Word Sense Disambiguation Using Sense Signatures Automatically Acquired from a Second Language

Total Page:16

File Type:pdf, Size:1020Kb

Word Sense Disambiguation Using Sense Signatures Automatically Acquired from a Second Language Word Sense Disambiguation Using Sense Signatures Automatically Acquired from a Second Language Document Number Working Paper 6.12h(b) (3rd Round) Project ref. IST-2001-34460 Project Acronym MEANING Project full title Developing Multilingual Web-scale Language Technologies Project URL http://www.lsi.upc.es/~nlp/meaning/meaning.html Availability Public Authors: Xinglong Wang (UoS) and John Carroll (UoS) INFORMATION SOCIETY TECHNOLOGIES WP6.12-Working Paper 6.12h(b) (3rd Round) Version: Final WSD Using Sense Signatures Page : 1 Project ref. IST-2001-34460 Project Acronym MEANING Project full title Developing Multilingual Web-scale Language Technologies Security (Distribution level) Public Contractual date of delivery February 2004 Actual date of delivery February 2004 Document Number Working Paper 6.12h(b) (3rd Round) Type Report Status & version Final Number of pages 14 WP contributing to the deliverable WP6.12 WPTask responsible Eneko Agirre Authors Xinglong Wang (UoS) and John Carroll (UoS) Other contributors Reviewer EC Project O±cer Evangelia Markidou Authors: Xinglong Wang (UoS) and John Carroll (UoS) Keywords: Word Sense Disambiguation, Sense Signature Acquisition Abstract: We present a novel near-unsupervised approach to the task of Word Sense Disambiguation (WSD). For each sense of a word with multiple meanings we produce a \sense signature": a set of words or snippets of text that tend to co-occur with that sense. We build sense signatures automatically, using large quantities of Chinese text, and English-Chinese and Chinese-English bilingual dictionaries, taking advantage of the observation that mappings between words and meanings are often di®erent in typologically distant languages. We train a classi¯er on the sense signatures and test it on two gold standard English WSD datasets, one for binary and the other for multi-way sense identi¯cation. Both evaluations give results that exceed previous state-of-the-art results for comparable systems. We also demonstrate that a little manual e®ort can improve sense signature quality, as measured by WSD accuracy. IST-2001-34460 - MEANING - Developing Multilingual Web-scale Language Technologies WP6.12-Working Paper 6.12h(b) (3rd Round) Version: Final WSD Using Sense Signatures Page : 2 Contents 1 Introduction 3 2 Acquisition of Sense Signatures 4 3 Experiments and Results 5 3.1 Building Sense Signatures . 5 3.2 WSD Experiments on TWA dataset . 7 3.3 WSD Experiments on Senseval-2 Lexical Sample dataset . 10 4 Conclusions and Future Work 12 IST-2001-34460 - MEANING - Developing Multilingual Web-scale Language Technologies WP6.12-Working Paper 6.12h(b) (3rd Round) Version: Final WSD Using Sense Signatures Page : 3 1 Introduction We call a set of words or text snippets that tend to co-occur with a certain sense of a word a sense signature. More formally, a sense signature SS of sense s with a length n is de¯ned as: SSs = fw1; w2; :::; wng, where wi denotes a word form. Note that word forms in a sense signature can be ordered or unordered: when ordered, they are a piece of text snippet, and when unordered, they are just a bag of words. In this paper, word forms in sense signatures are unordered. For example, a sense signature for the serving sense of waiter may be frestaurant, menu, waitress, dinnerg, while the sense signature fhospital, station, airport, boyfriendg may be one for the waiting sense of the word. The term \sense signature" is derived from the term \topic signature"1, which refers to a set of words that tend to be associated with a certain topic. Topic signatures were originally proposed by Lin and Hovy [2000] in the context of Text Summarisation. They developed a text summarisation system containing a topic identi¯cation module that was trained on topic signatures. Their topic signatures were extracted from manually topic- tagged text. Agirre et al. [2001] proposed an unsupervised method for building topic signatures. Their system queries an Internet search engine with monosemous synomyms of words that have multiple senses in WordNet [Miller et al., 1990], and then extracts topic signatures by processing text snippets returned by the search engine. This way, they can attach a set of topic signatures to each synset in WordNet. They evaluated their topic signatures on a WSD task using 7 words drawn from SemCor [Miller et al., 1993], but found their topic signatures were not very useful for WSD. Despite Agirre et al.'s disappointing result, a means of automatically and accurately producing sense (topic) signatures would be one way of addressing the important problem of the lack of training data for machine learning based approaches to WSD. Another approach to this problem is to automatically produce sense-tagged data using parallel bilingual corpora [Gale et al., 1992; Diab and Resnik, 