: 89 Klí ová slova: Ckálvn-dependen,n ávnaaa鏈 CDK12鏈 ,ranaárvpce鏈 RNA polkmeraaa II鏈 raáovvna vaječnáů鏈 CHK1 Bibliographic entry Author: Mgr. Hana Paculová Facul,k oa acvence鏈 Maaarká unvverav,k Department of Biochemistry Title oF dissertation: CDK12 and CDK13 aunc,von vn ,ranacrvp,von regula,von Degree programme: Bvochemva,rk Field oF study: Bvochemva,rk Supervisor: Mgr. Jvr Kohou,eá鏈 Ph.D Academic year: 2017/2018 Number oF pages: 89 Keywords: Ckclvn-dependen ávnaae鏈 CDK12鏈 ,ranacrvp,von鏈 RNA polkmeraae II鏈 ovarvan cancer鏈 CHK1 Abstrakt Ckálvn-dependen,n ávnaaa 12 (CDK12) je ,ranaárvpčn ávnaaa鏈 á,erá rd expreav avých clových genů ,m鏈 že aoaaorkluje RNA polkmeraau II v průbehu elongačn aáe ,ranaárvpce. CDK12 je apojena do neáolváa bunečných preceaů鏈 což ahrnuje odpoveď na pošáoen DNA鏈 vývoj a bunečnou dvaerencvacv a aea,rvh mRNA. CDK12 bkla popaána jaáo jeden genů鏈 á,eré jaou čaa,o mu,ovánk v hvgh-grade aerónm ovarválnm áarcvnomu鏈 nvcméne vlvv ,ech,o mu,ac na aunácv CDK12 a jejvch role v áarcvnogenev dopoaud nebkla a,anovena. Zjva,vlv jame鏈 že ve,švna mu,ac CDK12鏈 á,eré bklk naleenk v nádorech鏈 brán vk,voren áomplexu CDK12 a Ckálvnem K a vnhvbuj ávnaaovou aá,vvv,u CDK12.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The CDK4/6 Inhibitor LY2835219 Has Potent Activity in Combination with Mtor Inhibitor in Head and Neck Squamous Cell Carcinoma
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 12 The CDK4/6 inhibitor LY2835219 has potent activity in combination with mTOR inhibitor in head and neck squamous cell carcinoma Bo Mi Ku1,*, Seong Yoon Yi3,*, Jiae Koh1, Yeon-Hee Bae1, Jong-Mu Sun2, Se-hoon Lee2, Jin Seok Ahn2, Keunchil Park2, Myung-Ju Ahn2 1 Samsung Biomedical Research Institute, Seoul, Korea 2 Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea 3 Division of Hematology-Oncology, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Gyeonggi-do, Korea *These authors contributed equally to this work Correspondence to: Myung-Ju Ahn, e-mail: [email protected] Keywords: head and neck cancer, CDK4/6 inhibitor, mTOR, cell cycle, targeted therapy Received: September 15, 2015 Accepted: January 23, 2016 Published: February 21, 2016 ABSTRACT Deletion of CDKN2A (p16) or amplification ofCCND1 (cyclin D1) occurs commonly in head and neck squamous cell carcinoma (HNSCC) and induces sustained cyclin- dependent kinase (CDK) 4/6 activation. Here, we report the antiproliferative activity of LY2835219, a selective CDK4/6 inhibitor through inhibition of CDK4/6-dependent Ser780 phosphorylation in retinoblastoma (RB) and induction of cell cycle arrest in HNSCC cells. In addition, we demonstrated the antitumor effects of HNSCC xenografts to LY2835219 in vivo. Given the limited effect in HNSCC as a single-agent treatment with LY2835219, a combinational strategy is required to enhance antitumor activity. At the molecular level, we found that LY2835219 inhibited activation of AKT and ERK, but not mTOR. The combination of LY2835219 with mTOR inhibitor was found to be more effective than either drug alone in vitro and in vivo.
