Origins of the Blemishes of Potato Tubers: from the Soil Microbiology to the Pedoclimatic Environment Doctorate

Total Page:16

File Type:pdf, Size:1020Kb

Origins of the Blemishes of Potato Tubers: from the Soil Microbiology to the Pedoclimatic Environment Doctorate Origins of the blemishes of potato tubers : from the soil microbiology to the pedoclimatic environment Marie Fiers To cite this version: Marie Fiers. Origins of the blemishes of potato tubers : from the soil microbiology to the pedoclimatic environment. Food and Nutrition. Université de Bourgogne, 2010. English. NNT : 2010DIJOS015. tel-00572491 HAL Id: tel-00572491 https://tel.archives-ouvertes.fr/tel-00572491 Submitted on 1 Mar 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE DE BOURGOGNE Unité Mixte de Recherche Microbiologie du Sol et de l'Environnement THESE Pour obtenir le grade de Docteur Discipline: Ecologie microbienne par Marie FIERS le 21 Juin 2010 Origine des altérations superficielles du tubercule de pomme de terre:e De la microbiologie du sol à l'environnement pédo-climatique Co-directeurs: Christian STEINBERG, Catherine CHATOT, Véronique EDEL- HERMANN et Yves LE HINGRAT Membres du jury Prof. Monica HÖFTE Université de Gand, Belgique Rapporteur Prof. Jean-Loup NOTTEGHEM SupAgro, Montpellier, France Rapporteur Prof. Andreas KEISER Haute école suisse d'agronomie, Zollikofen, Suisse Examinateur Prof. Daniel WIPF INRA / Université de Bourgogne, Dijon, France Examinateur Dr. Véronique EDEL-HERMANN INRA, Dijon, France Co-directrice Dr. Catherine CHATOT Germicopa, Quimper, France Co-directrice Dr. Christian STEINBERG INRA, Dijon, France Directeur UNIVERSITE DE BOURGOGNE Unité Mixte de Recherche Microbiologie du Sol et de l'Environnement DOCTORATE For the degree of Doctor Discipline: Microbial ecology Presented by Marie FIERS on 21 st June 2010 Origins of the blemishes of potato tubers:s From the soil microbiology to the pedoclimatic environment Supervisors: Christian STEINBERG, Catherine CHATOT, Véronique EDEL- HERMANN and Yves LE HINGRAT Members of the jury Prof. Monica HÖFTE University of Gent, Belgium Reviewer Prof. Jean-Loup NOTTEGHEM SupAgro, Montpellier, France Reviewer Prof. Andreas KEISER Haute école suisse d'agronomie, Zollikofen, Suisse Examiner Prof. Daniel WIPF INRA / Université de Bourgogne, Dijon, France Examiner Dr. Véronique EDEL-HERMANN INRA, Dijon, France Supervisor Dr. Catherine CHATOT Germicopa, Quimper, France Supervisor Dr. Christian STEINBERG INRA, Dijon, France Supervisor 3 La science ouvre à l'esprit humain une voie infinie, et le lance, par une série d'étapes sans nombre, sur l'Asymptote de la Vérité. Paul Bert (1933 – 1986) 5 Remerciements Voila 3 ans et demi que ce travail a commencé; 3 ans et demi de recherche, de tâtonnements et de découvertes. Je tiens à remercier toutes celles et ceux qui ont pris part à cette aventure. Je veux remercier tout d'abord Germicopa - Eric Bargy, son président directeur général et Eric Bonnel, directeur de la recherche -, Bretagne Plants, particulièrement Emmanuel Guillery, son directeur, la Région Bretagne et l'ANRT pour avoir accepté de financer ce projet. Je remercie Philippe Lemanceau, directeur de l'UMR MSE de l'INRA de Dijon pour m'y avoir accueillie. Je tiens à remercier les membres du jury. Monica Höfte, Jean-Loup Notteghem et Andreas Keiser qui ont accepté d'être les rapporteurs de ce travail, je leur en suis très reconnaissante. Merci également à Daniel Wipf pour sa participation en tant qu'examinateur. Ma reconnaissance va également aux membres du comité de pilotage de cette thèse qui ont accepté de passer de longues heures à réfléchir, discuter et débattre sur les travaux effectués et à venir. Safya Menasseri, Claire Campion et Emile Benizri ont apporté leurs points de vue variés et ont participé à la richesse de ce travail. Merci Un immense merci à Catherine Chatot, pour l'énergie dépensée sans compter à la mise en place et à l'exécution de ce projet et pour sa disponibilité malgré l'éloignement (Dijon – Châteauneuf du Faou, 800 km, c'était pas gagné). Merci de m'avoir fait découvrir "le monde de la patate" depuis le processus de création de nouvelles