Effect of Aminoglutethimide on Blood Pressure and Steroid Secretion in Patients with Low Renin Essential Hypertension

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Aminoglutethimide on Blood Pressure and Steroid Secretion in Patients with Low Renin Essential Hypertension Effect of Aminoglutethimide on Blood Pressure and Steroid Secretion in Patients with Low Renin Essential Hypertension Addison A. Taylor, … , John R. Gill Jr., Ronald B. Franklin J Clin Invest. 1978;62(1):162-168. https://doi.org/10.1172/JCI109101. Research Article An inhibitor of adrenal steroid biosynthesis, aminoglutethimide, was administered to seven patients with low renin essential hypertension, and the antihypertensive action of the drug was compared with its effects on adrenal steroid production. In all patients aldosterone concentrations in plasma and urine were within normal limits before the study. Mean arterial pressure was reduced from a pretreatment value of 117±2 (mean±SE) mm Hg to 108±3 mm Hg after 4 days of aminoglutethimide therapy and further to 99±3 mm Hg when drug administration was stopped (usually 21 days). Body weight was also reduced from 81.6±7.2 kg in the control period to 80.6±7.0 kg after 4 days of drug treatment and to 80.1±6.7 kg at the termination of therapy. Plasma renin activity was not significantly increased after 4 days of treatment but had risen to the normal range by the termination of aminoglutethimide therapy. Mean plasma concentrations of deoxycorticosterone and cortisol were unchanged during aminoglutethimide treatment whereas those of 18- hydroxydeoxycorticosterone, progesterone, 17α-hydroxyprogesterone, and 11-deoxycortisol were increased as compared to pretreatment values. In contrast, aminoglutethimide treatment reduced mean plasma aldosterone concentrations to about 30% of control values. Excretion rates of 16β-hydroxydehydroepiandrosterone, 16-oxo-androstenediol, 17- hydroxycorticosteroids and 17-ketosteroids, and the secretion rate of 16β-hydroxydehydroepiandrosterone were not significantly altered by aminoglutethimide treatment whereas the excretion rate of aldosterone was reduced from 3.62±0.5 (mean±SE) in the control period […] Find the latest version: https://jci.me/109101/pdf Effect of Aminoglutethimide on Blood Pressure and Steroid Secretion in Patients with Low Renin Essential Hypertension ADDISON A. TAYLOR, JERRY R. MITCHELL, FREDERIC C. BARTTER, WAYNE R. SNODGRASS, RANDOLPH J. MCMURTRY, JOHN R. GILL, JR., and RONALD B. FRANKLIN, Section on Steroid and Mineral Metabolism, Hyper- tension-Endocrine Branch, and Section on Clinical Pharmacology and Metabolism, Office of Director of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20014 A B S T R A C T An inhibitor of adrenal steroid bio- rate of 16,8-hydroxydehydroepiandrosterone were not synthesis, aminoglutethimide, was administered to significantly altered by aminoglutethimide treatment seven patients with low renin essential hypertension, whereas the excretion rate of aldosterone was re- and the antihypertensive action of the drug was duced from 3.62+0.5 (mean+SE) in the control period compared with its effects on adrenal steroid produc- to 0.9+0.2 ,ug/24 h after 4 days and to 1.1±0.3 ,ug/24 h tion. In all patients aldosterone concentrations in at the termination of aminoglutethimide treatment. plasma and urine were within normal limits before The gradual lowering of blood pressure and body the study. Mean arterial pressure was reduced from a weight during aminoglutethimide therapy is consistent pretreatment value of 117+2 (mean±SE) mm Hg to with the view that the antihypertensive effect of 108±3 mm Hg after 4 days of aminoglutethimide the drug is mediated through a