    [Show full text]
  • Identification of Candidate Repurposable Drugs to Combat COVID-19 Using a Signature-Based Approach
    www.nature.com/scientificreports OPEN Identifcation of candidate repurposable drugs to combat COVID‑19 using a signature‑based approach Sinead M. O’Donovan1,10, Ali Imami1,10, Hunter Eby1, Nicholas D. Henkel1, Justin Fortune Creeden1, Sophie Asah1, Xiaolu Zhang1, Xiaojun Wu1, Rawan Alnafsah1, R. Travis Taylor2, James Reigle3,4, Alexander Thorman6, Behrouz Shamsaei4, Jarek Meller4,5,6,7,8 & Robert E. McCullumsmith1,9* The COVID‑19 pandemic caused by the novel SARS‑CoV‑2 is more contagious than other coronaviruses and has higher rates of mortality than infuenza. Identifcation of efective therapeutics is a crucial tool to treat those infected with SARS‑CoV‑2 and limit the spread of this novel disease globally. We deployed a bioinformatics workfow to identify candidate drugs for the treatment of COVID‑19. Using an “omics” repository, the Library of Integrated Network‑Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID‑19 drugs and publicly available SARS‑CoV‑2 infected cell lines to identify novel therapeutics. We identifed a shortlist of 20 candidate drugs: 8 are already under trial for the treatment of COVID‑19, the remaining 12 have antiviral properties and 6 have antiviral efcacy against coronaviruses specifcally, in vitro. All candidate drugs are either FDA approved or are under investigation. Our candidate drug fndings are discordant with (i.e., reverse) SARS‑CoV‑2 transcriptome signatures generated in vitro, and a subset are also identifed in transcriptome signatures generated from COVID‑19 patient samples, like the MEK inhibitor selumetinib. Overall, our fndings provide additional support for drugs that are already being explored as therapeutic agents for the treatment of COVID‑19 and identify promising novel targets that are worthy of further investigation.
    [Show full text]
  • A Novel CDK9 Inhibitor Increases the Efficacy of Venetoclax (ABT-199) in Multiple Models of Hematologic Malignancies
    Leukemia (2020) 34:1646–1657 https://doi.org/10.1038/s41375-019-0652-0 ARTICLE Molecular targets for therapy A novel CDK9 inhibitor increases the efficacy of venetoclax (ABT-199) in multiple models of hematologic malignancies 1 1 2,3 4 1 5 6 Darren C. Phillips ● Sha Jin ● Gareth P. Gregory ● Qi Zhang ● John Xue ● Xiaoxian Zhao ● Jun Chen ● 1 1 1 1 1 1 Yunsong Tong ● Haichao Zhang ● Morey Smith ● Stephen K. Tahir ● Rick F. Clark ● Thomas D. Penning ● 2,7 3 5 1 4 2,7 Jennifer R. Devlin ● Jake Shortt ● Eric D. Hsi ● Daniel H. Albert ● Marina Konopleva ● Ricky W. Johnstone ● 8 1 Joel D. Leverson ● Andrew J. Souers Received: 27 November 2018 / Revised: 18 October 2019 / Accepted: 13 November 2019 / Published online: 11 December 2019 © The Author(s) 2019 Abstract MCL-1 is one of the most frequently amplified genes in cancer, facilitating tumor initiation and maintenance and enabling resistance to anti-tumorigenic agents including the BCL-2 selective inhibitor venetoclax. The expression of MCL-1 is maintained via P-TEFb-mediated transcription, where the kinase CDK9 is a critical component. Consequently, we developed a series of potent small-molecule inhibitors of CDK9, exemplified by the orally active A-1592668, with CDK selectivity profiles 1234567890();,: 1234567890();,: that are distinct from related molecules that have been extensively studied clinically. Short-term treatment with A-1592668 rapidly downregulates RNA pol-II (Ser 2) phosphorylation resulting in the loss of MCL-1 protein and apoptosis in MCL-1- dependent hematologic tumor cell lines. This cell death could be attenuated by either inhibiting caspases or overexpressing BCL-2 protein.