variétés jusqu'au tri des pommes de terre par laser (impressionnant!), et de m'avoir permis de participer à de nombreux congrès en France et à l'étranger dans lesquels j'ai pu partager mon expérience de recherche. Merci à Yves Le Hingrat, pour le temps qu'il à consacré à ce projet, ses conseils et les informations précieuses que avons échangées. Je suis également reconnaissante à toutes les personnes de Germicopa et Bretagne Plants qui ont participé de près ou de loin à ce travail: Jean-Yves Abgrall, Gisèle Hemery, Jean Marhic, Robert Roudaut et Yvon Pouliquen et les producteurs de pommes de terre qui m'ont fourni des échantillons, en particulier Jean Marc Guillermic qui a mis une de ses parcelles à ma disposition pour effectuer des prélèvements. Je voudrais aussi dire un grand merci à Karima Bouchek-Mechiche qui a toujours été présente lorsque je lui demandais un conseil ou un service. Je me souviens de l'épisode "recette de cuisine" lorsqu'elle m'a montré comment isoler des 7 Remerciements Streptomyces. Merci aussi pour les bons moments passés en congrès avec toute la clique de l'INRA du Rheu. Je n'oublie pas non plus Sonia Hallier et Katie Craddock de BBV, qui travaillent sur la même problématique que moi et avec qui les échanges ont été fructueux. Ce n'est pas sans un peu d'émotion que je remercie les personnes de l'INRA de Dijon avec qui j'ai travaillé au quotidien. Christian Steinberg qui, malgré un emploi du temps impressionnant, a toujours été là quand j'avais besoin. Merci pour les discussions mensuelles où les cerveaux fumaient, pour les idées qui fusent dans ta tête et pour ta générosité. Merci aussi pour les petits moments de détente au détour d'un couloir où tu me racontais tes exploits sportifs… Véronique Edel-Hermann, Véro. Elle aussi a été un pilier de ce travail. Toujours partante pour se triturer les méninges et trouver de nouvelles idées pour faire avancer le schmilblick, elle a fait preuve d'une incroyable méticulosité quand il s'agissait d'analyser des données ou de corriger les articles. Je veux te dire toute ma reconnaissance. Merci d'avoir repris toutes mes séquences d'ITS et merci pour ton acharnement à faire "parler" les données d'AFLP. La science est parfois coriace, mais travailler avec toi a été un plaisir. Claude Alabouvette a été à l'origine de la venue de ce projet à Dijon et je l'en remercie. Claude appartient à une espèce de chercheur en voie de disparition, phytopathologiste véritable à l'œil critique développé, d'une grande ouverture d'esprit et un brin rebelle. Tous les labos devraient avoir un Claude! Nadine Gautheron a été mon guide, dès le début quand j'ai débarqué un peu perdue au milieu du laboratoire. Elle m'a appris toutes les techniques et les habitudes du labo. Merci pour le travail que tu as fait sur la T-RFLP. Je te dois une grosse partie du chapitre 4 de cette thèse. Merci aussi, Nad, pour les apéros, les week-ends au ski, tes conseils spectacle et ciné et les discussions à la pause café. Cécile Héraud a également beaucoup donné pour ce travail. Elle a chouchouté et mis en collection les centaines de souches de champignons et de bactéries que j'ai isolées et elle s'est cassé les dents sur la mise au point des PCR de facteur d'élongation Rhizo, toujours avec grand professionnalisme et beaucoup (trop?) de discrétion. Merci beaucoup Cécile. Abel Yanougo Konate a été mon stagiaire pendant une année. Le climat français n'a pas été tendre avec lui et le soleil burkinabé lui a sûrement manqué plus d'une fois, et je le remercie pour le travail qu'il a fourni pendant son passage au labo. Ce travail doit également beaucoup à Barbara Burakowski pour la préparation des milieux, les autoclaves et pour le matériel, toujours propre et à sa place, à Bernard Le Bihan, responsable informatique râleur mais efficace, à Delphine Ramillon et Sébastien Brenot qui veillent sur les essais en serre et à Arnaud Bartet qui m'a appris le maniement de la perceuse à cloche! Merci également à toutes les 8 Remerciements secrétaires, Catherine, Fabienne, Sylvie et Stéphanie pour leur efficacité et leur bonne humeur. Je voudrais remercier aussi l'équipe 3, Sébastien Aimé pour ses petites blagues