reduction in the pa- therapy and further to 99±3 mm Hg when drug tients' extracellular fluid volume, probably secondary administration was stopped (usually 21 days). Body to the persistent decrease in aldosterone production. weight was also reduced from 81.6±7.2 kg in the The observation that chronic administration of amino- control period to 80.6±7.0 kg after 4 days of drug glutethimide lowered blood pressure in these patients treatment and to 80.1±6.7 kg at the termination and elevated their plasma renin activity to the normal of therapy. Plasma renin activity was not significantly range without decreasing production of the adrenal increased after 4 days of treatment but had risen to steroids, deoxycorticosterone, 18-hydroxydeoxycorti- the normal range by the termination of amino- costerone, and 16,3-hydroxydehydroepiandrosterone, glutethimide therapy. Mean plasma concentrations of makes it unlikely that these steroids are responsible deoxycorticosterone and cortisol were unchanged dur- either for the decreased renin or the elevated blood ing aminoglutethimide treatment whereas those of pressure in patients with low renin essential hyper- 18-hydroxydeoxycorticosterone, progesterone, 17a-hy- tension. droxyprogesterone, and 1 1-deoxycortisol were in- creased as compared to pretreatment values. In INTRODUCTION contrast, aminoglutethimide treatment reduced mean plasma aldosterone concentrations to about 30% of Patients with hypertension and low plasma renin control values. Excretion rates of 16,8-hydroxydehydro- activity (PRA)' can be subdivided further into those epiandrosterone, 16-oxo-androstenediol, 17-hydroxy- with an elevated, normal, or reduced aldosterone ex- corticosteroids and 17-ketosteroids, and the secretion cretion rate. Patients in the first category have primary aldosteronism (1) whereas those in the last two categories mainly have low renin essential Part of this work has been published in abstract form. 1976. hyper- Clin. Res. 24: 424A. (Abstr.) Dr. Wayne Snodgrass was supported by a staff fellowship, 1Abbreviations used in this paper: DOC, deoxycortico- Pharmacology Research Associate Training Program, National sterone 17KS, 17-ketosteroids; 170HCS, 17-hydroxycortico- Institute of General Medical Sciences. steroids; 16,/-OH DHEA, 16,8-hydroxydehydroepiandroster- Received for publication 31 May 1977 and in revised form one; 18-OH DOC, 18-hydroxydeoxycorticosterone; PRA, 9 March 1978. plasma renin activity. 162 The Journal of Clinical Investigation Volume 62 July 1978 *162 -168 tension (2-5). The finding that low renin hyperten- was approved by the clinical research review committee of the sion was present in 9-50% of hypertensive patients, National Heart, Lung, and Blood Institute, and all patients gave written informed consent before participating in the study. depending upon the age of the population studied The patients were hospitalized and given a daily diet contain- (6, 7), generated considerable interest in the patho- ing 209 meq sodium to avoid stimulation of PRA. Urine was physiologic mechanisms which might contribute to a collected contintuously in 24-h aliquots for determinations of' low plasma renin. The report by \VToods et al. (8) creatiniine, sodium, potassiumil, 1 7-hvdroxycorticosteroids (170HCS), 17-ketosteroids (17KS) and aldosterone excretion that aminoglutethimide, an inhibitor of adrenal steroid rates. After overnight recumbency, blood was collected at 8 biosynthesis, normalized blood pressture in hyper- a.m. on the 3rd hospital day for PRA and f'or plasma steroids tensive patients wvith low PRA raised the possibility including aldosterone, progesterone, 17 a-hydroxyprogesterone, that these patients could be