    [Show full text]
  • Anti-EGFR Monoclonal Antibodies and EGFR Tyrosine Kinase Inhibitors As Combination Therapy for Triple-Negative Breast Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 45 Research Paper Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer Abderrahim El Guerrab1,2, Mahchid Bamdad2,3, Fabrice Kwiatkowski1, Yves-Jean Bignon1,2,*, Frédérique Penault-Llorca1,2,*, Corinne Aubel1,2 1Centre Jean Perrin - ERTICa-EA4677, BP392, 63011 Clermont-Ferrand Cedex, France 2Clermont Université - Université d’Auvergne - ERTICa-EA4677, Faculté de Médecine, BP38, 63001 Clermont-Ferrand Cedex, France 3Clermont Université - Université d’Auvergne - ERTICa-EA4677, Institut Universitaire de Technologie, Département Génie Biologique, Ensemble Universitaire des Cézeaux, BP86, 63172 Aubière Cedex, France *These authors have contributed equally to this work Correspondence to: Yves-Jean Bignon, email: [email protected] Keywords: triple-negative breast cancer, epidermal growth factor receptor, anti-EGFR targeted therapy, cytotoxicity, cell cycle Received: November 09, 2015 Accepted: August 22, 2016 Published: September 15, 2016 ABSTRACT Triple-negative breast cancer (TNBC) is characterized by overexpression of epidermal growth factor receptor (EGFR) and activation of its downstream signaling pathways. Dual targeting of EGFR using one monoclonal antibody (mAb; cetuximab or panitumumab) and one tyrosine kinase inhibitor (EGFR-TKI; gefitinib or erlotinib) is a potential therapeutic approach. We investigated the effect of these therapies in EGFR-expressing TNBC cell lines that do or do not harbor the main activating mutations of EGFR pathways. Cell lines were sensitive to EGFR-TKIs, whereas mAbs were active only in MDA-MB-468 (EGFR amplification) and SUM-1315 (KRAS and PTEN wild-type) cells. MDA-MB-231 (KRAS mutated) and HCC-1937 (PTEN deletion) cells were resistant to mAbs.
    [Show full text]
  • Cyclacel's CYC065 CDK Inhibitor Demonstrates Synergy With
    Cyclacel’s CYC065 CDK Inhibitor Demonstrates Synergy With Venetoclax By Dual Targeting Of Chronic Lymphocytic Leukemia April 17, 2018 Suppression of both BCl-2 and Mcl-1 anti-apoptotic proteins is a novel strategy in CLL BERKELEY HEIGHTS, N.J., April 17, 2018 (GLOBE NEWSWIRE) -- Cyclacel Pharmaceuticals, Inc. (NASDAQ:CYCC) (NASDAQ:CYCCP) ("Cyclacel" or the "Company"), a biopharmaceutical company developing oral therapies that target various phases of cell cycle control for the treatment of cancer and other serious disorders, today announced the presentation by investigators led by William Plunkett, PhD, Professor and Deputy Chair, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, of preclinical data demonstrating strong synergy between Cyclacel’s CDK2/9 inhibitor, CYC065, and the Bcl-2 inhibitor, venetoclax (ABT-199, AbbVie) in chronic lymphocytic leukemia (CLL) samples obtained from patients. The data were presented at the American Association for Cancer Research (AACR) Annual Meeting being held April 14-18, 2018 in Chicago, Illinois. “The MD Anderson data show that the combination of CYC065 and venetoclax is strongly synergistic in primary CLL cells from patients, including those with 17p deletions. In addition, the combination was active in two CLL samples which were resistant to either agent alone. These findings support the hypothesis that dual targeting of the Mcl-1- and Bcl-2-dependent mechanisms could induce synergistic cell death by apoptosis,” said Spiro Rombotis, President and Chief Executive Officer of Cyclacel. “Last weekend during the same AACR conference, we reported that CYC065 durably suppresses Mcl-1, a member of the Bcl-2 family of survival proteins, in patients with advanced solid tumors1.