au café, Fabiola Bastian, gracias Mamita pour ton grain de folie, bisoutitos ti!, Elodie Gautheron, pour les petites pauses quand mon bureau se trouvait sur son chemin, Johann Leplat, Julie Laurent et Marion Bégin; Grégory Girardot qui a partagé mon bureau pendant son stage. Un merci particulier à Chantal Olivain pour m'avoir fait confiance pour donner des TP à l'IUT de Génie Biologique. Ce fut une expérience très enrichissante. La vie au labo aurait été moins drôle sans Céline Janvier, ma "maîtresse" de stage du tout début qui m'a appris beaucoup et avec qui on a vraiment bien rigolé. Merci à tous les stagiaires, thésards et permanents, Abdel, Amandine, Noémie, Mélanie, Sam, Fafa, Thérèse, Francky, Florence, pour les déjeuners à la cantine et les sorties le week-end. Enfin merci à tous ceux qui comptent pour moi, tous mes amis, en particulier les Boubous dont j'ai fait la connaissance au milieu de ma thèse et avec qui les mardi soirs et les week-ends n'ont plus jamais été comme avant. Merci à ma famille, mes parents et ma sœur que j'aime.
Recommended publications
  • January 2019 Cardanus & Krafft
    A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JANUARY 2019 CARDANUS & KRAFFT Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA September 24, 2018 04:40-05:04 UT, 15 cm refl, 170x, seeing 7/10, transparence 6/6. I drew these craters and vicinity on the night of Sept. 23/24, 2018. The moon was about 22 hours before full. This area is in far western Oceanus Procellarum, and was favorably placed for observation that night. Cardanus is the southern one of this pair and is of moderate depth. Krafft to the north is practically identical in size, and is perhaps slightly deeper. Neither crater has a central peak. Several small craters are near and within Krafft. The crater just outside the southeast rim of Krafft is Krafft E, and Krafft C is nearby within Krafft. The small pit to the west is Krafft K, and Krafft D is between Krafft and Cardanus. Krafft C, D and E are similar sized, but K is smaller than these. A triangular-shaped swelling protrudes from the north side of Krafft. The tiny pit, even smaller than Krafft K, east of Cardanus is Cardanus E. There is a dusky area along the southwest side of Cardanus. Two short dark strips in this area may be part of the broken ring Cardanus R as shown on the. Lunar Quadrant map.
    [Show full text]
  • Biodiversity of Trichoderma in Neotropics
    13 Biodiversity of Trichoderma in Neotropics Lilliana Hoyos-Carvajal1 and John Bissett2 1Universidad Nacional de Colombia, Sede Bogotá 2Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa 1Colombia 2Canada 1. Introduction Trichoderma species frequently are predominant over wide geographic regions in all climatic zones, where they are significant decomposers of woody and herbaceous materials. They are characterized by rapid growth, an ability to assimilate a diverse array of substrates, and by their production of an range of antimicrobials. Strains have been exploited for production of enzymes and antibiotics, bioremediation of xenobiotic substances, and as biological control agents against plant pathogenic fungi and nematodes. The main use of Trichoderma in global trade is derived from its high production of enzymes. Trichoderma reesei (teleomorph: Hypocrea jecorina) is the most widely employed cellulolytic organism in the world, although high levels of cellulase production are also seen in other species of this genus (Baig et al., 2003, Watanabe et al., 2006). Worldwide sales of enzymes had reached the figure of $ 1.6 billion by the year 2000 (Demain 2000, cited by Karmakar and Ray, 2011), with an annual growth of 6.5 to 10% not including pharmaceutical enzymes (Stagehands, 2008). Of these, cellulases comprise approximately 20% of the enzymes marketed worldwide (Tramoy et al., 2009). Cellulases of microbial origin are used to process food and animal feed, biofuel production, baking, textiles, detergents, paper pulp, agriculture and research areas at all levels (Karmakar and Ray, 2011). Most cellulases are derived from Trichoderma (section Longibrachiatum in particular) and Aspergillus (Begum et al., 2009).