treated specifically. This DOC, 18-OH DOC, 11-deoxvcortisol, and cortisol. Patients possibility was supported by the finding that spiro- then stood until 12 noon at wlhich time blood was obtained f'or PRA and plasma steroids. Blood f'or measurement of'plasma nolactone, an antagonist of the renal action of aldo- steroids \vas obtained at 6 p.m. while posture was not con- sterone and other mineralocorticoid hormones, more trolled and again at 12 midnight and 6 a.m. after the patients effectively lowered blood pressure in patients with had retired to bed at 10 p.m. Blood xvas collected in tubes low vs. normal renin essential hypertension (9). Be- containing disodium EDTA for PRA determinations and in tubes containing heparin sodiutm for measurements of' plasma cause aldosterone production is not elevated in patients steroids. On the morning of'the 4th hospital day, each patient with low renin essential hypertension, an intensive was then given an intravenous injection of[3H]16,8-OH DHEA search for a new sodium retaining steroid other than and urine wvas collected for the subsequent 3 days for de- aldosterone was instituted. Subse(quently, increased termination of' secretory and excretory rates. Patients were secretion or excretion of (DOC) then given aminoglutethlimide, 250 mg, by mouth every 6 h, deoxycorticosterone and on the 4th day of adminoglutethimide treatment, blood (10), 18-hydroxydeoxycorticosterone (18-OH DOC) was again collected at the times and in the postures indicated (11, 12), and 16,3-hydroxydehydroepiandrosterone above f'or measurement of PRA and plasma steroids, and the (16,B-OH DHEA) (13) has been reported in groups of injection of' [3H]16,3-OH DHEA intravenously for determina- patients with low renin hypertension as compared to tion of' secretory and exeretory rates was repeated. Patients were then disciharged and followed in the outpatient clinic groups of patients with normal renin hypertension or at weeklv intervals f'or 3 wk. Patients recorded their blood normotensive subjects. However, no cause-and-effect pressures at home 2-4 times per day throughout the outpatient stuidies have been carried out to compare blood phase of the study. Patients cointinued to ingest a high sodium pressure changes and steroid secretion in the same diet at home. Two of the seven patients were readmitted to patients. In the present study, therefore, the effect of the hospital
Recommended publications
  • DHEA | Medchemexpress
    Inhibitors Product Data Sheet DHEA • Agonists Cat. No.: HY-14650 CAS No.: 53-43-0 Molecular Formula: C₁₉H₂₈O₂ • Molecular Weight: 288.42 Screening Libraries Target: Androgen Receptor; Endogenous Metabolite Pathway: Others; Metabolic Enzyme/Protease Storage: Please store the product under the recommended conditions in the Certificate of Analysis. SOLVENT & SOLUBILITY In Vitro DMSO : 50 mg/mL (173.36 mM; Need ultrasonic) Ethanol : 50 mg/mL (173.36 mM; Need ultrasonic) H2O : 1 mg/mL (3.47 mM; Need ultrasonic) Mass Solvent 1 mg 5 mg 10 mg Concentration Preparing 1 mM 3.4672 mL 17.3358 mL 34.6717 mL Stock Solutions 5 mM 0.6934 mL 3.4672 mL 6.9343 mL 10 mM 0.3467 mL 1.7336 mL 3.4672 mL Please refer to the solubility information to select the appropriate solvent. In Vivo 1. Add each solvent one by one: Cremophor EL Solubility: 14.29 mg/mL (49.55 mM); Clear solution; Need ultrasonic 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (8.67 mM); Clear solution 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (8.67 mM); Clear solution 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (8.67 mM); Clear solution 5. Add each solvent one by one: 10% EtOH >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (8.67 mM); Clear solution 6.
