Aspects of Time in Quantum Theory

Total Page:16

File Type:pdf, Size:1020Kb

Aspects of Time in Quantum Theory Imperial College London Department of Theoretical Physics Aspects of Time in Quantum Theory James M Yearsley October 27, 2011 arXiv:1110.5790v1 [quant-ph] 26 Oct 2011 Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Theoretical Physics of Imperial College London and the Diploma of Imperial College London 1 Declaration I herewith certify that all material in this dissertation which is not my own work has been properly acknowledged. James M Yearsley 2 Abstract We consider a number of aspects of the problem of defining time observables in quantum theory. Time observables are interesting quantities in quantum theory because they of- ten cannot be associated with self-adjoint operators. Their definition therefore touches on foundational issues in quantum theory. Various operational approached to defining time observables have been proposed in the past. Two of the most common are those based on pulsed measurements in the form of strings of projection operators and continuous measurements in the form of complex potentials. One of the major achievements of this thesis is to prove that these two operational approaches are equivalent. However operational approaches are somewhat unsatisfying by themselves. To provide a definition of time observables which is not linked to a particular measurement scheme we employ the decoherent, or consistent, histories approach to quantum theory. We focus on the arrival time, one particular example of a time observable, and we use the relationship between pulsed and continuous measurements to relate the decoherent histories approach to one based on complex potentials. This lets us compute the arrival time probability distribution in decoherent histories and we show that it agrees with semiclassical expectations in the right limit. We do this both for a free particle and for a particle coupled to an environment. Finally, we consider how the results discussed in this thesis relate to those derived by coupling a particle to a model clock. We show that for a general class of clock models the probabilities thus measured can be simply related to the ideal ones computed via decoherent histories. 3 For my parents, to whom I owe everything and For Laura, whose love and support made this possible. but more than all(as all your more than eyes tell me)there is a time for timelessness E.E. Cummings 4 Preface The work presented in this thesis was carried out in the Theoretical Physics Group, Imperial College, between October 2007 and September 2011. The supervisor was Prof. Jonathan J. Halliwell. The results presented in Chapters 3 and 7 were published in Journal of Physics A [99] and Physical Review A [100] respectively. The work presented in Chapter 4 was done in collaboration with Jonathan Halliwell and published in Journal of Physics A [51]. Chapters 5 and 6 are based on work done in collaboration with Jonathan Halliwell and published in Physical Review A [49] and Physics Letters A [50]. The work presented in Chapter 8 was done in collaboration with Delius Downs, Jonathan Halliwell and Anna Hashagen and was published in Physical Review A [101]. I am grateful to Carl Bender, Adolfo del Campo, Fay Dowker, Bei-Lok Hu, Seth Lloyd, Gonzalo Muga, Lawrence Schulman and Antony Valentini for their comments and sugges- tions on the material contained in this thesis. Some of the work in this thesis was carried out during a short stay at the Apuan Alps Centre for Physics at the Towler Institute, Italy during the conference \21st Century direc- tions in de Broglie-Bohm theory and beyond." I would like to thank Mike Towler and the other conference organisers for their hospitality. In addition I would like to thank Kate Clements, Ben Hoare, Steven Johnston, Sam Kitchen, Johannes Knoller, Noppadol `Omega' Mekareeya, Tom Pugh and David Weir for many useful, informative and occasionally even relevant discussions. None of the work set out in this thesis would have been possible without the limitless support and encouragement of my supervisor, Jonathan Halliwell. I am grateful for all his help over the four years of my PhD here at Imperial and I consider myself incredibly fortunate to have had him as a teacher and collaborator. 5 Contents Abstract 3 Preface 5 1 Introduction 10 1.1 A Brief History of Time in Quantum Theory . 10 1.2 The Quantum Zeno Effect . 16 1.3 The Backflow Effect . 19 1.4 The Arrival Time Problem in Quantum Mechanics . 20 1.4.1 General Theory . 20 1.4.2 Standard Forms of the Arrival Time Distribution . 23 1.5 The Decoherent Histories Approach to Quantum Theory . 26 1.6 The Decoherent Histories Approach to the Arrival Time Problem: Introduc- tion and History . 