Uncovering the Mechanisms for T Cell Effector Function Through Gene

Total Page:16

File Type:pdf, Size:1020Kb

Uncovering the Mechanisms for T Cell Effector Function Through Gene T cell transcriptomes: Uncovering the mechanisms for T cell effector function through gene profiling Tatyana Chtanova December 2004 A thesis submitted for the degree of Doctor of Philosophy Garvan Institute of Medical Research, St Vincent’s Hospital and the Faculty of Science, University of New South Wales Sydney, NSW, Australia Manuscripts • Chtanova T., R.A. Newton, S. M. Liu, L. Weininger, D. G. Silva, M. Hughes, F. Bertoni, F. Sallusto, M. S. Rolph and C. R. Mackay. Comprehensive leukocyte microarray datasets allow identification of T cell subset restricted genes, and signatures for different types of T cell responses. Manuscript in preparation. • Liu, S. M., T. Chtanova, R. Newton, M. Sisavanh, K. L. Good, D.G. Silva, S. Zimmer, M. J. Frost, S. G. Tangye, M. S. Rolph and C. R. Mackay. Comprehensive microarray datasets of immune cells reveal novel leukocyte subset-specific genes, as well as genes associated with different types of immune response. Submitted to Blood. • Chtanova, T., S. G. Tangye, R. A. Newton, N. Frank, M. R. Hodge, M. S. Rolph, and C. R. Mackay. 2004. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 173:68. • Ng, L.G., A.P.R. Sutherland, R. Newton, F. Qian, T. G. Cachero, M. Scott, J. S. Thompson, J. Wheway, T. Chtanova, C. Xin, J. Groom, S. G. Tangye, S. L. Kalled, F. Mackay, and C. R. Mackay. 2004. BAFF-R is the principal BAFF receptor facilitating BAFF co-stimulation of B and T cells. J Immunol 174:807. • Chtanova, T., and C. R. Mackay. 2001. T cell effector subsets: extending the Th1/Th2 paradigm. Adv Immunol 78:233. • Chtanova, T., R. A. Kemp, A. P. Sutherland, F. Ronchese, and C. R. Mackay. 2001. Gene microarrays reveal extensive differential gene expression in both CD4+ and CD8+ type 1 and type 2 T cells. J Immunol 167:3057. Presentations • Keystone Symposium. T cell development, 2004, Banff, Canada Chtanova, T., S. G. Tangye, R. A. Newton, M. R. Hodge, M. S. Rolph, and C. R. Mackay. T follicular helper cells (TFH) express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. Oral and poster presentations. • The 13th St. Vincent’s campus Research Symposium, 2003, Sydney Australia Chtanova, T., M. J. Frost, S. G. Tangye, R. A. Newton, M. R. Hodge , M. S. Rolph, and C. R. Mackay. T follicular helper cells distinguished from Th1 and Th2 subsets by their expression of certain cytokines, cell surface molecules and the transcription factor BCL-6. Poster presentation. • 32nd Annual Meeting for the Australasian Society for Immunology, 2002, Brisbane, Australia Chtanova, T., R. A. Kemp, M. J. Frost, A. P. R. Sutherland, F. Ronchese†, M. S. Rolph, and C. R. Mackay. Distinguishing genes critical for T cell development and effector function. Poster presentation. • 11th International Congress of Immunology, 2001, Stockholm, Sweden Chtanova, T., R. A. Kemp, A. P. Sutherland, F. Ronchese, and C. R. Mackay. i Gene microarrays reveal extensive differential gene expression in both CD4(+) and CD8(+) type 1 and type 2 T cells. Oral and poster presentations. • The 10th St. Vincent’s campus Research Symposium, 2000, Sydney Australia Chtanova, T., A. Sutherland, A. Quan and C.R. Mackay. Identification of genes for asthma pathogenesis. Oral presentation. ii Acknowledgements Firstly, a huge thank you to my supervisor Professor Charles Mackay for his guidance, support and encouragement. Thank you for teaching me a great many things about immunology and what science is all about. I would also like to thank my co- supervisor Dr Michael Rolph for his thoughtful advice and support. I would like to thank many collaborators for generously sharing data and reagents with me. In particular, thank you to Dr Roslyn Kemp (Malaghan Institute, New Zealand) for providing polarized mouse cells; Dr Stuart Tangye (Centenary Institute, Australia) for all the advice and generous sharing of many reagents; Dr Martin Hodge and Nita Frank for kindly providing IL-21R antibody; Dr Diego Silva (ANU Medical School, Australia) for bioinformatics help; Dr David Lowinger for providing tonsil tissue. I am very grateful to the following people for providing their microarray data: Dr Federica Sallusto (Institute for Research in Biomedicine, Switzerland), Dr Rebecca Newton, Sue Liu, Dr Sabine Zimmer and Mary Sisavanh (Garvan Institute, Australia). Thank you also to Lilach Weininger, Melinda Frost and Trina So for their help with the Affymetrix system. I have been very lucky to work with an amazing group of people and I am very grateful to everyone in the Arthritis and