    [Show full text]
  • Us Anti-Doping Agency
    2019U.S. ANTI-DOPING AGENCY WALLET CARDEXAMPLES OF PROHIBITED AND PERMITTED SUBSTANCES AND METHODS Effective Jan. 1 – Dec. 31, 2019 CATEGORIES OF SUBSTANCES PROHIBITED AT ALL TIMES (IN AND OUT-OF-COMPETITION) • Non-Approved Substances: investigational drugs and pharmaceuticals with no approval by a governmental regulatory health authority for human therapeutic use. • Anabolic Agents: androstenediol, androstenedione, bolasterone, boldenone, clenbuterol, danazol, desoxymethyltestosterone (madol), dehydrochlormethyltestosterone (DHCMT), Prasterone (dehydroepiandrosterone, DHEA , Intrarosa) and its prohormones, drostanolone, epitestosterone, methasterone, methyl-1-testosterone, methyltestosterone (Covaryx, EEMT, Est Estrogens-methyltest DS, Methitest), nandrolone, oxandrolone, prostanozol, Selective Androgen Receptor Modulators (enobosarm, (ostarine, MK-2866), andarine, LGD-4033, RAD-140). stanozolol, testosterone and its metabolites or isomers (Androgel), THG, tibolone, trenbolone, zeranol, zilpaterol, and similar substances. • Beta-2 Agonists: All selective and non-selective beta-2 agonists, including all optical isomers, are prohibited. Most inhaled beta-2 agonists are prohibited, including arformoterol (Brovana), fenoterol, higenamine (norcoclaurine, Tinospora crispa), indacaterol (Arcapta), levalbuterol (Xopenex), metaproternol (Alupent), orciprenaline, olodaterol (Striverdi), pirbuterol (Maxair), terbutaline (Brethaire), vilanterol (Breo). The only exceptions are albuterol, formoterol, and salmeterol by a metered-dose inhaler when used
    [Show full text]
  • 1970Qureshiocr.Pdf (10.44Mb)
    STUDY INVOLVING METABOLISM OF 17-KETOSTEROIDS AND 17-HYDROXYCORTICOSTEROIDS OF HEALTHY YOUNG MEN DURING AMBULATION AND RECUMBENCY A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN NUTRITION IN THE GRADUATE DIVISION OF THE TEXAS WOI\IIAN 'S UNIVERSITY COLLEGE OF HOUSEHOLD ARTS AND SCIENCES BY SANOBER QURESHI I B .Sc. I M.S. DENTON I TEXAS MAY I 1970 ACKNOWLEDGMENTS The author wishes to express her sincere gratitude to those who assisted her with her research problem and with the preparation of this dissertation. To Dr. Pauline Beery Mack, Director of the Texas Woman's University Research Institute, for her invaluable assistance and gui­ dance during the author's entire graduate program, and for help in the preparation of this dissertation; To the National Aeronautics and Space Administration for their support of the research project of which the author's study is a part; To Dr. Elsa A. Dozier for directing the author's s tucly during 1969, and to Dr. Kathryn Montgomery beginning in early 1970, for serving as the immeclia te director of the author while she was working on the completion of the investic;ation and the preparation of this dis- sertation; To Dr. Jessie Bateman, Dean of the College of Household Arts and Sciences, for her assistance in all aspects of the author's graduate program; iii To Dr. Ralph Pyke and Mr. Walter Gilchrist 1 for their ass is­ tance and generous kindness while the author's research program was in progress; To Mr. Eugene Van Hooser 1 for help during various parts of her research program; To Dr.
    [Show full text]
  • Effects of Aminoglutethimide on A5-Androstenediol Metabolism in Postmenopausal Women with Breast Cancer1
    [CANCER RESEARCH 42, 4797-4800, November 1982] 0008-5472/82/0042-0000802.00 Effects of Aminoglutethimide on A5-Androstenediol Metabolism in Postmenopausal Women with Breast Cancer1 Charles E. Bird,2 Valerie Masters, Ernest E. Sterns, and Albert F. Clark Departments of Medicine [C. E. B., V. M.], Surgery [E. E. S.J, and Biochemistry [A. F. C.], Queen s University and Kingston General Hospital, Kingston, Ontario, Canada K7L 2V7 ABSTRACT women. More recently, we (8) and others (18) reported that the production of A5-androstene-3/8,17/8-diol in normal post- A5-Androstene-3/8,1 7/S-diol has potential estrogenic activity menopausal women is approximately 500 to 700 fig/24 hr. because it is known to bind to receptors and translocate to the AG, in combination with hydrocortisone, has been utilized to nucleus of certain estrogen target tissues. Its role in the biology inhibit estrogen production in patients with breast cancer (21 ). of breast cancer is unclear. Aminoglutethimide plus hydrocor This form of therapy has been termed "medical adrenalec tisone ("medical adrenalectomy") has been used to treat post- tomy," and studies suggest that it is as effective as surgical menopausal women with metastatic breast cancer. adrenalectomy. The hydrocortisone shuts off the basal adre- We studied A5-androstene-3/3,17/?-diol metabolism in post- nocortical production of estrogen precursors; AG not only menopausal women with breast cancer before and during slows down steroid biosynthesis at an early step but also aminoglutethimide-plus-hydrocortisone therapy, utilizing the specifically inhibits the aromatization of A4-androstenedione to constant infusion technique.