    [Show full text]
  • Sky and Telescope
    SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history.
    [Show full text]
  • B. Apollo 16 Regional Geologic Setting
    B. APOLLO 16REGIONAL GEOLOGIC SETTING By CARROLL ANN HODGES CONTENTS Page Geography 6 Geologic description of Cayley plains and Descartes mountains 6 Relation in time and space to basins and craters 8 ILLUSTRATIONS Page FIGURE 1. Composite photograph of the lunar near side showing geographic features and multiring basins 7 2. Photographic mosaic of Apollo 16 landing site and vicinity 8 GEOGRAPHY Soderblom and Boyce,1972). The type area of the Cayley Formation is east of the crater Cayley, north of Apollo 16 landed at approximately 15”30’ E., 9” S. on the landing site (Morris and Wilhelms, 1967); the the relatively level Cayley plains, adjacent to the rug- name was extended to the apparently similar plains ged Descartes mountains (Milton, 1972; Hodges, material at the Apollo 16 site (Milton, 1972; Hodges, 1972a). Approximately 70 km east is the west-facing 1972a). These materials were presumed to be represen- escarpment of the Kant plateau, part of the uplifted tative of the widespread photogeologic unit, Imbrian third ring of the Nectaris basin and topographically light plains, which covers about 5 percent of the lunar the highest area on the lunar near side. With respect to highlands surface (Wilhelms and McCauley, 1971; the centers of the three best-developed multiringed Howard and others, 1974). Characteristics include rel- basins, the site is about 600 km west of Nectaris, 1,600 atively level surfaces, intermediate albedo, and nearly km southeast of Imbrium, and 3,500 km east-northeast identical crater size-frequency distributions. of Orientale. The nearest mare materials are in The plains were first interpreted as smooth facies of Tranquillitatis, about 300 km north (fig.1).
    [Show full text]
  • Cloacal Mycobiota in Wild Females of Caiman Latirostris (Crocodylia: Alligatoridae)
    Revista Mexicana de Biodiversidad 84: 722-726, 2013 722 Nuñez-Otaño et al.- Cloacal mycobiota of DOI:broud-snouted 10.7550/rmb.32425 caimans Research note Cloacal mycobiota in wild females of Caiman latirostris (Crocodylia: Alligatoridae) Micobiota cloacal de hembras de Caiman latirostris (Crocodylia: Alligatoridae) en estado silvestre Noelia Betiana Núñez-Otaño1,2 , Carlos Ignacio Piña1, 2, 3, 4, Thiago Costa Gonçalves Portelinha1, 2, 3 and Angélica Margarita Arambarri5 1Laboratorio de Ecología Animal. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Dr. Materi y España. CP 3105. Diamante (Entre Ríos), Argentina. 2Laboratorio de Zoología Aplicada: Anexo Vertebrados (FHUC-UNL / MASPyMA). CP. 3000 Santa Fe, Argentina. 3Facultad de Ciencias y Tecnología (UAdER). CP. 3105 Argentina. 4Facultad de Ciencias de la Alimentación (UNER). CP. 3100 Argentina. 5Laboratorio de Hongos Imperfectos. Instituto de Botánica Carlos Spegazzini. Facultad de Ciencias Naturales y Museo. CP. 1900 La Plata (Buenos Aires), Argentina. [email protected] Abstract. There are few reports of cloacal mycobiota on wild reptiles, and in particular, fungal presence and function in Caiman latirostris remains unknown. Our objective was to describe the fungal community present in the cloaca of wild female broad-snouted caimans during their reproductive season determine whether the number of fungi has some relationship with the female’s corporeal condition. Fungi were found in 9 out of 13 cloacal samples and 14 species of fungi were isolated and identified. Three of the species isolated had the highest occurrence values, and 2 of them are pathogenic. In this case, body condition index had no relationship with fungal frequency; the fungi found in this study may have originated from soil habitat and nest substrate that are in constant contact with the cloaca of the C.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • Two New Species and a New Chinese Record of Hypocreaceae As Evidenced by Morphological and Molecular Data
