Critical Ising Model in Varying Dimension by Conformal Bootstrap
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
978-1-62808-450-4 Ch1.Pdf
In: Recent Advances in Magnetism Research ISBN: 978-1-62808-450-4 Editor: Keith Pace © 2013 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 1 TOWARDS A FIELD THEORY OF MAGNETISM Ulrich Köbler FZ-Jülich, Institut für Festkörperforschung, Jülich, Germany ABSTRACT Experimental tests of conventional spin wave theory reveal two serious shortcomings of this typical local or atomistic theory: first, spin wave theory is unable to explain the universal temperature dependence of the thermodynamic observables and, second, spin wave theory does not distinguish between the dynamics of magnets with integer and half- integer spin quantum number. As experiments show, universality is not restricted to the critical dynamics but holds for all temperatures in the long range ordered state including the low temperature regime where spin wave theory is widely believed to give an adequate description. However, a rigorous and convincing test that spin wave theory gives correct description of the thermodynamics of ordered magnets has never been delivered. Quite generally, observation of universality unequivocally calls for a continuum or field theory instead of a local theory. -
Conformal Bootstrap Signatures of the Tricritical Ising Universality Class
PHYSICAL REVIEW D 101, 116020 (2020) Conformal bootstrap signatures of the tricritical Ising universality class Chethan N. Gowdigere , Jagannath Santara, and Sumedha School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India (Received 28 November 2018; revised manuscript received 17 April 2020; accepted 12 June 2020; published 30 June 2020) We study the tricritical Ising universality class using conformal bootstrap techniques. By studying bootstrap constraints originating from multiple correlators on the conformal field theory (CFT) data of multiple operator product expansions (OPEs), we are able to determine the scaling dimension of the spin field Δσ in various noninteger dimensions 2 ≤ d ≤ 3. Here, Δσ is connected to the critical exponent η that governs the (tri)critical behavior of the two-point function via the relation η ¼ 2 − d þ 2Δσ. Our results for Δσ match with the exactly known values in two and three dimensions and are a conjecture for noninteger 3 dimensions. We also compare our CFT results for Δσ with ϵ-expansion results, available up to ϵ order. Our techniques can be naturally extended to study higher-order multicritical points. DOI: 10.1103/PhysRevD.101.116020 I. INTRODUCTION the restrictions imposed by conformal invariance and found that the conformal field theory corresponding to The consequences of the conformal hypothesis which the Ising universality class sits on the boundary of the posits conformal invariance to the behavior of physical allowed region at a kinklike point in the space of scaling systems at criticality, in addition to scale invariance, are dimensions of the only two relevant operators. -
Solving the 3D Ising Model with the Conformal Bootstrap Sheer El-Showk, Miguel Paulos, David Poland, Slava Rychkov, David Simmons-Duffin, Alessandro Vichi
Solving the 3D Ising model with the conformal bootstrap Sheer El-Showk, Miguel Paulos, David Poland, Slava Rychkov, David Simmons-Duffin, Alessandro Vichi To cite this version: Sheer El-Showk, Miguel Paulos, David Poland, Slava Rychkov, David Simmons-Duffin, et al.. Solving the 3D Ising model with the conformal bootstrap. Physical Review D, American Physical Society, 2012, 86 (2), pp.25022. 10.1103/PhysRevD.86.025022. cea-00825766 HAL Id: cea-00825766 https://hal-cea.archives-ouvertes.fr/cea-00825766 Submitted on 17 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. This is the accepted manuscript made available via CHORUS. The article has been published as: Solving the 3D Ising model with the conformal bootstrap Sheer El-Showk, Miguel F. Paulos, David Poland, Slava Rychkov, David Simmons-Duffin, and Alessandro Vichi Phys. Rev. D 86, 025022 — Published 20 July 2012 DOI: 10.1103/PhysRevD.86.025022 LPTENS{12/07 Solving the 3D Ising Model with the Conformal Bootstrap Sheer El-Showka, Miguel F. Paulosb, David Polandc, Slava Rychkovd, David Simmons-Duffine, -
3D Ising Model and Conformal Bootstrap