    [Show full text]
  • WO 2018/190970 Al 18 October 2018 (18.10.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/190970 Al 18 October 2018 (18.10.2018) W !P O PCT (51) International Patent Classification: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, CI2Q 1/32 (2006.01) UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (21) International Application Number: EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, PCT/US2018/021 109 MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (22) International Filing Date: TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, 06 March 2018 (06.03.2018) KM, ML, MR, NE, SN, TD, TG). (25) Filing Language: English Declarations under Rule 4.17: (26) Publication Langi English — as to applicant's entitlement to apply for and be granted a patent (Rule 4.1 7(H)) (30) Priority Data: — as to the applicant's entitlement to claim the priority of the 62/484,141 11 April 2017 ( 11.04.2017) US earlier application (Rule 4.17(Hi)) (71) Applicant: REGENERON PHARMACEUTICALS, Published: INC. [US/US]; 777 Old Saw Mill River Road, Tarrytown, — with international search report (Art. 21(3)) New York 10591-6707 (US). — with sequence listing part of description (Rule 5.2(a)) (72) Inventors: STEVIS, Panayiotis; 777 Old Saw Mill Riv er Road, Tarrytown, New York 10591-6707 (US).
    [Show full text]
  • Sex Hormone-Binding Globulin (SHBG) As an Early Biomarker and Therapeutic Target in Polycystic Ovary Syndrome
    International Journal of Molecular Sciences Review Sex Hormone-Binding Globulin (SHBG) as an Early Biomarker and Therapeutic Target in Polycystic Ovary Syndrome Xianqin Qu 1,* and Richard Donnelly 2 1 School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia 2 School of Medicine, University of Nottingham, Derby DE22 3DT, UK; [email protected] * Correspondence: [email protected]; Tel.: +61-2-95147852 Received: 1 October 2020; Accepted: 28 October 2020; Published: 1 November 2020 Abstract: Human sex hormone-binding globulin (SHBG) is a glycoprotein produced by the liver that binds sex steroids with high affinity and specificity. Clinical observations and reports in the literature have suggested a negative correlation between circulating SHBG levels and markers of non-alcoholic fatty liver disease (NAFLD) and insulin resistance. Decreased SHBG levels increase the bioavailability of androgens, which in turn leads to progression of ovarian pathology, anovulation and the phenotypic characteristics of polycystic ovarian syndrome (PCOS). This review will use a case report to illustrate the inter-relationships between SHBG, NAFLD and PCOS. In particular, we will review the evidence that low hepatic SHBG production may be a key step in the pathogenesis of PCOS. Furthermore, there is emerging evidence that serum SHBG levels may be useful as a diagnostic biomarker and therapeutic target for managing women with PCOS. Keywords: adolescents; hepatic lipogenesis; human sex hormone-binding globulin; insulin resistance; non-alcoholic fatty liver disease; polycystic ovary syndrome 1. Introduction Polycystic ovary syndrome (PCOS) is a complex, common reproductive and endocrine disorder affecting up to 10% of reproductive-aged women [1].