29 1.7 Summary and Overview of the Rest of This Thesis . 31 2 The Path Decomposition Expansion (PDX) 34 2.1 Introduction . 34 2.2 The Path Decomposition Expansion (PDX) . 34 2.3 Using the PDX: Scattering States for a Complex Step Potential . 38 2.4 A Semiclassical Approximation . 40 3 The Propagator for the Step and Delta Function Potentials, using the PDX 43 3.1 Introduction . 43 3.2 The Brownian Motion Definition of the Propagator . 45 3.3 The Step Potential . 46 3.4 The Delta Function Potential . 48 6 4 On the Relationship between Complex Potentials and Strings of Projection Operators 52 4.1 Introduction . 52 4.2 Review and Extension of Earlier Work . 55 4.3 Detailed Formulation of the Problem . 57 4.4 Exact Analytic Results . 64 4.5 Asymptotic Limit . 68 4.6 A Time Averaged Result . 69 4.7 Numerical Results . 72 4.8 Timescales . 75 4.9 Summary and Discussion . 77 5 Arrival Times, Complex Potentials and Decoherent Histories 79 5.1 Introduction . 79 5.2 The Classical Arrival Time Problem via a Complex Potential . 82 5.3 Calculation of the Arrival Time Distribution via a Complex Potential . 84 5.4 Decoherent Histories Analysis for a Single Large Time Interval . 89 5.5 Decoherent Histories Analysis for an Arbitrary Set of Time Intervals . 92 5.5.1 Class Operators . 92 5.5.2 An Important Simplification of the Class Operator . 94 5.5.3 Probabilities for Crossing . 95 5.5.4 Decoherence of Histories and the Backflow Problem . 95 5.5.5 The Decoherence Conditions . 96 5.5.6 Checking the Decoherence Condition for Wavepackets . 97 5.6 Summary and Conclusions . 103 6 Arrival Times, Crossing Times and a Semiclassical Approximation 105 6.1 Introduction . 105 6.2 Semiclassical Derivation of the Arrival Time Class Operators . 108 6.3 Arrival Times, Crossing Times and First Crossing Times . 110 6.4 Crossing Class Operators in Decoherent Histories . 113 6.5 Crossing Time Probabilities and Decoherence of Crossing Histories . 115 6.6 Summary and Discussion . 117 7 7 Quantum Arrival Time for Open Systems 119 7.1 Introduction . 119 7.2 Arrival Time for Open Quantum Systems . 122 7.3 Quantum Brownian Motion . 125 7.4 Properties of the Arrival Time Distribution in Quantum Brownian Motion . 129 7.5 The Decoherent Histories Approach to the Arrival Time Problem . 133 7.6 Decoherence of Arrival Times in Quantum Brownian Motion . 136 7.6.1 General Case . 136 7.6.2 The Near-Deterministic Limit . 139 7.7 Summary and Discussion . 144 8 Quantum Arrival and Dwell Times via an Ideal Clock 146 8.1 Introduction . 146 8.1.1 Opening Remarks . 146 8.1.2 Dwell Time . 147 8.1.3 Clock Model . 147 8.1.4 Connections to Earlier Work . 149 8.1.5 This Chapter . 150 8.2 Arrival Time Distribution from an Idealised Clock . 150 8.2.1 Weak Coupling Regime . 150 8.2.2 Strong Coupling Regime . 153 8.3 Dwell Time Distribution from an Idealised Clock . 156 8.4 Conclusion . 159 9 Summary and Some Open Questions 160 9.1 Summary . 160 9.2 Open Questions and Future Work . 161 Appendix: Some Properties of the Current 163 8 List of Figures 1.1 Probabilities for Space-like and Time-like Surfaces . 12 1.2 The Arrival Time Problem . 21 2.1 The Path Decomposition Expansion (PDX) . 36 3.1 A Typical Path From x = 0 to x = 0 On Our Lattice. 46 3.2 The Bijection Between n(k) and Cn. ...................... 48 4.1 The Path Decomposition Expansion for gP .................... 59 4.2 A Plot Comparing the Functions fV (t) and fP (t). 63 4.3 Plot of the Exact Value of fP (t) Compared With an Analytic Approximation. 73 4.4 A Plot of the Function S(t)............................ 74 5.1 Recap of the Arrival Time Problem. 79 5.2 Plot of the Function f(u). 100 5.3 The Arrival Time of a Superposition of Two Wavepackets. 103 6.1 Crossing Times . 106 6.2 Crossing Times and First Crossing Times . 112 7.1 Arrival Times in Terms of Initial States and Propagators. 139 8.1 The Arrival Time Problem Defined Using a Model Clock. 148 8.2 The Dwell Time Problem, Defined Using a Model Clock. 156 8.3 The PDX Used for the Dwell Time Problem. 157 9 1 Introduction The time is out of joint; O curs´edsprite, That ever I was born to set it right! Shakespeare, Hamlet 1.1 A Brief History of Time in Quantum Theory The treatment of time observables is an important loose end in quantum theory [81, 80]. Whilst there is no indication of any disagreement between the predictions of quantum theory and the outcomes of experiment, time observables constitute a class of quantities that are observables in classical mechanics, but for which no satisfactory treatment exists in standard quantum theory. As well as being an important topic in its own right, a consistent treatment of time observables might also shed light on problems in quantum gravity and quantum cosmology.