Inflammation Research Program for all their help and support over these years. It has been a lot of fun to be a part of this dynamic and exciting group of people. In particular, I had the great pleasure of working with Alison Saunders and Lilach Weininger, both of whom have made my time here so much more enjoyable. Of course, a special mention goes to Dr Frederic Sierro (a.k.a. Swiss Fred) – there is no one I would have rather shared an office with! Thank you for your sense of humour, our many discussions and my lessons in Swiss geography. Many thanks go to my wonderful friends who have kept me sane during these years. A special thank you goes to Jerry Frenkel for being a wonderful friend, colleague and bridesmaid extraordinaire. Throughout my life my parents have always been a huge inspiration to me. I thank you wholeheartedly for your unfailing support through every step of my life. And finally, an enormous thank you to my future husband, James. No words can describe how much your love and support over all these years have meant to me. I could not have done it without you. This thesis is dedicated to you. iii Abstract T cells are at the heart of the adaptive immune response. They mediate many important immunological processes that provide protection against viruses, bacteria and other pathogens. T cell functions include cytotoxicity, cytokine production, immunosuppression, recruitment of other effector cells to the sites of infection, and help for antibody production. The aim of the work described in this thesis was to use gene expression profiling to gain insights into different aspects of T cell biology. In particular we wanted to examine the mechanisms of effector function and identify the genes that underlie the functions of different effector subsets. One of the fundamental divisions in effector T cell responses is based on two distinct patterns of cytokine production by CD4+ T cells. IFN-γ -producing Th1 cells are a major effector subset that protects against intracellular pathogens, while Th2 cells produce IL-4, IL-5 and IL-13 and mediate protection against large extracellular pathogens. We conducted a comprehensive analysis of T cell polarization by profiling gene expression in both mouse and human Th1 and Th2 cells polarized using different experimental protocols, as well as mouse CD8+ type 1 and type 2 T cells. One of the major outcomes of this extensive analysis was the identification of a number of novel markers for Th1 and Th2 cells which may have important roles in Th2 differentiation/function. The other was the delineation of some of the major influences on gene expression profiles during polarization such as the effects of different T cell types, species and differentiation conditions. Providing help to B cells for antibody production is the major function of the + third effector subset of CD4 T cells termed T follicular homing or TFH cells. These cells express the chemokine receptor CXCR5+ and home to B cell follicles where they interact with B cells. However, relatively little is known about the generation of these cells, and the mechanisms of their effector function are yet to be determined. Using oligonucleotide microarrays we identified a TFH-specific gene expression signature. This signature included many novel genes which will undoubtedly enable better identification and characterization of this novel subset. For instance, IL-21 and CD84, which were intimately associated with TFH cells and have already been shown to affect B cell differentiation and function, provide a possible mechanism for TFH help to B cells. The transcription factor BCL6 which was also preferentially expressed by TFH cells may act as a key regulator of T cell fate. iv A comprehensive study profiling all the major leukocyte subsets revealed distinct gene expression signatures for every leukocyte subset, and enabled identification of numerous leukocyte subset specific genes, and in particular many novel T cell-specific genes. A detailed examination of most major T cell subsets identified distinguishing features of each subset together with gene expression changes associated with T cell activation and exposure to cell culture conditions. In addition, we described a distinctive transcriptional profile for γδ T cells and examined the differences between central and effector memory T cells. We also showed that specific gene expression signatures provide a powerful tool for subset classification. Taken together this work provides important insights into T cell differentiation and effector function, and provides a basis for future work examining numerous novel genes relevant to T cell biology. v Contributions of collaborators I would like to acknowledge the contributions of the following people to the work presented in this thesis: • Dr Roslyn Kemp (Malaghan Institute, New Zealand) provided polarized Th1 and Th1 and