3D Ising Model and Conformal Bootstrap Slava Rychkov (ENS Paris & CERN) CERN Winter School on Supergravity, Strings, and Gauge Theory 2013 see also “Lectures on CFT in D≥3” @ sites.google.com/site/slavarychkov Part 1 Conformal symmetry (Physical foundations & Basics, Ising model as an example) 2 /60 The subject of these lectures is: The simplest - experimentally relevant - unsolved Conformal Field Theory is 3D Ising Model @ T=Tc It’s also an ideal playground to explain the technique of conformal bootstrap... 3 /60 Basics on the Ising Model cubic lattice → Paradigmatic model of ferromagnetism M- spont. magnetization Tc T Critical temperature (Curie point) 4 /60 Correlation length Critical point can also be detected by looking at the spin-spin correlations For T>Tc : correlation length At T=Tc: Critical theory is scale invariant: It is also conformally invariant [conjectured by Polyakov’71] 5 /60 2D Ising Model • free energy solved by Onsager’44 on the lattice and for any T • Polyakov noticed that is conf. inv. at T=Tc • In 1983 Belavin-Polyakov-Zamolodchikov identified the critical 2D Ising model with the first unitary minimal model 6 /60 3D Ising Model • Lattice model at generic T is probably not solvable [many people tried] • Critical theory (T=Tc) in the continuum limit might be solvable [few people tried, conformal invariance poorly used] 7 /60 Existing approaches to 3D Ising • Lattice Monte-Carlo • High-T expansion on the lattice [~strong coupling expansion] Expand exponential in Converges for T>> Tc , extrapolate for T→ Tc by Pade -
Pulling Yourself up by Your Bootstraps in Quantum Field Theory
Pulling Yourself Up by Your Bootstraps in Quantum Field Theory Leonardo Rastelli Yang Institute for Theoretical Physics Stony Brook University ICTP and SISSA Trieste, April 3 2019 A. Sommerfeld Center, Munich January 30 2019 Quantum Field Theory in Fundamental Physics Local quantum fields ' (x) f i g x = (t; ~x), with t = time, ~x = space The language of particle physics: for each particle species, a field Quantum Field Theory for Collective Behavior Modelling N degrees of freedom in statistical mechanics. Example: Ising! model 1 (uniaxial ferromagnet) σi = 1, spin at lattice site i ± P Energy H = J σiσj − (ij) Near Tc, field theory description: magnetization '(~x) σ(~x) , ∼ h i Z h i H = d3x ~ ' ~ ' + m2'2 + λ '4 + ::: r · r 2 m T Tc ∼ − Z h i H = d3x ~ ' ~ ' + m2'2 + λ '4 + ::: r · r The dots stand for higher-order \operators": '6, (~ ' ~ ')'2, '8, etc. r · r They are irrelevant for the large-distance physics at T T . ∼ c Crude rule of thumb: an operator is irrelevant if its scaling weight [ ] > 3 (3 d, dimension of space). O O ≡ Basic assignments: ['] = 1 d 1 and [~x] = 1 = [~ ] = 1. 2 ≡ 2 − − ) r So ['2] = 1, ['4] = 2, [~ ' ~ '] =3, while ['8] = 4 etc. r · r First hint of universality: critical exponents do not depend on details. E.g., C T T −α, ' (T T )β for T < T , etc. T ∼ j − cj h i ∼ c − c QFT \Theory of fluctuating fields” (Duh!) ≡ Traditionally, QFT is formulated as a theory of local \quantum fields”: Z H['(x)] Y − Z = d'(x) e g x In particle physics, x spacetime and g = ~ (quantum) 2 In statistical mechanics, x space and g = T (thermal). -
Feynman Diagrams and the Large Charge Expansion in 3−Ε Dimensions
Physics Letters B 802 (2020) 135202 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Feynman diagrams and the large charge expansion in 3 − ε dimensions ∗ ∗ ∗ ∗ Gil Badel a, , Gabriel Cuomo a, , Alexander Monin a,b, , Riccardo Rattazzi a, a Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL, Lausanne, Switzerland b Department of Theoretical Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva, Switzerland a r t i c l e i n f o a b s t r a c t Article history: In arXiv:1909 .01269 it was shown that the scaling dimension of the lightest charge n operator in the Received 12 December 2019 U (1) model at the Wilson-Fisher fixed point in D = 4 − ε can be computed semiclassically for arbitrary Accepted 6 January 2020 values of λn, where λ is the perturbatively small fixed point coupling. Here we generalize this result to Available online 10 January 2020 the fixed point of the U (1) model in 3 − ε dimensions. The result interpolates continuously between Editor: N. Lambert diagrammatic calculations and the universal conformal superfluid regime for CFTs at large charge. In 0 particular it reproduces the expectedly universal O(n ) contribution to the scaling dimension of large charge operators in 3D CFTs. © 2020 Published by Elsevier B.V. This is an open access article under the CC BY license 3 (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP . 1. Introduction EFT construction, or, in fact, deriving it. This was recently illus- trated in [13], by focusing on the two-point function of the charge n It is known that, even in a weakly coupled Quantum Field n operator φ in the U (1) invariant Wilson-Fisher fixed point in Theory (QFT), there exist situations where the ordinary Feynman 4 − ε dimensions. -
Universal Scaling Behavior of Non-Equilibrium Phase Transitions