Recommended publications
  • The Physical Basis of the Direction of Time (The Frontiers Collection), 5Th
    the frontiers collection the frontiers collection Series Editors: A.C. Elitzur M.P. Silverman J. Tuszynski R. Vaas H.D. Zeh The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science. Furthermore, it is intended to encourage active scientists in all areas to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, consciousness and complex systems – the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. InformationandItsRoleinNature The Thermodynamic By J. G. Roederer Machinery of Life By M. Kurzynski Relativity and the Nature of Spacetime By V. Petkov The Emerging Physics of Consciousness Quo Vadis Quantum Mechanics? Edited by J. A. Tuszynski Edited by A. C. Elitzur, S. Dolev, N. Kolenda Weak Links Life – As a Matter of Fat Stabilizers of Complex Systems The Emerging Science of Lipidomics from Proteins to Social Networks By O. G. Mouritsen By P. Csermely Quantum–Classical Analogies Mind, Matter and the Implicate Order By D. Dragoman and M. Dragoman By P.T.I. Pylkkänen Knowledge and the World Quantum Mechanics at the Crossroads Challenges Beyond the Science Wars New Perspectives from History, Edited by M.
    [Show full text]
  • Two Arrows of Time in Nonlocal Particle Dynamics
    Two Arrows of Time in Nonlocal Particle Dynamics Roderich Tumulka∗ July 21, 2007 Abstract Considering what the world would be like if backwards causation were possible is usually mind-bending. Here I discuss something that is easier to study: a toy model that incorporates a very restricted sort of backwards causation. It defines particle world lines by means of a kind of differential delay equation with negative delay. The model pre- sumably prohibits signalling to the past and superluminal signalling, but allows nonlocality while being fully covariant. And that is what constitutes the model’s value: it is an explicit example of the possi- bility of Lorentz invariant nonlocality. That is surprising in so far as many authors thought that nonlocality, in particular nonlocal laws for particle world lines, must conflict with relativity. The development of this model was inspired by the search for a fully covariant version of Bohmian mechanics. arXiv:quant-ph/0210207v2 18 Sep 2008 In this paper I will introduce to you a dynamical system—a law of mo- tion for point particles—that has been invented [5] as a toy model based on Bohmian mechanics. Bohmian mechanics is a version of quantum mechanics with particle trajectories; see [4] for an introduction and overview. What makes this toy model remarkable is that it has two arrows of time, and that precisely its having two arrows of time is what allows it to perform what it was designed for: to have effects travel faster than light from their causes (in short, nonlocality) without breaking Lorentz invariance. Why should anyone ∗Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA.