2002], exploiting the assumption that mappings between words and meanings are di®erent in di®erent languages. One problem with relying on bilingual corpora for data collection is that bilingual corpora are rare, and aligned bilingual corpora are even rarer. Mining the Web for bilingual text [Resnik, 1999] is a solution, but it is still di±cult to obtain su±cient quantities of high quality data. Another problem is that if two languages are closely related, useful data for some words cannot be collected because di®erent senses of polysemous words in one language often translate to the same word in the other. In the second round of the MEANING project, we [2004] used this cross-language paradigm to acquire sense signatures for English senses from large amounts of Chinese text and English-Chinese and Chinese-English bilingual dictionaries. We showed the signatures to be useful as training data for a binary disambiguation task. The WSD system described in this paper is based on our previous work. We automatically build sense signatures in a similar way and then train a Naijve Baysian classi¯er on them. We have evaluated the 1We use the term \sense signature" because it more precisely reflects our motivation of creating this resource { for the purpose of Word Sense Disambiguation (WSD), though \topic signature" has been more often used in the literature. IST-2001-34460 - MEANING - Developing Multilingual Web-scale Language Technologies WP6.12-Working Paper 6.12h(b) (3rd Round) Version: Final WSD Using Sense Signatures Page : 4 system on the TWA Sense Tagged Dataset [Mihalcea, 2003], as well as the English Lexical Sample Dataset from Senseval-2. Our results show conclusively that such sense signatures can be used successfully in a full-scale WSD task. The reminder of the paper is organised as follows. Section 2 briefly reviews the acqui- sition algorithm for sense signatures. Section 3 describes details of building this resource and demonstrates our applications of sense signatures to WSD. We also present results and analysis in this section. Finally, we conclude in Section 4 and talk about future work. 2 Acquisition of Sense Signatures Following the assumption that word senses are lexicalised di®erently between languages, we [Wang, 2004] proposed an unsupervised method to automatically acquire English sense signatures using large quantities of Chinese text and English-Chinese and Chinese-English dictionaries. The Chinese language was chosen since it is a distant language from English and the more distant two languages are, the more likely that senses are lexicalised di®er- ently [Resnik and Yarowsky, 1999]. We also showed that the topic signatures are helpful for a small-scale WSD task. The underlying assumption of this approach is that each sense of an ambiguous English word corresponds to a distinct translation in Chinese. As English ambiguous word w Sense 1 of w Sense 2 of w English-Chinese Lexicon Chinese translation of Chinese translation of sense 1 Chinese sense 2 Search Engine Chinese text snippet 1 Chinese text snippet 1 Chinese Chinese text snippet 2 Chinese text snippet 2 Segementation ... ... ... ... Chinese- English {English sense signature 1 {English sense signature 1 Lexicon for sense 1 of w} for sense 2 of w} {English sense signature 2 {English sense signature 2 for sense 1 of w} for sense 2 of w} ... ... ... ... Figure 1: Process of automatic acquisition of sense signatures proposed by us. For simplicity, assume w has two senses. shown in Figure 1, ¯rstly, our system translates senses of an English word into Chinese words, using an English-Chinese dictionary, and then retrieves text snippets from a large amount of Chinese text, with the Chinese translations as queries. Secondly, the Chinese text snippets are segmented and then translated back to English word by word, using a Chinese-English dictionary. For each sense, a set of sense signatures is produced. As an example, suppose one wants to retrieve sense signatures for the ¯nancial sense of interest. One would ¯rst look up the Chinese translations of this sense in an English-Chinese dic- tionary, and ¯nd that |E is the right Chinese translation corresponding to this particular IST-2001-34460 - MEANING - Developing Multilingual Web-scale Language Technologies WP6.12-Working Paper 6.12h(b) (3rd Round) Version: Final WSD Using Sense Signatures Page : 5 sense. Then, the next stage is to automatically build a collection of Chinese text snippets by either searching in a large Chinese corpus or on the Web, using |E as query. As Chi- nese is a language written without spaces between words, one needs to use a segmentor to mark word boundaries before translating the snippets word by word back to English. The result is a collection of sense signatures for the ¯nancial sense of interest. For example, finterest rate, bank, annual, economy, ...g might be one of them. We trained a second- order co-occurrence vector model on the sense signatures and tested on the TWA Binary sense-tagged dataset, with reasonable results.