    MYCOBIOLOGY 2019, VOL. 47, NO. 3, 280–291 https://doi.org/10.1080/12298093.2019.1641062 RESEARCH ARTICLE Two New Species and a New Chinese Record of Hypocreaceae as Evidenced by Morphological and Molecular Data Zhao Qing Zeng and Wen Ying Zhuang State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China ABSTRACT ARTICLE HISTORY To explore species diversity of Hypocreaceae, collections from Guangdong, Hubei, and Tibet Received 13 February 2019 of China were examined and two new species and a new Chinese record were discovered. Revised 27 June 2019 Morphological characteristics and DNA sequence analyses of the ITS, LSU, EF-1a, and RPB2 Accepted 4 July 2019 regions support their placements in Hypocreaceae and the establishments of the new spe- Hypomyces hubeiensis Agaricus KEYWORDS cies. sp. nov. is characterized by occurrence on fruitbody of Hypomyces hubeiensis; sp., concentric rings formed on MEA medium, verticillium-like conidiophores, subulate phia- morphology; phylogeny; lides, rod-shaped to narrowly ellipsoidal conidia, and absence of chlamydospores. Trichoderma subiculoides Trichoderma subiculoides sp. nov. is distinguished by effuse to confluent rudimentary stro- mata lacking of a well-developed flank and not changing color in KOH, subcylindrical asci containing eight ascospores that disarticulate into 16 dimorphic part-ascospores, verticillium- like conidiophores, subcylindrical phialides, and subellipsoidal to rod-shaped conidia. Morphological distinctions between the new species and their close relatives are discussed. Hypomyces orthosporus is found for the first time from China. 1. Introduction Members of the genus are mainly distributed in temperate and tropical regions and economically The family Hypocreaceae typified by Hypocrea Fr.
    [Show full text]
  • EN LA ARGENTINA. VIII. ROSELLINIA (XYLARIACEAE, ASCOMYCOTA) Darwiniana, Vol
    Darwiniana ISSN: 0011-6793 [email protected] Instituto de Botánica Darwinion Argentina del V. Catania, Myriam; Romero, Andrea I. MICROMICETES ASOCIADOS A LA CORTEZA Y MADERA DE PODOCARPUS PARLATOREI (PODOCARPACEAE) EN LA ARGENTINA. VIII. ROSELLINIA (XYLARIACEAE, ASCOMYCOTA) Darwiniana, vol. 2, núm. 1, julio-, 2014, pp. 57-67 Instituto de Botánica Darwinion Buenos Aires, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=66931413011 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto DARWINIANA, nueva serie 2(1): 57-67. 2014 Versión final, efectivamente publicada el 31 de julio de 2014 DOI: 10.14522/darwiniana.2014.21.560 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea MICROMICETES ASOCIADOS A LA CORTEZA Y MADERA DE PODOCARPUS PARLATOREI (PODOCARPACEAE) EN LA ARGENTINA. VIII. ROSELLINIA (XYLARIACEAE, ASCOMYCOTA) Myriam del V. Catania1 & Andrea I. Romero2 1 Laboratorio de Micología, Fundación Miguel Lillo, Miguel Lillo 251, 4000 San Miguel de Tucumán, Tucumán, Argentina; [email protected] (autor corresponsal). 2 Programa de Hongos que intervienen en la degradación biológica (CONICET). Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universita- ria, Pabellón II, Piso 4, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina; [email protected] Abstract. Catania, M. del V. & A. I. Romero. 2014. Micromycetes on bark and wood of Podocarpus parlatorei (Po- docarpaceae) from Argentina.