Universal scaling behavior of non-equilibrium phase transitions HABILITATIONSSCHRIFT der FakultÄat furÄ Naturwissenschaften der UniversitÄat Duisburg-Essen vorgelegt von Sven LubÄ eck aus Duisburg Duisburg, im Juni 2004 Zusammenfassung Kritische PhÄanomene im Nichtgleichgewicht sind seit Jahrzehnten Gegenstand inten- siver Forschungen. In Analogie zur Gleichgewichtsthermodynamik erlaubt das Konzept der UniversalitÄat, die verschiedenen NichtgleichgewichtsphasenubÄ ergÄange in unterschied- liche Klassen einzuordnen. Alle Systeme einer UniversalitÄatsklasse sind durch die glei- chen kritischen Exponenten gekennzeichnet, und die entsprechenden Skalenfunktionen werden in der NÄahe des kritischen Punktes identisch. WÄahrend aber die Exponenten zwischen verschiedenen UniversalitÄatsklassen sich hÄau¯g nur geringfugigÄ unterscheiden, weisen die Skalenfunktionen signi¯kante Unterschiede auf. Daher ermÄoglichen die uni- versellen Skalenfunktionen einerseits einen emp¯ndlichen und genauen Nachweis der UniversalitÄatsklasse eines Systems, demonstrieren aber andererseits in ubÄ erzeugender- weise die UniversalitÄat selbst. Bedauerlicherweise wird in der Literatur die Betrachtung der universellen Skalenfunktionen gegenubÄ er der Bestimmung der kritischen Exponen- ten hÄau¯g vernachlÄassigt. Im Mittelpunkt dieser Arbeit steht eine bestimmte Klasse von Nichtgleichgewichts- phasenubÄ ergÄangen, die sogenannten absorbierenden PhasenubÄ ergÄange. Absorbierende PhasenubÄ ergÄange beschreiben das kritische Verhalten von physikalischen, chemischen sowie biologischen -
Universal Scaling Behavior of Non-Equilibrium Phase Transitions
Universal scaling behavior of non-equilibrium phase transitions Sven L¨ubeck Theoretische Physik, Univerit¨at Duisburg-Essen, 47048 Duisburg, Germany, [email protected] December 2004 arXiv:cond-mat/0501259v1 [cond-mat.stat-mech] 11 Jan 2005 Summary Non-equilibrium critical phenomena have attracted a lot of research interest in the recent decades. Similar to equilibrium critical phenomena, the concept of universality remains the major tool to order the great variety of non-equilibrium phase transitions systematically. All systems belonging to a given universality class share the same set of critical exponents, and certain scaling functions become identical near the critical point. It is known that the scaling functions vary more widely between different uni- versality classes than the exponents. Thus, universal scaling functions offer a sensitive and accurate test for a system’s universality class. On the other hand, universal scaling functions demonstrate the robustness of a given universality class impressively. Unfor- tunately, most studies focus on the determination of the critical exponents, neglecting the universal scaling functions. In this work a particular class of non-equilibrium critical phenomena is considered, the so-called absorbing phase transitions. Absorbing phase transitions are expected to occur in physical, chemical as well as biological systems, and a detailed introduc- tion is presented. The universal scaling behavior of two different universality classes is analyzed in detail, namely the directed percolation and the Manna universality class. Especially, directed percolation is the most common universality class of absorbing phase transitions. The presented picture gallery of universal scaling functions includes steady state, dynamical as well as finite size scaling functions. -
Arxiv:1012.0653V3
Quantum phase transitions in transverse field spin models: From Statistical Physics to Quantum Information Amit Dutta∗ Department of Physics, Indian Institute of Technology, Kanpur 208 016, India Uma Divakaran† Theoretische Physik, Universit¨at des Saarlandes, 66041 Saarbr¨ucken, Germany Diptiman Sen‡ Centre for High Energy Physics, Indian Institute of Science, Bangalore 560 012, India Bikas K. Chakrabarti§ Theoretical Condensed Matter Physics Division and Centre for Applied Mathematics and Computational Science, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India Thomas F. Rosenbaum¶ Department of Physics and the James Franck Institute, University of Chicago, Chicago, IL 60637 Gabriel Aeppli∗∗ London Centre for Nanotechnology and Department of Physics and Astronomy, UCL, London, WC1E 6BT, United Kingdom We review quantum phase transitions of spin systems in transverse magnetic fields taking the examples of some paradigmatic models, namely, the spin-1/2 Ising and XY models in a transverse field in one and higher spatial dimensions. Beginning with a brief overview of quantum phase transitions, we introduce the model Hamiltonians and discuss the equivalence between the quantum phase transition in such a model and the finite temperature phase transition in a higher dimensional classical model. We then provide exact solutions in one spatial dimension connecting them to conformal field theoretical studies when possible. We also discuss Kitaev models, and some other exactly solvable spin systems in this context. Studies of quantum phase transitions in the presence of quenched randomness and with frustrating interactions are presented in details. We discuss novel phenomena like Griffiths-McCoy singularities associated with quantum phase transitions of low- dimensional transverse Ising models with random interactions and transverse fields. -
Conformal Bootstrap in Two Dimensions