    [Show full text]
  • Pharmacologic Properties of AG-012986, a Pan-Cyclin- Dependent Kinase Inhibitor with Antitumor Efficacy
    818 Pharmacologic properties of AG-012986, a pan-cyclin- dependent kinase inhibitor with antitumor efficacy Cathy Zhang,1 Karen Lundgren,1 Zhengming Yan,1 optimization of AG-012986 provided guidance for select- Maria E. Arango,1 Sharon Price,1 Andrea Huber,1 ing a treatment schedule to achieve the best antitumor Joseph Higgins,1 Gabriel Troche,1 efficacy while minimizing the risk of adverse side effects. Judith Skaptason,2 Tatiana Koudriakova,2 [Mol Cancer Ther 2008;7(4):818–28] Jim Nonomiya,4 Michelle Yang,5 1 1 1 Patrick O’Connor, Steve Bender, Gerrit Los, Introduction Cristina Lewis,4 and Bart Jessen3 Cyclin-dependent kinases (CDK) and their regulatory Departments of 1Cancer Biology, 2Pharmacokinetics, Dynamics cyclin partners play critical roles in cell cycle control and and Metabolism, 3Drug Safety Research and Development, the regulation of cell transcription. Progression through 4 5 Biochemical Pharmacology, and Medicinal Chemistry, the different stages of cell cycle is governed by the Pfizer Global Research and Development, La Jolla, California activities of the CDK1, CDK2, CDK4, CDK6, and possibly CDK3. CDK4/cyclin D, CDK6/cyclin D, and CDK2/cyclin E Abstract phosphorylate the retinoblastoma (Rb) protein at multiple AG-012986 is a multitargeted cyclin-dependent kinase sites, which results in activation of the E2F family of (CDK) inhibitor active against CDK1, CDK2, CDK4/6, transcription factors and serves as a trigger for cells to CDK5, and CDK9, with selectivity over a diverse panel of advance beyond the G1 checkpoint into S phase (1–3). non-CDK kinases. Here, we report the potent antitumor During S phase, CDK2/cyclin A phosphorylates several efficacies of AG-012986 against multiple tumor lines proteins, including E2F, to regulate progression through in vitro and in vivo.
    [Show full text]
  • Anticancer and Radiosensitizing Effects of the Cyclin-Dependent Kinase Inhibitors, AT7519 and SNS‑032, on Cervical Cancer
    INTERNATIONAL JOURNAL OF ONCOLOGY 53: 703-712, 2018 Anticancer and radiosensitizing effects of the cyclin-dependent kinase inhibitors, AT7519 and SNS-032, on cervical cancer MI AE KANG1*, WONWOO KIM2*, HYE-RAM JO1,3, YOUNG-JOO SHIN4, MOON-HONG KIM5 and JAE-HOON JEONG1,3 1Division of Applied Radiation Bioscience, and 2Radiation Non-Clinic Center, Korea Institute of Radiological and Medical Science, Seoul 01812; 3Radiological and Medico-Oncological Sciences, Korea University of Science and Technology, Daejeon 34113; 4Department of Radiation Oncology, Inje University Sanggye Paik Hospital, Seoul 01757; 5Department of Obstetrics and Gynecology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea Received January 30, 2018; Accepted May 17, 2018 DOI: 10.3892/ijo.2018.4424 Abstract. Cyclin-dependent kinases (CDK) are considered the utilization of AT7519 and SNS-032 as part of an adjuvant to be potential targets of anticancer drugs that can interrupt treatment may help control cervical cancer progression. the uncontrolled division of cancer cells. In this study, we selected two selective CDK inhibitors, AT7519 and SNS-032, Introduction from current clinical trials and examined their anticancer and radiosensitizing effects in a cervical cancer model. SNS-032 Cyclin-dependent kinases (CDKs) are present in all known was found to be more potent than AT7519, with a lower half eukaryotes, and their regulatory functions during the cell cycle maximal inhibitory concentration (IC50) value. Both AT7519 are evolutionarily conserved. Cyclin-CDK complexes phos- and SNS-032 induced the apoptosis, premature senescence and phorylate specific substrates, according to the requirements cytostasis of cervical cancer cells, which led to the attenuation of a particular cell cycle phase.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]