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Tetraspanin CD53: an Overlooked Regulator of Immune Cell Function
    Medical Microbiology and Immunology (2020) 209:545–552 https://doi.org/10.1007/s00430-020-00677-z REVIEW Tetraspanin CD53: an overlooked regulator of immune cell function V. E. Dunlock1 Received: 31 March 2020 / Accepted: 2 May 2020 / Published online: 21 May 2020 © The Author(s) 2020 Abstract Tetraspanins are membrane organizing proteins that play a role in organizing the cell surface through the formation of subcellular domains consisting of tetraspanins and their partner proteins. These complexes are referred to as tetraspanin enriched microdomains (TEMs) or the tetraspanin web. The formation of TEMs allows for the regulation of a variety of cellular processes such as adhesion, migration, signaling, and cell fusion. Tetraspanin CD53 is a member of the tetraspanin superfamily expressed exclusively within the immune compartment. Amongst others, B cells, CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and natural killer cells have all been found to express high levels of this protein on their sur- face. Almost three decades ago it was reported that patients who lacked CD53 sufered from an increased susceptibility to pathogens resulting in the clinical manifestation of recurrent viral, bacterial, and fungal infections. This clearly suggests a vital and non-redundant role for CD53 in immune function. Yet, despite this striking fnding, the specifc functional roles of CD53 within the immune system have remained elusive. This review aims to provide a concise overview of the published literature concerning CD53 and refect on the underappreciated role of this protein in immune cell regulation and function. Keywords Tetraspanins · Tetraspanin enriched microdomains · CD53 · Membrane organization · Immune cell signaling · Immune cell adhesion Introduction: tetraspanins in the immune surface or on intracellular membranes.
    [Show full text]
  • Identification of Genes Concordantly Expressed with Atoh1 During Inner Ear Development
    Original Article doi: 10.5115/acb.2011.44.1.69 pISSN 2093-3665 eISSN 2093-3673 Identification of genes concordantly expressed with Atoh1 during inner ear development Heejei Yoon, Dong Jin Lee, Myoung Hee Kim, Jinwoong Bok Department of Anatomy, Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul, Korea Abstract: The inner ear is composed of a cochlear duct and five vestibular organs in which mechanosensory hair cells play critical roles in receiving and relaying sound and balance signals to the brain. To identify novel genes associated with hair cell differentiation or function, we analyzed an archived gene expression dataset from embryonic mouse inner ear tissues. Since atonal homolog 1a (Atoh1) is a well known factor required for hair cell differentiation, we searched for genes expressed in a similar pattern with Atoh1 during inner ear development. The list from our analysis includes many genes previously reported to be involved in hair cell differentiation such as Myo6, Tecta, Myo7a, Cdh23, Atp6v1b1, and Gfi1. In addition, we identified many other genes that have not been associated with hair cell differentiation, including Tekt2, Spag6, Smpx, Lmod1, Myh7b, Kif9, Ttyh1, Scn11a and Cnga2. We examined expression patterns of some of the newly identified genes using real-time polymerase chain reaction and in situ hybridization. For example, Smpx and Tekt2, which are regulators for cytoskeletal dynamics, were shown specifically expressed in the hair cells, suggesting a possible role in hair cell differentiation or function. Here, by re- analyzing archived genetic profiling data, we identified a list of novel genes possibly involved in hair cell differentiation.
    [Show full text]
  • University of London Thesis Z C
    REFERENCE ONLY UNIVERSITY OF LONDON THESIS Degree Year Name of Author Z C G f h j > COPYRIGHT This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOANS Theses may not be lent to individuals, but the Senate House Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: Inter-Library Loans, Senate House Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the Senate House Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962. Permission granted only upon the prior written consent of the author. (The Senate House Library will provide addresses where possible). B. 1962- 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration. D. 1989 onwards. Most theses may be copied.