    [Show full text]
  • In Human Prostate Cancer Cells (Ara70͞hydroxyflutamide͞casodex͞testosterone͞7-Oxo-DHEA)
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 11083–11088, September 1998 Biochemistry D5-Androstenediol is a natural hormone with androgenic activity in human prostate cancer cells (ARA70yhydroxyflutamideycasodexytestosteroney7-oxo-DHEA) HIROSHI MIYAMOTO*, SHUYUAN YEH*, HENRY LARDY†,EDWARD MESSING*, AND CHAWNSHANG CHANG*†‡ *George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY 14642; and †Institute for Enzyme Research and Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792 Contributed by Henry Lardy, July 29, 1998 ABSTRACT It is known that androst-5-ene-3b,17b-diol presence of AR and ARA70. Our results suggest that Adiol (Adiol), a precursor of testosterone (T), can activate estrogen itself can activate AR transcriptional activity in human pros- target genes. The androgenic activity of Adiol itself, however, tate cancer cells, and that ARA70 can further enhance Adiol- is poorly understood. Using a transient transfection assay, we mediated activation of the AR. here demonstrate in human prostate cancer cells that Adiol can activate androgen receptor (AR) target genes in the MATERIALS AND METHODS presence of AR, and that AR coactivator ARA70 can further enhance this Adiol-induced AR transcriptional activity. In Chemicals and Plasmids. Adiol, DHEA, androst-5-ene- contrast to this finding, an active metabolite of dehydroepi- 7,17-dione (Adione), T, DHT, and E2 were purchased from androsterone, 7-oxo-dehydroepiandrosterone, does not acti- Sigma, 7-oxo-DHEA was synthesized from DHEA as de- vate AR target gene in the absence or presence of ARA70. Thin scribed (9), trilostane was provided by T.-M.
    [Show full text]
  • Periodic Hypokalaemic Paralysis, Adrenal Adenoma, and Normal Colonic Transport of Sodium and Potassium
    Gut: first published as 10.1136/gut.14.6.478 on 1 June 1973. Downloaded from Gut, 1973, 14, 478-484 Periodic hypokalaemic paralysis, adrenal adenoma, and normal colonic transport of sodium and potassium PETER RICHARDS1, M. B. S. JONES, AND W. S. PEART From the Medical Unit, St Mary's Hospital Medical School, London SUMMARY A 47-year-old woman was cured of hypokalaemia and recurrent paralysis by the excision of an adrenal adenoma. Hypertension was initially ameliorated but was not cured. Suppression of plasma renin activity was abolished when the adenoma was excised. Repeated measurement of plasma corticosteroids before operation showed a slight increase in aldosterone and normal plasma concentrations of deoxycorticosterone, corticosterone, and cortisol. No evidence of excess mineralo- corticoid was obtained from measurement of the electrolyte composition of colonic fluid or of rectal potential difference, although both these variables responded normally to salt depletion and exogenous aldosterone. The diagnostic importance of the paradoxically normal colonic measure- ments is emphasized and the possibility is considered that the adenoma may have secreted an unidentified hormone. http://gut.bmj.com/ The colon normally responds to excessive plasma not escape from the action of these hormones. One concentrations of aldosterone, corticosterone, and patient has been described in whom colonic sodium deoxycorticosterone by modifying faecal fluid so fluxes were apparently normal and were unchanged that the concentration of sodium is very low and that by the excision of an aldosterone-secreting adrenal of potassium high (Wrong, Morrison, and Hurst, adenoma; potassium influx was nevertheless in- 1961; Wrong and Metcalfe-Gibson, 1965; creased and returned to normal after operation Richards, on September 29, 2021 by guest.