Recommended publications
  • POS Tagging for Improving Code-Switching Identification In
    POS Tagging for Improving Code-Switching Identification in Arabic Mohammed Attia1 Younes Samih2 Ali Elkahky1 Hamdy Mubarak2 Ahmed Abdelali2 Kareem Darwish2 1Google LLC, New York City, USA 2Qatar Computing Research Institute, HBKU Research Complex, Doha, Qatar 1{attia,alielkahky}@google.com 2{ysamih,hmubarak,aabdelali,kdarwish}@hbku.edu.qa Abstract and sociolinguistic reasons. Second, existing the- oretical and computational linguistic models are When speakers code-switch between their na- tive language and a second language or lan- based on monolingual data and cannot adequately guage variant, they follow a syntactic pattern explain or deal with the influx of CS data whether where words and phrases from the embedded spoken or written. language are inserted into the matrix language. CS has been studied for over half a century This paper explores the possibility of utiliz- from different perspectives, including theoretical ing this pattern in improving code-switching linguistics (Muysken, 1995; Parkin, 1974), ap- identification between Modern Standard Ara- plied linguistics (Walsh, 1969; Boztepe, 2003; Se- bic (MSA) and Egyptian Arabic (EA). We try to answer the question of how strong is the tati, 1998), socio-linguistics (Barker, 1972; Heller, POS signal in word-level code-switching iden- 2010), psycho-linguistics (Grosjean, 1989; Prior tification. We build a deep learning model en- and Gollan, 2011; Kecskes, 2006), and more re- riched with linguistic features (including POS cently computational linguistics (Solorio and Liu, tags) that outperforms the state-of-the-art re- 2008a; Çetinoglu˘ et al., 2016; Adel et al., 2013b). sults by 1.9% on the development set and 1.0% In this paper, we investigate the possibility of on the test set.
    [Show full text]
  • SELECTING and CREATING a WORD LIST for ENGLISH LANGUAGE TEACHING by Deny A
    Teaching English with Technology, 17(1), 60-72, http://www.tewtjournal.org 60 SELECTING AND CREATING A WORD LIST FOR ENGLISH LANGUAGE TEACHING by Deny A. Kwary and Jurianto Universitas Airlangga Dharmawangsa Dalam Selatan, Surabaya 60286, Indonesia d.a.kwary @ unair.ac.id / [email protected] Abstract Since the introduction of the General Service List (GSL) in 1953, a number of studies have confirmed the significant role of a word list, particularly GSL, in helping ESL students learn English. Given the recent development in technology, several researchers have created word lists, each of them claims to provide a better coverage of a text and a significant role in helping students learn English. This article aims at analyzing the claims made by the existing word lists and proposing a method for selecting words and a creating a word list. The result of this study shows that there are differences in the coverage of the word lists due to the difference in the corpora and the source text analysed. This article also suggests that we should create our own word list, which is both personalized and comprehensive. This means that the word list is not just a list of words. The word list needs to be accompanied with the senses and the patterns of the words, in order to really help ESL students learn English. Keywords: English; GSL; NGSL; vocabulary; word list 1. Introduction A word list has been noted as an essential resource for language teaching, especially for second language teaching. The main purpose for the creation of a word list is to determine the words that the learners need to know, in order to provide more focused learning materials.