    [Show full text]
  • On the Geometry of the Spin-Statistics Connection in Quantum Mechanics
    On the Geometry of the Spin-Statistics Connection in Quantum Mechanics Dissertation zur Erlangung des Grades ,,Doktor der Naturwissenschaften“ am Fachbereich Physik der Johannes Gutenberg-Universit¨at Mainz vorgelegt von Andr´es Reyes geb. in Bogot´a Mainz 2006 Zusammenfassung Das Spin-Statistik-Theorem besagt, dass das statistische Verhalten eines Systems von identischen Teilchen durch deren Spin bestimmt ist: Teilchen mit ganzzahligem Spin sind Bosonen (gehorchen also der Bose-Einstein-Statistik), Teilchen mit halbzahligem Spin hingegen sind Fermionen (gehorchen also der Fermi-Dirac-Statistik). Seit dem urspr¨unglichen Beweis von Fierz und Pauli wissen wir, dass der Zusammenhang zwi- schen Spin und Statistik aus den allgemeinen Prinzipien der relativistischen Quanten- feldtheorie folgt. Man kann nun die Frage stellen, ob das Theorem auch dann noch g¨ultig bleibt, wenn man schw¨achere Annahmen macht als die allgemein ¨ublichen (z.B. Lorentz- Kovarianz). Es gibt die verschiedensten Ans¨atze, die sich mit der Suche nach solchen schw¨acheren Annahmen besch¨aftigen. Neben dieser Suche wurden ¨uber viele Jahre hinweg Versuche unternommen einen geometrischen Beweis f¨ur den Zusammenhang zwischen Spin und Statistik zu finden. Solche Ans¨atze werden haupt- s¨achlich, durch den tieferen Zusammenhang zwischen der Ununterscheidbarkeit von identischen Teilchen und der Geometrie des Konfigurationsraumes, wie man ihn beispielsweise an dem Gibbs’schen Paradoxon sehr deutlich sieht, motiviert. Ein Ver- such der diesen tieferen Zusammenhang ausnutzt, um ein geometrisches Spin- Statistik-Theorem zu beweisen, ist die Konstruktion von Berry und Robbins (BR). Diese Konstruktion basiert auf einer Eindeutigkeitsbedingung der Wellenfunktion, die Aus- gangspunkt erneuerten Interesses an diesem Thema war. Die vorliegende Arbeit betrachtet das Problem identischer Teilchen in der Quanten- mechanik von einem geometrisch-algebraischen Standpunkt.
    [Show full text]
  • Arthur Strong Wightman (1922–2013)
    Obituary Arthur Strong Wightman (1922–2013) Arthur Wightman, a founding father of modern mathematical physics, passed away on January 13, 2013 at the age of 90. His own scientific work had an enormous impact in clar- ifying the compatibility of relativity with quantum theory in the framework of quantum field theory. But his stature and influence was linked with an enormous cadre of students, scientific collaborators, and friends whose careers shaped fields both in mathematics and theoretical physics. Princeton has a long tradition in mathematical physics, with university faculty from Sir James Jeans through H.P. Robertson, Hermann Weyl, John von Neumann, Eugene Wigner, and Valentine Bargmann, as well as a long history of close collaborations with colleagues at the Institute for Advanced Study. Princeton became a mecca for quantum field theorists as well as other mathematical physicists during the Wightman era. Ever since the advent of “axiomatic quantum field theory”, many researchers flocked to cross the threshold of his open office door—both in Palmer and later in Jadwin—for Arthur was renowned for his generosity in sharing ideas and research directions. In fact, some students wondered whether Arthur might be too generous with his time helping others, to the extent that it took time away from his own research. Arthur had voracious intellectual appetites and breadth of interests. Through his interactions with others and his guidance of students and postdocs, he had profound impact not only on axiomatic and constructive quantum field theory but on the de- velopment of the mathematical approaches to statistical mechanics, classical mechanics, dynamical systems, transport theory, non-relativistic quantum mechanics, scattering the- ory, perturbation of eigenvalues, perturbative renormalization theory, algebraic quantum field theory, representations of C⇤-algebras, classification of von Neumann algebras, and higher spin equations.