    [Show full text]
  • 18-Dehydrogenase Deficiency W
    Arch Dis Child: first published as 10.1136/adc.51.8.576 on 1 August 1976. Downloaded from Archives of Disease in Childhood, 1976, 51, 576. Hypoaldosteronism in three sibs due to 18-dehydrogenase deficiency W. HAMILTON, A. E. McCANDLESS, J. T. IRELAND, and C. E. GRAY From the University Departments of Child Health, Liverpool and Glasgow Hamilton, W., McCandless, A. E., Ireland, J. T., and Gray, C. E. (1976). Archives of Disease in Childhood, 51, 576. Hypoaldosteronism in three sibs due to 18-dehydrogenase deficiency. Three sibs all presented in the early neonatal period with a salt-losing syndrome. The salt-losing form of congenital adrenal hyperplasia was diagnosed and appropriate treatment with glucocorticosteroids, mineralocorticosteroids, and additional dietary salt started. Although early life was maintained with difficulty, with age all3 children required decreasingamounts ofreplace- ment steroids to maintain normal plasma electrolyte balance. They were reinvestigated at the ages of 15 years and 8 years (twins), when cortisol synthesis and metabolism proved normal, but aldosterone synthesis was blocked by deficiency of 18-dehydro- genase. Rational treatment of these cases of a salt-losing syndrome in which aldo- sterone synthesis alone is blocked due to lack of the enzyme 18-dehydrogenase requires the administration of a mineralocorticosteroid drug only. Since deoxycor- ticosterone (acetate or pivalate) requires intramuscular administration, as life-long therapy oral fludrocortisone is preferable. Although fludrocortisone has glucocorti- coid activity, the 'hydrocortisone equivalent' effect of the small dosage used was un- likely to inhibit either pituitary corticotrophin or growth hormone production. Salt-loss of adrenal origin is recognized as a female external genitalia or macrogenitosomia http://adc.bmj.com/ feature of 3/1-hydroxysteroid dehydrogenase de- praecox in the male.
    [Show full text]
  • The Role of Highly Selective Androgen Receptor (AR) Targeted
    P h a s e I I S t u d y o f I t r a c o n a z o l e i n B i o c h e m i c a l R e l a p s e Version 4.0: October 8, 2014 CC# 125513 CC# 125513: Hedgehog Inhibition as a Non-Castrating Approach to Hormone Sensitive Prostate Cancer: A Phase II Study of Itraconazole in Biochemical Relapse Investigational Agent: Itraconazole IND: IND Exempt (IND 116597) Protocol Version: 4.0 Version Date: October 8, 2014 Principal Investigator: Rahul Aggarwal, M.D., HS Assistant Clinical Professor Division of Hematology/Oncology, Department of Medicine University of California San Francisco 1600 Divisadero St. San Francisco, CA94115 [email protected] UCSF Co-Investigators: Charles J. Ryan, M.D., Eric Small, M.D., Professor of Medicine Professor of Medicine and Urology Lawrence Fong, M.D., Terence Friedlander, M.D., Professor in Residence Assistant Clinical Professor Amy Lin, M.D., Associate Clinical Professor Won Kim, M.D., Assistant Clinical Professor Statistician: Li Zhang, Ph.D, Biostatistics Core RevisionHistory October 8, 2014 Version 4.0 November 18, 2013 Version 3.0 January 28, 2013 Version 2.0 July 16, 2012 Version 1.0 Phase II - Itraconazole Page 1 of 79 P h a s e I I S t u d y o f I t r a c o n a z o l e i n B i o c h e m i c a l R e l a p s e Version 4.0: October 8, 2014 CC# 125513 Protocol Signature Page Protocol No.: 122513 Version # and Date: 4.0 - October 8, 2014 1.