Conformal Bootstrap in Two Dimensions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lin, Ying-Hsuan. 2016. Conformal Bootstrap in Two Dimensions. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493283 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Conformal Bootstrap in Two Dimensions A dissertation presented by Ying-Hsuan Lin to The Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Physics Harvard University Cambridge, Massachusetts April 2016 ©2016 - Ying-Hsuan Lin All rights reserved. Thesis advisor Author Xi Yin Ying-Hsuan Lin Conformal Bootstrap in Two Dimensions Abstract In this dissertation, we study bootstrap constraints on conformal field theories in two dimensions. The first half concerns two-dimensional (4; 4) superconformal field theories of cen- tral charge c = 6, corresponding to nonlinear sigma models on K3 surfaces. The superconformal bootstrap is made possible through a surprising relation between the BPS = 4 superconformal blocks with c = 6 and bosonic Virasoro conformal blocks N with c = 28, and an exact moduli dependence of a certain integrated BPS four-point function. Nontrivial bounds on the non-BPS spectrum in the K3 CFT are obtained as functions of the CFT moduli, that interpolate between the free orbifold points and singular CFT points. -
Bootstrapping Hypercubic and Hypertetrahedral Theories in Three Dimensions
CERN-TH-2018-012 Bootstrapping hypercubic and hypertetrahedral theories in three dimensions Andreas Stergiou Theoretical Physics Department, CERN, Geneva, Switzerland There are three generalizations of the Platonic solids that exist in all dimensions, namely the hypertetrahedron, the hypercube, and the hyperoctahedron, with the latter two being dual. Conformal field theories with the associated symmetry groups as global symmetries can be argued to exist in d = 3 spacetime dimensions if the " = 4 − d expansion is valid when " ! 1. In this paper hypercubic and hypertetrahedral theories are studied with the non-perturbative numerical conformal bootstrap. In the N = 3 cubic case it is found that a bound with a kink is saturated by a solution with properties that cannot be reconciled with the " expansion of the cubic theory. Possible implications for cubic magnets and structural phase transitions are discussed. For the hypertetrahedral theory evidence is found that the non-conformal window that is seen with the " expansion exists in d = 3 as well, and a rough estimate of its extent is given. arXiv:1801.07127v4 [hep-th] 28 Apr 2018 January 2018 1. Introduction The numerical conformal bootstrap [1] in three dimensions has produced impressive results, especially concerning critical theories in universality classes that also contain scalar conformal field theories (CFTs). For the Ising universality class the bootstrap is in fact the state-of-the-art method for the determination of critical exponents [2]. For theories with continuous global symmetries there has also been significant progress, with important developments for the Heisenberg universality class [3{5]. In this work we study critical theories with discrete global symmetries in three dimensions, focusing on the hypercubic and hypertetrahedral symmetry groups. -
Arxiv:2007.08436V2 [Hep-Th] 6 Aug 2020 Contents
Bootstrap and Amplitudes: A Hike in the Landscape of Quantum Field Theory Henriette Elvang Randall Laboratory of Physics, Department of Physics, and Leinweber Center for Theoretical Physics (LCTP), University of Michigan, Ann Arbor, MI 48109, USA LCPT-20-17 E-mail: [email protected] Abstract. This article is an introduction to two currently very active research programs, the Conformal Bootstrap and Scattering Amplitudes. Rather than attempting full surveys, the emphasis is on common ideas and methods shared by these two seemingly very different programs. In both fields, mathematical and physical constraints are placed directly on the physical observables in order to explore the landscape of possible consistent quantum field theories. We give explicit examples from both programs: the reader can expect to encounter boiling water, ferromagnets, pion scattering, and emergent symmetries on this journey into the landscape of local relativistic quantum field theories. The first part is written for a general physics audience. The second part includes further details, including a new on-shell bottom- 1 up reconstruction of the CP model with the Fubini-Study metric arising from re- summation of the n-point interaction terms derived from amplitudes. The presentation is an extended version of a colloquium given at the Aspen Center for Physics in August 2019. arXiv:2007.08436v2 [hep-th] 6 Aug 2020 Contents 1 Introduction3 2 Water & Magnets5 3 Field Theories: A Brief Survey7 3.1 Examples of Relativistic QFTs . .7 3.2 Conformal Field Theories . 10 3.3 QFT Observables . 11 4 Introduction to the Modern Scattering Amplitudes Program 12 4.1 Modern Amplitudes Program .