    [Show full text]
  • Modeling and Encoding Traditional Wordlists for Machine Applications
    Modeling and Encoding Traditional Wordlists for Machine Applications Shakthi Poornima Jeff Good Department of Linguistics Department of Linguistics University at Buffalo University at Buffalo Buffalo, NY USA Buffalo, NY USA [email protected] [email protected] Abstract Clearly, descriptive linguistic resources can be This paper describes work being done on of potential value not just to traditional linguis- the modeling and encoding of a legacy re- tics, but also to computational linguistics. The source, the traditional descriptive wordlist, difficulty, however, is that the kinds of resources in ways that make its data accessible to produced in the course of linguistic description NLP applications. We describe an abstract are typically not easily exploitable in NLP appli- model for traditional wordlist entries and cations. Nevertheless, in the last decade or so, then provide an instantiation of the model it has become widely recognized that the devel- in RDF/XML which makes clear the re- opment of new digital methods for encoding lan- lationship between our wordlist database guage data can, in principle, not only help descrip- and interlingua approaches aimed towards tive linguists to work more effectively but also al- machine translation, and which also al- low them, with relatively little extra effort, to pro- lows for straightforward interoperation duce resources which can be straightforwardly re- with data from full lexicons. purposed for, among other things, NLP (Simons et al., 2004; Farrar and Lewis, 2007). 1 Introduction Despite this, it has proven difficult to create When looking at the relationship between NLP significant electronic descriptive resources due to and linguistics, it is typical to focus on the dif- the complex and specific problems inevitably as- ferent approaches taken with respect to issues sociated with the conversion of legacy data.
    [Show full text]
  • THE IMPACT of USING WORDLISTS in the LANGUAGE CLASSROOM on STUDENTS’ VOCABULARY ACQUISITION Gülçin Coşgun Ozyegin University
    International Journal of English Language Teaching Vol.4, No.3, pp.49-66, March 2016 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) THE IMPACT OF USING WORDLISTS IN THE LANGUAGE CLASSROOM ON STUDENTS’ VOCABULARY ACQUISITION Gülçin Coşgun Ozyegin University ABSTRACT: Vocabulary has always been an area of interest for many researchers since words represent “the building block upon which knowledge of the second language can be built” and without them people cannot convey the intended meaning (Abrudan, 2010). Nation (1988) emphasised if teachers want to help their learners to deal with unknown words, it would be better to spend more time on vocabulary learning strategies rather than spending time on individual words. However, Schmitt in Schmitt and McCarthy (1997:200) stated that among vocabulary learning strategies only ‘guessing from context’ and ‘key word method’ have been investigated in depth. Therefore, there is need for more research on vocabulary learning whose pedagogical implications may contribute to the field of second language learning. Considering the above- mentioned issues, vocabulary is a worthwhile field to investigate. Hence, this paper aims at proposing a framework for vocabulary teaching strategy in English as a foreign language context. KEYWORDS: Wordlists, Vocabulary Teaching, Word walls, Vocabulary Learning Strategies INTRODUCTION Vocabulary has always been an area of interest and concern for many researchers and teachers alike since words represent “the building block upon which knowledge of the second language can be built” and without them people cannot convey the intended meaning (Abrudan, 2010). Anderson and Freebody (1981) state that a strong correlation exists between vocabulary and academic achievement.