    [Show full text]
  • The Moon After Apollo
    ICARUS 25, 495-537 (1975) The Moon after Apollo PAROUK EL-BAZ National Air and Space Museum, Smithsonian Institution, Washington, D.G- 20560 Received September 17, 1974 The Apollo missions have gradually increased our knowledge of the Moon's chemistry, age, and mode of formation of its surface features and materials. Apollo 11 and 12 landings proved that mare materials are volcanic rocks that were derived from deep-seated basaltic melts about 3.7 and 3.2 billion years ago, respec- tively. Later missions provided additional information on lunar mare basalts as well as the older, anorthositic, highland rocks. Data on the chemical make-up of returned samples were extended to larger areas of the Moon by orbiting geo- chemical experiments. These have also mapped inhomogeneities in lunar surface chemistry, including radioactive anomalies on both the near and far sides. Lunar samples and photographs indicate that the moon is a well-preserved museum of ancient impact scars. The crust of the Moon, which was formed about 4.6 billion years ago, was subjected to intensive metamorphism by large impacts. Although bombardment continues to the present day, the rate and size of impact- ing bodies were much greater in the first 0.7 billion years of the Moon's history. The last of the large, circular, multiringed basins occurred about 3.9 billion years ago. These basins, many of which show positive gravity anomalies (mascons), were flooded by volcanic basalts during a period of at least 600 million years. In addition to filling the circular basins, more so on the near side than on the far side, the basalts also covered lowlands and circum-basin troughs.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Enhancing the Potentiality of Trichoderma Harzianum Against Pythium Pathogen of Beans Using Chamomile (Matricaria Chamomilla, L.) Flower Extract
    molecules Article Enhancing the Potentiality of Trichoderma harzianum against Pythium Pathogen of Beans Using Chamomile (Matricaria chamomilla, L.) Flower Extract Abeer Abdulkhalek Ghoniem 1, Kamar M. Abd El-Hai 2, Ayman Y. El-khateeb 3, Noha M. Eldadamony 4, Samy F. Mahmoud 5 and Ashraf Elsayed 6,* 1 Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; [email protected] 2 Department of Leguminous and Forage Crop Diseases, Plant Pathology Research Institute, Agricultural Research Center, Giza 12112, Egypt; [email protected] 3 Department of Agricultural Chemistry, Faculty of Agriculture, Mansoura University, Elgomhouria St., Mansoura 35516, Egypt; [email protected] 4 Seed Pathology Department, Plant Pathology Institute, Agricultural Research Center, Giza 12112, Egypt; [email protected] 5 Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] 6 Botany Department, Faculty of Science, Mansoura University, Elgomhouria St., Mansoura 35516, Egypt * Correspondence: [email protected] Abstract: Our present study was designed to investigate the role of both Trichoderma harzianum and Citation: Ghoniem, A.A.; Abd chamomile (Matricaria chamomilla L.) flower extract in mutual reaction against growth of Pythium El-Hai, K.M.; El-khateeb, A.Y.; ultimum. In vitro, the activity of chamomile extract was found to reduce the radial growth of Eldadamony, N.M.; Mahmoud, S.F.; Pythium ultimum up to 30% compared to the control. Whereas, the radial growth reduction effect Elsayed, A. Enhancing the of T. harzianum against P. ultimum reached 81.6% after 120 h.
    [Show full text]
  • Trichoderma: the “Secrets” of a Multitalented Biocontrol Agent
    plants Review Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent 1, 1, 2 3 Monika Sood y, Dhriti Kapoor y, Vipul Kumar , Mohamed S. Sheteiwy , Muthusamy Ramakrishnan 4 , Marco Landi 5,6,* , Fabrizio Araniti 7 and Anket Sharma 4,* 1 School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; [email protected] (M.S.); [email protected] (D.K.) 2 School of Agriculture, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, Punjab 144411, India; [email protected] 3 Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; [email protected] 4 State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; [email protected] 5 Department of Agriculture, University of Pisa, I-56124 Pisa, Italy 6 CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy 7 Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, Italy; [email protected] * Correspondence: [email protected] (M.L.); [email protected] (A.S.) Authors contributed equal. y Received: 25 May 2020; Accepted: 16 June 2020; Published: 18 June 2020 Abstract: The plant-Trichoderma-pathogen triangle is a complicated web of numerous processes. Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being successful plant symbiotic organisms, Trichoderma spp. also behave as a low cost, effective and ecofriendly biocontrol agent. They can set themselves up in various patho-systems, have minimal impact on the soil equilibrium and do not impair useful organisms that contribute to the control of pathogens.
    [Show full text]