    [Show full text]
  • Finite Dimensional Systems of Free Fermions and Diffusion Processes
    Finite dimensional systems of free Fermions and diffusion processes on Spin groups Luigi M. Borasi Hausdorff Center of Mathematics & Institute of Applied Mathematics University of Bonn, Germany [email protected] February 2, 2021 Abstract In this article we are concerned with “finite dimensional Fermions”, by which we mean vectors in a finite dimensional complex space embedded in the exterior algebra over itself. These Fermions are spinless but possess the characterizing anticommutativity property. We associate invariant com- plex vector fields on the Lie group Spin(2n + 1) to the Fermionic creation and annihilation operators. These vector fields are elements of the com- plexification of the regular representation of the Lie algebra so(2n + 1). As such, they do not satisfy the canonical anticommutation relations, however, once they have been projected onto an appropriate subspace of L2(Spin(2n + 1)), these relations are satisfied. We define a free time evo- lution of this system of Fermions in terms of a symmetric positive-definite quadratic form in the creation-annihilation operators. The realization of Fermionic creation and annihilation operators brought by the (invariant) vector fields allows us to interpret this time evolution in terms of a pos- itive selfadjoint operator which is the sum of a second order operator, which generates a stochastic diffusion process, and a first order complex operator, which strongly commutes with the second order operator. A probabilistic interpretation is given in terms of a Feynman-Kac like for- mula with respect to the diffusion process associated with the second order operator. arXiv:2102.01000v1 [math-ph] 1 Feb 2021 1 Introduction Probabilistic methods in Quantum Field Theory have proved to be particu- larly fruitful (cf.
    [Show full text]
  • William A. Hiscock Michio Kaku Gordon Kane J-M Wersinger
    WILLIAM A. HISCOCK From Wormholes to the Warp Drive: Using Theoretical Physics to Place Ultimate Bounds on Technology MICHIO KAKU M-Theory: Mother of All Superstrings GORDON KANE Anthropic Questions Peering into the Universe: Images from the Hubble Space Telescope J-M WERSINGER The National Space Grant Student Satellite Program: Crawl, Walk, Run, Fly! The Honor Society of Phi Kappa Phi was founded in 1897 and became a national organization Board of Directors through the efforts of the presidents of three state Wendell H. McKenzie, PhD universities. Its primary objective has been from National President the first the recognition and encouragement of Dept. of Genetics superior scholarship in all fields of study. Good Box 7614 NCSU character is an essential supporting attribute for Raleigh, NC 27695 those elected to membership. The motto of the Paul J. Ferlazzo, PhD Society is philosophia krateit¯oph¯ot¯on, which is National President-Elect freely translated as “Let the love of learning rule Northern Arizona University Phi Kappa Phi Forum Staff humanity.” Dept. of English, Bx 6032 Flagstaff, AZ 86011 Editor: JAMES P. KAETZ Donna Clark Schubert National Vice President Associate Editors: Troy State University Phi Kappa Phi encourages and recognizes aca- 101 C Wallace Hall STEPHANIE J. BOND demic excellence through several national pro- Troy, AL 36082 LAURA J. KLOBERG grams. Its flagship National Fellowship Program now awards more than $460,000 each year to Neil R. Luebke, PhD Copy Editor: student members for the first year of graduate Past President 616 W. Harned Ave. AMES ARRS study. In addition, the Society funds Study J T.
    [Show full text]
  • Discover the ...Where Time Runs Backwards
    PHYSICS PHYSICS Discover the ...where time runs backwards A brand new idea about the Big Bang reveals why our clocks always go forwards, explains Marcus Chown HE BIG BANG may not have spawned one universe, it may have spawned two. One is our Universe, where time runs normally. The second is a twin universe in which time runs backwards. The latter universe, located ‘on the other side of the Big Bang’, would appear completely normal to its inhabitants, with stars and galaxies Tcongealing from the cooling debris of the Big ILLUSTRATION: ANDY POTTS ANDY ILLUSTRATION: Bang much like in our Universe. If it were 40 / FOCUS / APRIL 2015 APRIL 2015 / FOCUS / 41 PHYSICS possible for us to look back through the Big Bang to this cosmic doppelgänger, its backward-running time might make it appear like a universe in reverse, contracting to a Big Crunch. Dr Julian Barbour of the University of Oxford, Dr Tim Koslowski of the University of New Brunswick and Dr Flavio Mercati of the Perimeter Institute in Ontario made this extraordinary discovery while trying to understand one of the great puzzles of physics: why there is a direction of time. We commonly associate this ‘arrow’ of time with the way in which eggs break, people grow old and castles crumble. We never see eggs unbreak, people grow young and castles un-crumble. But why we do not isn’t as obvious as it might seem. ARROW OF TIME The problem is that all the fundamental laws of physics are ‘time symmetric’ – they permit processes to work equally well backwards as forwards.