    [Show full text]
  • All-Words Word Sense Disambiguation Using Concept Embeddings
    All-words Word Sense Disambiguation Using Concept Embeddings Rui Suzuki, Kanako Komiya, Masayuki Asahara, Minoru Sasaki, Hiroyuki Shinnou Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki JAPAN, National Institute for Japanese Language and Linguistics, 10-2 Midoricho, Tachikawa, Tokyo, JAPAN, [email protected], kanako.komiya.nlp, minoru.sasaki.01, hiroyuki.shinnou.0828g @vc.ibaraki.ac.jp, [email protected] Abstract All-words word sense disambiguation (all-words WSD) is the task of identifying the senses of all words in a document. Since the sense of a word depends on the context, such as the surrounding words, similar words are believed to have similar sets of surrounding words. We therefore predict the target word senses by calculating the distances between the surrounding word vectors of the target words and their synonyms using word embeddings. In addition, we introduce the new idea of concept embeddings, constructed from concept tag sequences created from the results of previous prediction steps. We predict the target word senses using the distances between surrounding word vectors constructed from word and concept embeddings, via a bootstrapped iterative process. Experimental results show that these concept embeddings were able to improve the performance of Japanese all-words WSD. Keywords: word sense disambiguation, all-words, unsupervised 1. Introduction many words have the same article numbers. Several words Word sense disambiguation (WSD) involves identifying the can have the same precise article number, even when the senses of words in documents. In particular, the WSD task semantic breaks are considered. where the senses of all the words in a document are disam- biguated is referred to as all-words WSD.
    [Show full text]
  • A Web-Based Vocabulary Profiler for Chinese Language Teaching and Research
    DA A web-based vocabulary profiler for Chinese language teaching and research Jun Da, Middle Tennessee State University This paper describes the design and development of a web-based Chinese vocabulary profiler that is intended as a handy tool for Chinese language instruction and research. Given a piece of text, the profiler is capable of generating character and vocabulary profiles with frequency and availability information based on a comparison of the set of characters and words found in the text with a selection of other pre-compiled reference lists such as Da’s Modern Chinese character and N-gram frequency lists, the HSK word list and customized vocabulary list provided by a user. 1. Introduction Vocabulary profiling is a measure of the proportions of low and high frequency vocabulary used in a written text. In addition to frequency information, a profiler designed for lexical analysis of texts often provides other information such as the presence/absence of the set of words from the input text in other specialized word lists and their collocation with other words, etc. While it has been used in stylistic studies of written texts (e.g., Graves’s (2004) profiling of Jane Austen’s novels and letters), vocabulary profiling has also been suggested as a useful instrument in second language acquisition research and pedagogy (Laufer and Nation 1995). For example, Morris and Cobb (2004) examined the potential of using vocabulary profile as a predictor of TESL (Teaching English as a Second Language) trainees’ academic performance and reported that vocabulary profile results correlate significantly with their course grades.
    [Show full text]
  • Simple Features for Statistical Word Sense Disambiguation
    SENSEVAL-3: Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain, July 2004 Association for Computational Linguistics Simple Features for Statistical Word Sense Disambiguation Abolfazl K. Lamjiri, Osama El Demerdash, Leila Kosseim CLaC Laboratory Department of Computer Science Concordia University, Montreal, Canada fa keigho,osama el,[email protected] Abstract more than four words around the target are In this paper, we describe our experiments on considered (Ide and V´eronis, 1998). While re- statistical word sense disambiguation (WSD) searchers such as Masterman (1961), Gougen- using two systems based on different ap- heim and Michea (1961), agree with this ob- proaches: Na¨ıve Bayes on word tokens and Max- servation (Ide and V´eronis, 1998), our results imum Entropy on local syntactic and seman- demonstrate that this does not generally ap- tic features. In the first approach, we consider ply to all words. A large context window pro- a context window and a sub-window within it vides domain information which increases the around the word to disambiguate. Within the accuracy for some target words such as bank.n, outside window, only content words are con- but not others like different.a or use.v (see Sec- sidered, but within the sub-window, all words tion 3). This confirms Mihalcea's observations are taken into account. Both window sizes are (Mihalcea, 2002). In our system we allow a tuned by the system for each word to disam- larger context window size and for most of the biguate and accuracies of 75% and 67% were re- words such context window is selected by the spectively obtained for coarse and fine grained system.