    [Show full text]
  • Expression of the Tetraspanins CD9, CD37, CD63, and CD151 in Merkel Cell Carcinoma: Strong Evidence for a Posttranscriptional Fine-Tuning of CD9 Gene Expression
    Modern Pathology (2010) 23, 751–762 & 2010 USCAP, Inc. All rights reserved 0893-3952/10 $32.00 751 Expression of the tetraspanins CD9, CD37, CD63, and CD151 in Merkel cell carcinoma: strong evidence for a posttranscriptional fine-tuning of CD9 gene expression Markus Woegerbauer1, Dietmar Thurnher1, Roland Houben2, Johannes Pammer3, Philipp Kloimstein1, Gregor Heiduschka1, Peter Petzelbauer4 and Boban M Erovic1 1Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria; 2Department of Dermatology, Medical University of Wuerzburg, Germany; 3Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria and 4Department of Dermatology, Medical University of Vienna, Vienna, Austria Tetraspanins including CD9, CD37, CD63, and CD151 are linked to cellular adhesion, cell differentiation, migration, carcinogenesis, and tumor progression. The aim of the study was to detect, quantify, and evaluate the prognostic value of these tetraspanins in Merkel cell carcinoma and to study the regulation of CD9 mRNA expression in Merkel cell carcinoma cell lines in detail. Immunohistochemical staining of 28 Merkel cell carcinoma specimens from 25 patients showed a significant correlation of CD9 (P ¼ 0.03) and CD151 (P ¼ 0.043) expression to overall survival. CD9 and CD63 expression correlated significantly to patients’ disease-free interval (P ¼ 0.017 and P ¼ 0.058). Of primary Merkel cell carcinoma tumors, 42% were CD9 positive in contrast to only 21% of the subcutaneous in-transit metastases. Characterization of the 50 untranslated region (UTR) of the CD9 mRNA from two cultured Merkel cell carcinoma cell lines revealed the presence of two major RNA species differing only in the length of their 50 termini (183 versus 102 nucleotides).
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Human Eosinophils and Their Activation by Allergens Via Danger
    Human eosinophils and their activation by allergens via danger signal receptors Elin Redvall ______________________ 2010 Department of Infectious diseases, Institute of Biomedicine, The Sahlgrenska Academy Cover illustration photo: Kerstin Andersson (Eosinophils) Abstract Human eosinophilic granulocytes are polymorphonuclear cells with a powerful arsenal of cytotoxic substances in their granules, which are mainly found in the gastrointestinal mucosa, and the respiratory and genitourinary tracts. Their physiological role is incompletely understood, although it is likely they protect the mucosal surfaces, perhaps by recognizing danger signals present on microorganisms or released from damaged tissue. We have earlier shown that eosinophils can recognize and become directly activated by aeroallergens such as house dust mite (HDM) and birch pollen. Eosinophils exposed to (HDM) release both of the cytotoxic granule proteins eosinophil peroxidase (EPO) and major basic protein, whereas birch pollen extract only triggers EPO release. Here we further investigate which receptors on eosinophils are used to signal the presence of HDM and birch pollen. Recognition was found to be mediated by the formyl peptide receptors (FPRs) FPR1 and FPR2. We also characterized the expression of this family of receptors in human eosinophils and found that they express FPR1 and FPR2, but not FPR3, similar to neutrophilic granulocytes. We also discovered that signaling through FPR1 can desensitize the eotaxin-1 receptor CCR3 rendering the cells anergic with respect to chemotaxis in response to eotaxin-1, but not regarding respiratory burst. Hence, there is cross- talk between these two receptors regarding one important effector function of eosinophils. Eosinophilic reactivity in vitro to the aeroallergens HDM, birch pollen, timothy grass pollen and cat dander did not differ between individuals with allergy and healthy individuals.
    [Show full text]
  • Tetraspanin CD151 Plays a Key Role in Skin Squamous Cell Carcinoma
    Oncogene (2013) 32, 1772–1783 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE Tetraspanin CD151 plays a key role in skin squamous cell carcinoma QLi1, XH Yang2,FXu1, C Sharma1, H-X Wang1, K Knoblich1, I Rabinovitz3, SR Granter4 and ME Hemler1 Here we provide the first evidence that tetraspanin CD151 can support de novo carcinogenesis. During two-stage mouse skin chemical carcinogenesis, CD151 reduces tumor lag time and increases incidence, multiplicity, size and progression to malignant squamous cell carcinoma (SCC), while supporting both cell survival during tumor initiation and cell proliferation during the promotion phase. In human skin SCC, CD151 expression is selectively elevated compared with other skin cancer types. CD151 support of keratinocyte survival and proliferation may depend on activation of transcription factor STAT3 (signal transducers and activators of transcription), a regulator of cell proliferation and apoptosis. CD151 also supports protein kinase C (PKC)a–a6b4 integrin association and PKC-dependent b4 S1424 phosphorylation, while regulating a6b4 distribution. CD151–PKCa effects on integrin b4 phosphorylation and subcellular localization are consistent with epithelial disruption to a less polarized, more invasive state. CD151 ablation, while minimally affecting normal cell and normal mouse functions, markedly sensitized mouse skin and epidermoid cells to chemicals/drugs including 7,12-dimethylbenz[a]anthracene (mutagen) and camptothecin (topoisomerase inhibitor), as well as to agents targeting epidermal growth factor receptor, PKC, Jak2/Tyk2 and STAT3. Hence, CD151 ‘co-targeting’ may be therapeutically beneficial. These findings not only support CD151 as a potential tumor target, but also should apply to other cancers utilizing CD151/laminin-binding integrin complexes.