    [Show full text]
  • Internal Hcpcs Code Description Charge Charge Number Lab 10001 84060 Acid Phosphatase #829642 68.5 10002 82040 Albumin Sera 69.5
    INTERNAL HCPCS CODE DESCRIPTION CHARGE CHARGE NUMBER LAB 10001 84060 ACID PHOSPHATASE #829642 68.5 10002 82040 ALBUMIN SERA 69.5 10003 84075 ALKALINE PHOSPHATASE 52.5 10004 82150 AMYLASE 7 80.5 10009 82088 ALDOSTERONE, SERUM #004374 498 10011 86060 ASO TITER #006031 119.5 10013 84600 ALCOHOL, METHYL #017699 219 10014 87116 AFB CULTURE AND SMEAR/ #183753 165 10015 86901 BLOOD TYPING-RH (D) 23 10016 87206 ACID FAST STAIN #008618 73 10017 82247 TOTAL BILIRUBIN 50.5 10018 86900 BLOOD TYPING-ABO 23 10019 85002 BLEEDING TIME 50.5 10020 84520 BUN 43.5 10022 82607 VITAMIN B-12 115 10026 82310 CALCIUM,TOTAL 39 10027 85025 CBC W/COMP DIFF 69.5 10028 82380 CAROTENE #001529 138.5 10029 82435 CHLORIDE SERUM 80.5 10030 82465 CHOLESTEROL 50.5 10032 82550 CPK, TOTAL 67.5 10033 82565 CREATININE 44.5 10034 82575 CREATININE CLEARANCE #003004 80.5 10035 82378 CEA #002139 169 10036 87070 CULTURE SPUTUM & GRAM STAIN 51.5 10037 82552 CPK ISOENZYMES #002154 123.5 10038 82355 CALCULUS ANALYSIS #120790 142 10039 82382 CATECHOLAMINES,RANDOM URINE #316203 179.5 10040 82533 CORTISOL,TOTAL 175.5 10041 85007 DIFFERENTIAL 22 10044 80162 DIGOXIN/LANOXIN LEVEL 152 10045 80185 DILANTIN, QUANT 105.5 10048 P9016 PRBC'S 326.5 10050 36430 BLOOD ADMINISTRATION 262.5 10051 86022 PLATELETS APHERESIS 1112 10054 83700 ELECTROPHORESIS, LIPOPROTEIN #235036 165 10055 83020 ELECTROPHORESIS, HEMOGLOBIN 82.5 10056 80307 ETHANOL, QUANT. 173.5 10057 87106 FUNGAL ID #390 167 10058 86780 FTA-ABS #006379 118 10059 82746 FOLATE (FOLIC ACID) SERUM 68.5 10062 82941 GASTRIN SERUM #004390 95.5 10063 87205 GRAM STAIN 42 10064 85014 HCT 28 10065 85018 HEMOGLOBIN 28 10066 84702 HCG, QUANT.
    [Show full text]
  • Order in Council 1243/1995
    PROVINCE OF BRITISH COLUMBIA ORDER OF THE LIEUTENANT GOVERNOR IN COUNCIL Order in Council No. 12 4 3 , Approved and Ordered OCT 121995 Lieutenant Governor Executive Council Chambers, Victoria On the recommendation of the undersigned, the Lieutenant Governor, by and with the advice and consent of the Executive Council, orders that Order in Council 1039 made August 17, 1995, is rescinded. 2. The Drug Schedules made by regulation of the Council of the College of Pharmacists of British Columbia, as set out in the attached resolution dated September 6, 1995, are hereby approved. (----, c" g/J1"----c- 4- Minister of Heal fandand Minister Responsible for Seniors Presidin Member of the Executive Council (This pan is for adnwustratlye purposes only and is not part of the Order) Authority under which Order Is made: Act and section:- Pharmacists, Pharmacy Operations and Drug Scheduling Act, section 59(2)(1), 62 Other (specify): - Uppodukoic1enact N6145; Resolution of the Council of the College of Pharmacists of British Columbia ("the Council"), made by teleconference at Vancouver, British Columbia, the 6th day of September 1995. RESOLVED THAT: In accordance with the authority established in Section 62 of the Pharmacists, Pharmacy Operations and Drug Scheduling Act of British Columbia, S.B.C. Chapter 62, the Council makes the Drug Schedules by regulation as set out in the attached schedule, subject to the approval of the Lieutenant Governor in Council. Certified a true copy Linda J. Lytle, Phr.) Registrar DRUG SCHEDULES to the Pharmacists, Pharmacy Operations and Drug Scheduling Act of British Columbia The Drug Schedules have been printed in an alphabetical format to simplify the process of locating each individual drug entry and determining its status in British Columbia.
    [Show full text]