    [Show full text]
  • HSK Word List - Level 3 HSK Word List - Level 3
    11/5/11 HSK Word List - Level 3 HSK Word List - Level 3 1 阿姨 āyí maternal aunt; step-mother; childcare worker; nursemaid; woman of similar age to one's parents (term of address used by child); CL:個|个[gè] 2 啊 a modal particle ending sentence, showing affirmation, approval, or consent 3 矮 ǎi low; short (in length) 4 ài to love; affection; to be fond of; to like 5 好 àihào to like; to take pleasure in; keen on; fond of; interest; hobby; appetite for; CL:個|个[gè] 6 安静 ānjìng quiet; peaceful; calm 7 八 bā eight; 8 8 把 bǎ to hold; to contain; to grasp; to take hold of; a handle; particle marking the following noun as a direct object; classifier for objects with handle 9 爸爸 bàba (informal) father; CL:個|个[gè],位[wèi] 10 吧 ba (modal particle indicating polite suggestion); ...right?; ...OK? 11 白 bái white; snowy; pure; bright; empty; blank; plain; clear; to make clear; in vain; gratuitous; free of charge; reactionary; anti-communist; funeral; to stare coldly; to write wrong character; to state; to explain; vernacular; spoken lines in opera; surname Bai 12 百 bǎi hundred; numerous; all kinds of; surname Bai 13 班 bān team; class; squad; work shift; classifier for groups; ranking; surname Ban; CL:個|个[gè] 14 搬 bān to move; to shift; to remove; to transport; to apply indiscriminately; to copy mechanically 15 半 bàn half; semi-; incomplete; (after a number) and a half 16 法 bànfǎ means; method; way (of doing sth); CL:條|条[tiáo], 個|个[gè] hewgill.com/hsk/hsk3.html 1/29 11/5/11 HSK Word List - Level 3 17 公室 bàngōngshì an office; business premises; a bureau; CL:間|
    [Show full text]
  • Cross-Linguistic Word Frequency Visualization for PT and EN
    Cross-Linguistic Word Frequency Visualization for PT and EN Mariana Shimabukuro* Christopher Collins† Ontario Tech University Figure 1: Circular heatmap and zoomed rank exploration view. The heatmap shows the distribution of words between Portuguese (PT) and their English (EN) translations in both language ranks. The side view shows words from a chosen cell and their rank location in the bars on the right (PT) and left (EN) side, e.g., the word “that” appears 4 times, indicating PT speakers tend to overuse “that”. ABSTRACT Ex.: “This a strong/powerful tea.”, “I feel very confusing this In this project, we present a visualization for investigating the re- morning.” or “I ate a medicine pill.” lationship between commonly used words in Portuguese and their Acceptability errors can be a source of embarrassment for non- translations in English. This cross-linguistic analysis can help us to native English speakers, and often come from the differences in word understand English word choices made by Portuguese native speak- frequency across languages. For example, the word “polemic” is ers and the influence of language transfer effects. In this paper, considered formal and rarely used in English, whereas its Portuguese we discuss how word frequency is commonly used as a resource translation, “polemico,”ˆ is a very common word. Thus, a Portuguese for both textual and cross-linguistic analysis. Moreover, we briefly speaker may choose to use the word “polemic” in English conversa- explain the data processing pipeline building on machine translation tion, where “controversial” would be a more natural-sounding choice. and word frequencies from large corpora.