    [Show full text]
  • Combination Immunotherapy with Anti-CD20 and Anti-HLA-DR Monoclonal Antibodies Induces Synergistic Anti-Lymphoma Effects in Human Lymphoma Cell Lines
    UC Davis UC Davis Previously Published Works Title Combination immunotherapy with anti-CD20 and anti-HLA-DR monoclonal antibodies induces synergistic anti-lymphoma effects in human lymphoma cell lines Permalink https://escholarship.org/uc/item/8pk1f4nx Journal Leukemia & Lymphoma, 48(5) ISSN 1042-8194 Authors Tobin, Evan Denardo, Gerald Zhang, Nan et al. Publication Date 2007-05-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Rituximab & ChLym-1 Combined Immunotherapy Combination Immunotherapy with Anti-CD20 and Anti-HLA-DR Monoclonal Antibodies Induces Synergistic Anti-lymphoma Effects in Human Lymphoma Cell Lines Evan Tobin1, Gerald DeNardo1, Nan Zhang2, Alan L. Epstein2, Cathy Liu1 & Sally DeNardo1 1 Department of Internal Medicine, University of California Davis, CA, USA 2 Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA Running Title: Rituximab & ChLym-1 Combined Immunotherapy Keywords: Lymphoma; immunotherapy; rituximab; Lym-1; CD20; HLA-DR 1Address for correspondence: Gerald L. DeNardo, M.D. Division of Hematology and Oncology 1508 Alhambra Blvd., No. 3100 Sacramento, CA 95816 Telephone (916) 734-3787 Fax (916) 703-5014 E-mail: [email protected] 1 Rituximab & ChLym-1 Combined Immunotherapy ABSTRACT Rituximab is effective in about one half of patients with indolent lymphoma. Even these patients relapse and develop rituximab resistance. To increase potency and circumvent resistance, the anti-lymphoma effects of rituximab, an anti-CD20 MAb1, combined with chLym-12, an anti- HLA-DR MAb, were assessed in human lymphoma cell lines by examining growth inhibition and cell death, apoptosis induction, ADCC3 and CDC4. There were additive effects in all assays and synergism in cell lines, such as B35M, which displayed resistance to either MAb alone.
    [Show full text]
  • Novel CD37, Humanized CD37 and Bi-Specific Humanized CD37-CD19
    cancers Article Novel CD37, Humanized CD37 and Bi-Specific Humanized CD37-CD19 CAR-T Cells Specifically Target Lymphoma Vita Golubovskaya 1,*, Hua Zhou 1, Feng Li 1,2, Michael Valentine 1, Jinying Sun 1, Robert Berahovich 1, Shirley Xu 1, Milton Quintanilla 1, Man Cheong Ma 1, John Sienkiewicz 1, Yanwei Huang 1 and Lijun Wu 1,3,* 1 Promab Biotechnologies, 2600 Hilltop Drive, Richmond, CA 94806, USA; [email protected] (H.Z.); [email protected] (F.L.); [email protected] (M.V.); [email protected] (J.S.); [email protected] (R.B.); [email protected] (S.X.); [email protected] (M.Q.); [email protected] (M.C.M.); [email protected] (J.S.); [email protected] (Y.H.) 2 Biology and Environmental Science College, Hunan University of Arts and Science, Changde 415000, China 3 Forevertek Biotechnology, Janshan Road, Changsha Hi-Tech Industrial Development Zone, Changsha 410205, China * Correspondence: [email protected] (V.G.); [email protected] (L.W.); Tel.: +510-974-0697 (V.G.) Simple Summary: Chimeric antigen receptor (CAR) T cell therapy represents a major advancement in cancer treatment. Recently, FDA approved CAR-T cells directed against the CD19 protein for treatment of leukemia and lymphoma. In spite of impressive clinical responses with CD19-CAR-T cells, some patients demonstrate disease relapse due to either antigen loss, cancer heterogeneity or other mechanisms. Novel CAR-T cells and targets are important for the field. This report describes Citation: Golubovskaya, V.; Zhou, novel CD37, humanized CD37 and bispecific humanized CD37-CD19-CAR-T cells targeting both H.; Li, F.; Valentine, M.; Sun, J.; CD37 and CD19.