    [Show full text]
  • Obituaries Prepared by the Historical Astronomy Division
    1 Obituaries Prepared by the Historical Astronomy Division ARTHUR EDWIN COVINGTON, 1913–2001 Arthur Edwin Covington, Canada’s first radio astronomer and founder of the daily 10.7-cm solar flux patrol, died peacefully in his home in Kingston, Ontario after a lengthy illness on 17 March 2001. He was eighty-eight years old. His wife Charlotte and their four children, Nancy, Eric, Alan, and Janet survive him. Covington was born in Regina and edu- cated in Vancouver. Deeply absorbed with radio science and astronomy from his youth, Covington graduated in math- ematics and physics from the University of British Columbia ͑UBC͒ in 1938. He stayed at UBC to complete a Master’s thesis on lens design for electron microscopes. But in 1940 he moved to the University of California, Berkeley, to begin graduate studies in nuclear physics. He met and married fel- low physics student Charlotte Anne Riche in Berkeley. In 1942, the Covingtons moved to Ottawa to join Canada’s war- time research effort in radar at the Radio Branch of the Na- tional Research Council’s Laboratories ͑NRCL͒. Well aware of Jansky’s and Reber’s discoveries of ‘‘cos- mic radio noise’’ at metric wavelengths, at the end of the war Covington proposed to use converted radar equipment oper- ating at a wavelength of 10.7 cm to probe the galactic center using the Sun’s decimetric emission as a calibrator for deriv- ing the cosmic-noise spectrum. His first attempts to measure the integrated flux over the solar disk in July 1946 did not produce consistent flux levels from day to day.
    [Show full text]
  • Nine Lessons of My Teacher, Arthur Strong Wightman a Talk at Princeton University, 10 March 2013 by Arthur Jaffe (Cambridge (MA), Basel, and Z¨Urich)
    Nine Lessons of my Teacher, Arthur Strong Wightman Nine Lessons of my Teacher, Arthur Strong Wightman A Talk at Princeton University, 10 March 2013 by Arthur Jaffe (Cambridge (MA), Basel, and Z¨urich) At Harvard University, Arthur Ja↵e is the Landon T. Clay Pro- fessor of Mathematics and Theoretical Science. He is currently on sabbatical leave at the University of Basel and at the ETH, Z¨urich. He has worked in several fields of mathematical physics. Arthur Ja↵e received his doctorate in physics from Princeton as a student of Arthur Wightman, after studying mathematics as a Cambridge undergraduate and chemistry as a Princeton un- dergraduate. He has served as president of IAMP, and also as president of the American Mathematical Society. Preamble. All of us here today have been students of Arthur Wightman. But his thirty-six formal doctoral students form a very special club, which I represent on this part of today’s program. A few members appear in this 1965 snapshot of Arthur Wightman’s seminar in Palmer 301, with Arthur smiling benevolently in the center. IAMP News Bulletin, April 2013 3 Arthur Ja↵e Postdoctoral fellows and other visitors to Princeton surround the students during those exciting times some 48 years ago. To the best of my knowledge, here is the complete, wide-ranging list of graduate students: Arthur Wightman’s student club Silvan Samuel Schweber 1952 Gerald Goldin 1969 Richard Ferrell 1952 Eugene Speer 1969 Douglas Hall 1957 George Svetlichny 1969 Oscar W. Greenberg 1957 Barry Simon 1970 Huzihiro Araki 1960 Charles Newman 1971 John S.
    [Show full text]
  • Get Real: Climate Change and All That It Entails
    Get Real: Climate Change and All That ‘It’ Entails Michael Carolan* and Diana Stuart Abstract This article builds on Carolan’s three natures scheme, where he distinguishes between the strata of ‘nature’, nature and Nature, by overlaying his previous framework with further analytic distinctions. Doing this, the authors argue, adds an important layer of analytical and conceptual robustness that his earlier scheme lacks. After building on this framework, attention turns to the phenomena of climate change. A selection of agrifood studies on this subject is used to help illustrate the utility of the revised model. The literatures reviewed involve the following: those looking at attitudes among farmers toward climate change; the bark beetle outbreaks in British Columbia; and food regimes. With this move the authors seek to illustrate the explanatory and descriptive utility of the revised model, specifically in its ability to provide a sustained defence of a type of realism that relational social theorists implicitly ascribe to. They also show how their conceptual labours – and the ecologically embedded relational realism it brings to the fore – can help further inform the aforementioned literatures by highlighting some of their conceptual and analytic blind spots. t has been almost 10 years since Carolan (2005a; see also 2005b) introduced to I environmental sociology his three natures scheme. This framework attempts to ground our understanding of environmental events while being able to attribute causality to phenomena often ignored by sociologists, namely, biophysical variables. The intervening decade has been a renaissance of sorts for ecologically embedded sociology, though, importantly, without the reductionism that afflicted such accounts as those offered long ago by Herbert Spencer (1967) and William Graham Sumner (1971 [1914]).