    [Show full text]
  • Using Word Lists to Learn Second Language Vocabulary Is Unproductive
    MYTH 2 Using word lists to learn second language vocabulary is unproductive. In the Real World . AT A WORKSHOP IN JAPAN IN 1993, THE NOTED second language acquisi- tion expert Rod Ellis asked the audience, which was composed of per- haps 90 percent Japanese EFL teachers and 10 percent English-speaking teachers, “I assume that most of you teachers here today learned English as a Foreign Language. What methods or techniques did your teachers use?” Most of the responses were murmurs of a few different methods, and then one older woman said in a somewhat shy voice but with impeccable English pronunciation, “Audiolingual.” Dr. Ellis’s next question was addressed to this woman. “Do you think that was a good method? Was it effective?” CopyrightIn (c) typical 2004, Japanese University fashion, of Michiganshe hesitated Press. for a All long rights time. reserved. She finally answered, “Well, I thought it was good,” with emphasis on the word thought to indicate that she may have been wrong. In her voice— as we hear in many of our students’ voices when we pose a difficult question to the entire group—you could hear that she was trying to give the right answer but hedge also. However, she really did think that /35 36 \ Vocabulary Myths audiolingual was a good way to learn English—at least for her. She put emphasis on the word thought to indicate that she expected Dr. Ellis’s next comments to explain why audiolingual was bad since that is what the vast majority of current methods books tell us.
    [Show full text]
  • A Referred Word List Analyzing Tool with Keyword, Concordancing and N-Gram Functions∗∗∗
    VocabAnalyzer: A Referred Word List Analyzing Tool with Keyword, Concordancing and N-gram Functions∗∗∗ a b a Siaw-Fong Chung , F.Y. August Chao , and Yi-Chen Hsieh a Department of English, National Chengchi University, No. 64, ZhiNan Road Section 2, Wenshan District, Taipei City 11605, Taiwan {sfchung, 96551016}@nccu.edu.tw b Department of Management Information Systems, National Chengchi University, No. 64, ZhiNan Road Section 2, Wenshan District, Taipei City 11605, Taiwan [email protected] Abstract. This paper introduces the newly created VocabAnalyzer which is equipped with keyword, concordancing and n-gram functions. The VocabAnalyzer also allows the comparison of the inputted text against Jeng et al. (2002) vocabulary word list. Two case studies will be discussed in this paper. The first study compares two versions of the English Bible and the second study compares word list created by abstracts written by graduate students of various English departments in Taiwan. Both study shows that the VocabAnalyzer is beneficial for applied linguistics studies as well as for teaching and learning of English. Analyses of student writing can be carried out based on the results from this tool. Keywords: VocabAnalyzer, word list, keyword, concordancer, vocabulary 1 Introduction With the increasing expansion of corpus linguistics and its applications to fields such as theoretical linguistics, applied linguistics and language teaching, concordancers are now in greater demand, especially by researchers who do not write programming scripts themselves. Wordsmith (Scott,1999), AntConc (Anthony, 2004) and the Concordancer Software (Nguyen and Munson, 2003) are some of the most frequently used concordancers because these programs allow plain texts to be processed and displayed as KWIC or analyzed according to collocations.
    [Show full text]
  • A New General Service List: the Better Mousetrap We’Ve Been Looking For? Charles Browne Meiji Gakuin University Doi
    Vocabulary Learning and Instruction Volume 3, Issue 1, Month 2014 http://vli-journal.org Article A New General Service List: The Better Mousetrap We’ve Been Looking for? Charles Browne Meiji Gakuin University doi: http://dx.doi.org/10.7820/vli.v03.1.browne Abstract This brief paper introduces the New General Service List (NGSL), a major update of Michael West’s 1953 General Service List (GSL) of core vocabulary for second language learners. After describing the rationale behind the NGSL, the specific steps taken to create it and a discussion of the latest 1.01 version of the list, the paper moves on to comparing the text coverage offered by the NGSL against both the GSL as well as another recent GSL published by Brezina and Gablasova (referred to as Other New General Service List [ONGSL] in this paper). Results indicate that while the original GSL offers slightly better coverage for texts of classic literature (about 0.8% better than the NGSL and 4.5% more than the ONGSL), the NGSL offers 5Á6% more coverage than either list for more modern corpora such as Scientific American or the Economist. In the precomputer era of the early 20th century, Michael West and his colleagues undertook a very ambitious corpus linguistics project that gathered and analyzed more than 2.5 million words of text and culminated in the publication of what is now known as The General Service List (GSL; West, 1953), a list of about 2000 high-frequency words that were deemed important for second language learners. However, as useful and helpful as this list has been
    [Show full text]