    [Show full text]
  • CD20 (B9E9): Sc-9984
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . CD20 (B9E9): sc-9984 BACKGROUND APPLICATIONS CD20 is a leukocyte surface antigen consisting of four transmembrane regions CD20 (B9E9) is recommended for detection of CD20 of human origin by and cytoplasmic N- and C-termini. The cytoplasmic domain of CD20 contains Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), multiple phosphorylation sites, leading to additional isoforms. CD20 is ex- immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell pressed primarily on B cells but has also been detected on both normal and lysate)] and flow cytometry (1 µg per 1 x 10 6 cells). neoplastic T cells. CD20 functions as a calcium-permeable cation channel, and Suitable for use as control antibody for CD20 siRNA (h): sc-29972, CD20 it is known to accelerate the G to G progression induced by IGF-1. CD20 is 0 1 shRNA Plasmid (h): sc-29972-SH and CD20 shRNA (h) Lentiviral Particles: activated by the IGF-1 receptor via the subunits of the heterotrimeric G α sc-29972-V. proteins. Activation of CD20 significantly increases DNA synthesis and is thought to involve basic helix-loop-helix leucine zipper transcription factors. Molecular Weight of CD20 isoforms: 33-37 kDa. REFERENCES RECOMMENDED SECONDARY REAGENTS 1. Tedder, T.F., et al. 1994. CD20: a regulator of cell-cycle progression of B To ensure optimal results, the following support (secondary) reagents are lymphocytes. Immunol. Today 15: 450-454. recommended: 1) Western Blotting: use goat anti-mouse IgG-HRP: sc-2005 (dilution range: 1:2000-1:32,000) or Cruz Marker™ compatible goat anti- 2.
    [Show full text]
  • Aberrant Expression of Tetraspanin Molecules in B-Cell Chronic Lymphoproliferative Disorders and Its Correlation with Normal B-Cell Maturation
    Leukemia (2005) 19, 1376–1383 & 2005 Nature Publishing Group All rights reserved 0887-6924/05 $30.00 www.nature.com/leu Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation S Barrena1,2, J Almeida1,2, M Yunta1,ALo´pez1,2, N Ferna´ndez-Mosteirı´n3, M Giralt3, M Romero4, L Perdiguer5, M Delgado1, A Orfao1,2 and PA Lazo1 1Instituto de Biologı´a Molecular y Celular del Ca´ncer, Centro de Investigacio´n del Ca´ncer, Consejo Superior de Investigaciones Cientı´ficas-Universidad de Salamanca, Salamanca, Spain; 2Servicio de Citometrı´a, Universidad de Salamanca and Hospital Universitario de Salamanca, Salamanca, Spain; 3Servicio de Hematologı´a, Hospital Universitario Miguel Servet, Zaragoza, Spain; 4Hematologı´a-hemoterapia, Hospital Universitario Rı´o Hortega, Valladolid, Spain; and 5Servicio de Hematologı´a, Hospital de Alcan˜iz, Teruel, Spain Tetraspanin proteins form signaling complexes between them On the cell surface, tetraspanin antigens are present either as and with other membrane proteins and modulate cell adhesion free molecules or through interaction with other proteins.25,26 and migration properties. The surface expression of several tetraspanin antigens (CD9, CD37, CD53, CD63, and CD81), and These interacting proteins include other tetraspanins, integri- F 22,27–30F their interacting proteins (CD19, CD21, and HLA-DR) were ns particularly those with the b1 subunit HLA class II 31–33 34,35 analyzed during normal B-cell maturation and compared to a moleculesFeg HLA DR -, CD19, the T-cell recep- group of 67 B-cell neoplasias. Three patterns of tetraspanin tor36,37 and several other members of the immunoglobulin expression were identified in normal B cells.
    [Show full text]