    [Show full text]
  • Congressional Record United States Th of America PROCEEDINGS and DEBATES of the 110 CONGRESS, SECOND SESSION
    E PL UR UM IB N U U S Congressional Record United States th of America PROCEEDINGS AND DEBATES OF THE 110 CONGRESS, SECOND SESSION Vol. 154 WASHINGTON, THURSDAY, SEPTEMBER 11, 2008 No. 144 House of Representatives The House met at 11 a.m. and was stillness and peace or imagine ever- nication from the Clerk of the House of called to order by the Speaker pro tem- lasting and unconditional love. So, Representatives: pore (Mrs. TAUSCHER). Lord, have mercy on us, pardon us, and SEPTEMBER 10, 2008. f uphold us now and forever. Amen. Hon. NANCY PELOSI, f Speaker, The Capitol, U.S. House of Representa- DESIGNATION OF SPEAKER PRO tives, Washington, DC. TEMPORE THE JOURNAL DEAR MADAM SPEAKER: Pursuant to the The SPEAKER pro tempore laid be- The SPEAKER pro tempore. The permission granted in Clause 2(h) of Rule II fore the House the following commu- Chair has examined the Journal of the of the Rules of the U.S. House of Representa- nication from the Speaker: last day’s proceedings and announces tives, I have the honor to transmit a sealed WASHINGTON, DC, to the House her approval thereof. envelope received from the White House on September 11, 2008. Pursuant to clause 1, rule I, the Jour- September 10, 2008, at 8:23 p.m. and said to I hereby appoint the Honorable ELLEN O. nal stands approved. contain a message from the President where- TAUSCHER to act as Speaker pro tempore on Mr. WILSON of South Carolina. by he transmits the proposed Agreement for this day.
    [Show full text]
  • JPT 16.4.Pdf
    Volume 16, No. 4 16, No. 4 Volume Volume 16, No. 4, 2013 Journal Transportation of Public Ranjay M. Shrestha Eliminating Bus Stops: Edmund J. Zolnik Evaluating Changes in Operations, Emissions and Coverage Asha Weinstein Agrawal Shared-Use Bus Priority Lanes on City Streets: Todd Goldman Approaches to Access and Enforcement Nancy Hannaford Jeffrey Brown e Modern Streetcar in the U.S.: An Examination of Its Ridership, Performance, and Function as a Public Transportation Mode Alasdair Cain Examining the Ridership Attraction Potential of Bus Rapid Transit: Jennifer Flynn A Quantitative Analysis of Image and Perception Robert Cervero Bike-and-Ride: Build It and ey Will Come Benjamin Caldwell Jesus Cuellar Yaser E. Hawas Simulation-Based Regression Models to Estimate Bus Routes and Network Travel Times Paul Metaxatos Ridership and Revenue Implications of Free Fares for Seniors in Northeastern Illinois 2013 N C T R Gary L. Brosch, Editor SUBSCRIPTIONS Lisa Ravenscroft, Assistant to the Editor Complimentary subscriptions can be obtained by contacting: EDITORIAL BOARD Lisa Ravenscroft, Assistant to the Editor Center for Urban Transportation Research (CUTR) University of South Florida Robert B. Cervero, Ph.D. William W. Millar Fax: (813) 974-5168 University of California, Berkeley American Public Transportation Association Email: [email protected] Web: www.nctr.usf.edu/jpt/journal.htm Chester E. Colby Steven E. Polzin, Ph.D., P.E. E & J Consulting University of South Florida Gordon Fielding, Ph.D. Lawrence Schulman SUBMISSION OF MANUSCRIPTS University of California, Irvine LS Associates The Journal of Public Transportation is a quarterly, international journal containing original Jose A. Gómez-Ibáñez, Ph.D.
    [Show full text]